where curcpu() is defined as curlwp->l_cpu:
- mi_switch(): undo the ~2007ish optimisation to unlock curlwp before
calling cpu_switchto(). It's not safe to let other actors mess with the
LWP (in particular l->l_cpu) while it's still context switching. This
removes l->l_ctxswtch.
- Move the LP_RUNNING flag into l->l_flag and rename to LW_RUNNING since
it's now covered by the LWP's lock.
- Ditch lwp_exit_switchaway() and just call mi_switch() instead. Everything
is in cache anyway so it wasn't buying much by trying to avoid saving old
state. This means cpu_switchto() will never be called with prevlwp ==
NULL.
- Remove some KERNEL_LOCK handling which hasn't been needed for years.
- Adapt to cpu_need_resched() changes. Avoid lost & duplicate IPIs and ASTs.
sched_resched_cpu() and sched_resched_lwp() contain the logic for this.
- Changes for LSIDL to make the locking scheme match the intended design.
- Reduce lock contention and false sharing further.
- Numerous small bugfixes, including some corrections for SCHED_FIFO/RT.
- Use setrunnable() in more places, and merge cut & pasted code.
sys/stdarg.h and expect compiler to provide proper builtins, defaulting
to the GCC interface. lint still has a special fallback.
Reduce abuse of _BSD_VA_LIST_ by defining __va_list by default and
derive va_list as required by standards.
allocation for user and system lwps. MIPS will use this to map uareas of
system lwp used direct-mapped addresses (to reduce the overhead of
switching to kernel threads). ibm4xx could use to map uareas via direct
mapped addresses and avoid the problem of having the kernel stack not in
the TLB.
by zfs but I think that it can be generaly usefull. Thread need to be created
with KTHREAD_JOINABLE flag and can be joined only once.
When joinable thread was created it will not e automatically reaped from system
and kthread_join must be called on it to reap it.
Ok by ad@.
- Addresses the issue described in PR/38828.
- Some simplification in threading and sleepq subsystems.
- Eliminates pmap_collect() and, as a side note, allows pmap optimisations.
- Eliminates XS_CTL_DATA_ONSTACK in scsipi code.
- Avoids few scans on LWP list and thus potentially long holds of proc_lock.
- Cuts ~1.5k lines of code. Reduces amd64 kernel size by ~4k.
- Removes __SWAP_BROKEN cases.
Tested on x86, mips, acorn32 (thanks <mpumford>) and partly tested on
acorn26 (thanks to <bjh21>).
Discussed on <tech-kern>, reviewed by <ad>.
we no longer need to guard against access from hardware interrupt handlers.
Additionally, if cloning a process with CLONE_SIGHAND, arrange to have the
child process share the parent's lock so that signal state may be kept in
sync. Partially addresses PR kern/37437.
tech-kern:
- Invert priority space so that zero is the lowest priority. Rearrange
number and type of priority levels into bands. Add new bands like
'kernel real time'.
- Ignore the priority level passed to tsleep. Compute priority for
sleep dynamically.
- For SCHED_4BSD, make priority adjustment per-LWP, not per-process.
backed by physical pages (ie. because it reused a previously-freed one),
so that we can skip a bunch of useless work in that case.
this fixes the underlying problem behind PR 18543, and also speeds up fork()
quite a bit (eg. 7% on my pc, 1% on my ultra2) when we get a cache hit.
- implement SIMPLEQ_REMOVE(head, elm, type, field). whilst it's O(n),
this mirrors the functionality of SLIST_REMOVE() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE()
- remove the unnecessary elm arg from SIMPLEQ_REMOVE_HEAD().
this mirrors the functionality of SLIST_REMOVE_HEAD() (the other
singly-linked list type) and FreeBSD's STAILQ_REMOVE_HEAD()
- remove notes about SIMPLEQ not supporting arbitrary element removal
- use SIMPLEQ_FOREACH() instead of home-grown for loops
- use SIMPLEQ_EMPTY() appropriately
- use SIMPLEQ_*() instead of accessing sqh_first,sqh_last,sqe_next directly
- reorder manual page; be consistent about how the types are listed
- other minor cleanups
doing a cpu_set_kpc(), just pass the entry point and argument all
the way down the fork path starting with fork1(). In order to
avoid special-casing the normal fork in every cpu_fork(), MI code
passes down child_return() and the child process pointer explicitly.
This fixes a race condition on multiprocessor systems; a CPU could
grab the newly created processes (which has been placed on a run queue)
before cpu_set_kpc() would be performed.
the child inherits the stack pointer from the parent (traditional
behavior). Like the signal stack, the stack area is secified as
a low address and a size; machine-dependent code accounts for stack
direction.
This is required for clone(2).
parent, specified at fork time. Specify a new flag to wait4(2), WALTSIG,
to wait for processes which use an alternate exit signal.
This is required for clone(2).
kthread_create(). Implement kthread_exit() (causes a thrad to exit).
Set P_NOCLDWAIT on kernel threads, which will cause any of their children
to be reparented to init(8) (which is already prepared to wait out orphaned
processes).