(PR #11468). In the case of fragment allocation, check to see if enough
space is available before extending a fragment already scheduled for writing.
The locked_queue_* variables indicate the number of buffer headers and bytes,
respectively, that are unavailable to getnewbuf() because they are locked up
waiting for LFS to flush them; make sure that that is actually what we're
counting, i.e., never count malloced buffers, and always use b_bufsize instead
of b_bcount.
If DEBUG is defined, the periodic calls to lfs_countlocked will now complain
if either counter is incorrect. (In the future lfs_countlocked will not need
to be called at all if DEBUG is not defined.)
Kernel:
* Add runtime quantity lfs_ravail, the number of disk-blocks reserved
for writing. Writes to the filesystem first reserve a maximum amount
of blocks before their write is allowed to proceed; after the blocks
are allocated the reserved total is reduced by a corresponding amount.
If the lfs_reserve function cannot immediately reserve the requested
number of blocks, the inode is unlocked, and the thread sleeps until
the cleaner has made enough space available for the blocks to be
reserved. In this way large files can be written to the filesystem
(or, smaller files can be written to a nearly-full but thoroughly
clean filesystem) and the cleaner can still function properly.
* Remove explicit switching on dlfs_minfreeseg from the kernel code; it
is now merely a fs-creation parameter used to compute dlfs_avail and
dlfs_bfree (and used by fsck_lfs(8) to check their accuracy). Its
former role is better assumed by a properly computed dlfs_avail.
* Bounds-check inode numbers submitted through lfs_bmapv and lfs_markv.
This prevents a panic, but, if the cleaner is feeding the filesystem
the wrong data, you are still in a world of hurt.
* Cleanup: remove explicit references of DEV_BSIZE in favor of
btodb()/dbtob().
lfs_cleanerd:
* Make -n mean "send N segments' blocks through a single call to
lfs_markv". Previously it had meant "clean N segments though N calls
to lfs_markv, before looking again to see if more need to be cleaned".
The new behavior gives better packing of direct data on disk with as
little metadata as possible, largely alleviating the problem that the
cleaner can consume more disk through inefficient use of metadata than
it frees by moving dirty data away from clean "holes" to produce
entirely clean segments.
* Make -b mean "read as many segments as necessary to write N segments
of dirty data back to disk", rather than its former meaning of "read
as many segments as necessary to free N segments worth of space". The
new meaning, combined with the new -n behavior described above,
further aids in cleaning storage efficiency as entire segments can be
written at once, using as few blocks as possible for segment summaries
and inode blocks.
* Make the cleaner take note of segments which could not be cleaned due
to error, and not attempt to clean them until they are entirely free
of dirty blocks. This prevents the case in which a cleanerd running
with -n 1 and without -b (formerly the default) would spin trying
repeatedly to clean a corrupt segment, while the remaining space
filled and deadlocked the filesystem.
* Update the lfs_cleanerd manual page to describe all the options,
including the changes mentioned here (in particular, the -b and -n
flags were previously undocumented).
fsck_lfs:
* Check, and optionally fix, lfs_avail (to an exact figure) and
lfs_bfree (within a margin of error) in pass 5.
newfs_lfs:
* Reduce the default dlfs_minfreeseg to 1/20 of the total segments.
* Add a warning if the sgs disklabel field is 16 (the default for FFS'
cpg, but not usually desirable for LFS' sgs: 5--8 is a better range).
* Change the calculation of lfs_avail and lfs_bfree, corresponding to
the kernel changes mentioned above.
mount_lfs:
* Add -N and -b options to pass corresponding -n and -b options to
lfs_cleanerd.
* Default to calling lfs_cleanerd with "-b -n 4".
[All of these changes were largely tested in the 1.5 branch, with the
idea that they (along with previous un-pulled-up work) could be applied
to the branch while it was still in ALPHA2; however my test system has
experienced corruption on another filesystem (/dev/console has gone
missing :^), and, while I believe this unrelated to the LFS changes, I
cannot with good conscience request that the changes be pulled up.]
Make lfs_uinodes a signed quantity for debugging purposes, and set it to
zero as fs mount time.
Enclose setting/clearing of the dirty flags (IN_MODIFIED, IN_ACCESSED,
IN_CLEANING) in macros, and use those macros everywhere. Make
LFS_ITIMES use these macros; updated the ITIMES macro in inode.h to know
about this. Make ufs_getattr use ITIMES instead of FFS_ITIMES.
fixes:
- Write copies of bfree and avail in the CLEANERINFO block, so the
cleaner doesn't have to guess which superblock has the current
information (if indeed any do).
- Tighten up accounting of lfs_avail (more needs to be done).
- When cleansing indirect blocks of UNWRITTEN, make sure not to mark
them clean, since they'll need to be rewritten later.
parametrized in the filesystem, defaulting to MIN_FREE_SEGS = 2 but set
to something more reasonable at newfs_lfs time.
Note the number of blocks that have been scheduled for writing but which
are not yet on disk in an inode extension, i_lfs_effnblks. Move
i_ffs_effnlink out of the ffs extension and onto the main inode, since
it's used all over the shared code and the lfs extension would clobber
it.
