and cache the maximum ACL/SCO packet buffers.
provide an additional SIOCGBTFEAT ioctl to retrieve the cached
features, and add the max values to the SIOC?BTINFO results.
(btreq does not change size)
to remove the frobbing that drivers must do in the hci_unit structure.
- driver provides a static const interface descriptor
- hci_unit is allocated by hci_attach() rather than part of softc
- statistics are compiled by driver and provided on request
- driver provides output methods and is responsible for output queue
- stack provides input methods and is responsible for input queue
- mutex is used to arbitrate device queue access
make bluetooth stack keep device_t instead of softc pointer as
device is not necessarily part of softc, and pass device_t to
driver callbacks. hci_devname is no longer required.
hci_event.c:
- Convert memo->response.clock_offset to host-endian.
hci_ioctl.c:
- printf format tweak (size_t)
hci_link.c:
- Convert memo->response.clock_offset from host-endian.
- Tweak a DIAGNOSTIC message.
l2cap_signal.c:
- In l2cap_recv_config_req(), rp->scid is little-endian so make sure
we convert from host-endian.
from scw@
Provide an ioctl to set the SCO mtu value in the controller and
place limits in the SCO code such that only packets of this size
may be sent.
Move the mtu option from btsco(4) and btdevctl(8), to the
btconfig(8) program.
Remove temporary BLUETOOTH_SCO kernel option, and enable SCO
socket access.
Fix incoming connection handling for btsco(4) and SCO sockets.
Fix documentation to reflect the new world order.
NetBSD Foundation Membership still pending.) This stack was written by
Iain under sponsorship from Itronix Inc.
The stack includes support for rfcomm networking (networking via your
bluetooth enabled cell phone), hid devices (keyboards/mice), and headsets.
Drivers for both PCMCIA and USB bluetooth controllers are included.