- Remove all NFS related stuff from file system specific code.
- Drop the vfs_checkexp hook and generalize it in the new nfs_check_export
function, thus removing redundancy from all file systems.
- Move all NFS export-related stuff from kern/vfs_subr.c to the new
file sys/nfs/nfs_export.c. The former was becoming large and its code
is always compiled, regardless of the build options. Using the latter,
the code is only compiled in when NFSSERVER is enabled. While doing this,
also make some functions in nfs_subs.c conditional to NFSSERVER.
- Add a new command in nfssvc(2), called NFSSVC_SETEXPORTSLIST, that takes a
path and a set of export entries. At the moment it can only clear the
exports list or append entries, one by one, but it is done in a way that
allows setting the whole set of entries atomically in the future (see the
comment in mountd_set_exports_list or in doc/TODO).
- Change mountd(8) to use the nfssvc(2) system call instead of mount(2) so
that it becomes file system agnostic. In fact, all this whole thing was
done to remove a 'XXX' block from this utility!
- Change the mount*, newfs and fsck* userland utilities to not deal with NFS
exports initialization; done internally by the kernel when initializing
the NFS support for each file system.
- Implement an interface for VFS (called VFS hooks) so that several kernel
subsystems can run arbitrary code upon receipt of specific VFS events.
At the moment, this only provides support for unmount and is used to
destroy NFS exports lists from the file systems being unmounted, though it
has room for extension.
Thanks go to yamt@, chs@, thorpej@, wrstuden@ and others for their comments
and advice in the development of this patch.
- Not enabled by default. Needs kernel option FFS_SNAPSHOT.
- Change parameters of ffs_blkfree.
- Let the copy-on-write functions return an error so spec_strategy
may fail if the copy-on-write fails.
- Change genfs_*lock*() to use vp->v_vnlock instead of &vp->v_lock.
- Add flag B_METAONLY to VOP_BALLOC to return indirect block buffer.
- Add a function ffs_checkfreefile needed for snapshot creation.
- Add special handling of snapshot files:
Snapshots may not be opened for writing and the attributes are read-only.
Use the mtime as the time this snapshot was taken.
Deny mtime updates for snapshot files.
- Add function transferlockers to transfer any waiting processes from
one lock to another.
- Add vfsop VFS_SNAPSHOT to take a snapshot and make it accessible through
a vnode.
- Add snapshot support to ls, fsck_ffs and dump.
Welcome to 2.0F.
Approved by: Jason R. Thorpe <thorpej@netbsd.org>
and tweak lkminit_*.c (where applicable) to call them, and to call
sysctl_teardown() when being unloaded.
This consists of (1) making setup functions not be static when being
compiled as lkms (change to sys/sysctl.h), (2) making prototypes
visible for the various setup functions in header files (changes to
various header files), and (3) making simple "load" and "unload"
functions in the actual lkminit stuff.
linux_sysctl.c also needs its root exposed (ie, made not static) for
this (when built as an lkm).
no longer use and/or need it
- removed casts from unionfs, deadfs and fdesc
(there are more to hunt down still)
- changed vfs_quotactl args argumet from caddr_t to void *
- changed vfs_quotactl structures/callers to reflect the api change
Compiled fine and ran for about a day. Approved/reviewed by
christos@netbsd.org and gimpy@netbsd.org.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
The client manager (venus) blocks in sys_mount() before entering its
event loop answering requests from the kernel device (cfs). sys_mount()
calls VFS_STATFS() internally which caused an upcall through cfs,
which was never answered.
Now don't consider the fs fully mounted before the VFS_START() was
called at the vey end of sys_mount(). So VFS_STATFS() will return
an error which is ignored.
* Remove the "lwp *" argument that was added to vget(). Turns out
that nothing actually used it!
* Remove the "lwp *" arguments that were added to VFS_ROOT(), VFS_VGET(),
and VFS_FHTOVP(); all they did was pass it to vget() (which, as noted
above, didn't use it).
* Remove all of the "lwp *" arguments to internal functions that were added
just to appease the above.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
- Under chroot it displays only the visible filesystems with appropriate paths.
- The statfs f_mntonname gets adjusted to contain the real path from root.
- While was there, fixed a bug in ext2fs, locking problems with vfs_getfsstat(),
and factored out some of the vfsop statfs() code to copy_statfs_info(). This
fixes the problem where some filesystems forgot to set fsid.
- Made coda look more like a normal fs.
malloc types into a structure, a pointer to which is passed around,
instead of an int constant. Allow the limit to be adjusted when the
malloc type is defined, or with a function call, as suggested by
Jonathan Stone.
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.