At inode write time, indirect blocks and inode-held blocks of inodes
that have i_lfs_effnblks != i_ffs_blocks are cleansed of UNWRITTEN disk
addresses, so that these never make it to disk.
Change the space computation to appear to change the size of the *disk*
rather than the *bytes used* when more segment summaries and inode
blocks are written. Try to estimate the amount of space that these will
take up when more files are written, so the disk size doesn't change too
much.
Regularize error returns from lfs_valloc, lfs_balloc, lfs_truncate: they
now fail entirely, rather than succeeding half-way and leaving the fs in
an inconsistent state.
Rewrite lfs_truncate, mostly stealing from ffs_truncate. The old
lfs_truncate had difficulty truncating a large file to a non-zero size
(indirect blocks were not handled appropriately).
Unmark VDIROP on fvp after ufs_remove, ufs_rmdir, so these can be
reclaimed immediately: this vnode would not be written to disk again
anyway if the removal succeeded, and if it failed, no directory
operation occurred.
ufs_makeinode and ufs_mkdir now remove IN_ADIROP on error.
the head of the inode free list (on the superblock) always matches the
rest of the free list (in the ifile).
Protect lfs_fragextend with seglock, to prevent the segment byte count
fudging from making its way to disk.
Don't try to inactivate dirop vnodes that are still in the middle of
their dirop (may address PR#10285).
All the dirop vnops now mark the inodes with a new flag, IN_ADIROP, which
is removed as soon as the dirop is done (as opposed to VDIROP which stays
until the file is written). To address one issue raised in PR#9357.
a set of flags ("flags"). Two flags are defined, UPDATE_WAIT and
UPDATE_DIROP.
Under the old semantics, VOP_UPDATE would block if waitfor were set,
under the assumption that directory operations should be done
synchronously. At least LFS and FFS+softdep do not make this
assumption; FFS+softdep got around the problem by enclosing all relevant
calls to VOP_UPDATE in a "if(!DOINGSOFTDEP(vp))", while LFS simply
ignored waitfor, one of the reasons why NFS-serving an LFS filesystem
did not work properly.
Under the new semantics, the UPDATE_DIROP flag is a hint to the
fs-specific update routine that the call comes from a dirop routine, and
should be wait for, or not, accordingly.
Closes PR#8996.
buffer cache flags, to marking the inode and/or indirect blocks with a
special disk address UNWRITTEN==-2 when a block is accounted for. (This
address is never written to disk, but only used in-core. This is essentially
the same method of block accounting as on the UBC branch, where the buffer
headers don't exist.) Make sure that truncation is handled properly,
especially in the case of holey files.
Fixes PR#9994.
1.4 branch.
* Use a separate per-fs lock, instead of ufs_hashlock, to protect the Inode
free list. This seems to prevent the "lockmgr: %d, not exclusive lock holder
%d, unlocking" message I was mis-attributing last night to an unlocked vnode
being passed to vrele.
* Change calling semantics of lfs_ifind, to give better error reporting:
If fed a struct buf, it can report the block number of the offending inode
block as well as the inode number.
* Back out rev 1.10 of lfs_subr.c, since the replacement code was slightly
uglier while being functionally identical.
* Make lfs_vunref use the same free list convention as vrele/vput, so that
vget does not remove vnodes from a hash list they are not on.
(Previously buffers could be marked dirty by the cleaner, and possibly by
other means.)
Also check for softdep mount in vfs_shutdown before trying to bawrite
buffers, since other filesystems don't need it and lfs doesn't bawrite.
(This fragment reviewed by fvdl.)
Partially addresses PR#8964.
post-mortem of a production machine. Also, take the active dirop
count off of the fs and make it global (since it is measuring a global
resource) and tie the threshold value LFS_MAXDIROP to desiredvnodes.
a bug in fragment extension that could run the count negative. Also, don't
overcount for inodes, and don't count segment summaries. Thus, for empty
segments the live bytes count should now be exactly zero.
will DTRT with vnodes marked VDIROP. In particular, the message
"flushing VDIROP" will no longer appear, and the filesystem will remain
stable in the event of a crash.
This was particularly a problem with NFS-exported LFSes, since fsync
was called on every file close.
include:
- DIROP segregation is enabled, and greater care is taken
to make sure that a checkpoint completes. Fsck is not
needed to remount the filesystem.
- Several checks to make sure that the LFS subsystem does not
overuse various resources (memory, in particular).
- The cleaner routines, lfs_markv in particular, are completely
rewritten. A buffer overflow is removed. Greater care is taken
to ensure that inodes come from where lfs_cleanerd say they come
from (so we know nothing has changed since lfs_bmapv was called).
- Fragment allocation is fixed, so that writes beyond end-of-file
do the right thing.
align 32bit integers. Use explicit sized typing at some other places.
XXX This still won't fix lfs for 64bit machines, as we have some
assumptions about sizeof(pointer)=sizeof(u_int32_t) in here, and (if I
looked right) a misaligned u_int64_t. The right fix (to cite cgd) will
be to seperate on-disk-representation from in-core, but I don't have
the time (at the moment) to do this.