parentheses in return statements.
Cosmetic: don't open-code TAILQ_FOREACH().
Cosmetic: change types of variables to avoid oodles of casts: in
in6_src.c, avoid casts by changing several route_in6 pointers
to struct route pointers. Remove unnecessary casts to caddr_t
elsewhere.
Pave the way for eliminating address family-specific route caches:
soon, struct route will not embed a sockaddr, but it will hold
a reference to an external sockaddr, instead. We will set the
destination sockaddr using rtcache_setdst(). (I created a stub
for it, but it isn't used anywhere, yet.) rtcache_free() will
free the sockaddr. I have extracted from rtcache_free() a helper
subroutine, rtcache_clear(). rtcache_clear() will "forget" a
cached route, but it will not forget the destination by releasing
the sockaddr. I use rtcache_clear() instead of rtcache_free()
in rtcache_update(), because rtcache_update() is not supposed
to forget the destination.
Constify:
1 Introduce const accessor for route->ro_dst, rtcache_getdst().
2 Constify the 'dst' argument to ifnet->if_output(). This
led me to constify a lot of code called by output routines.
3 Constify the sockaddr argument to protosw->pr_ctlinput. This
led me to constify a lot of code called by ctlinput routines.
4 Introduce const macros for converting from a generic sockaddr
to family-specific sockaddrs, e.g., sockaddr_in: satocsin6,
satocsin, et cetera.
from ICMP could end up in leaking the reference in iproute, as
ipsec4_output would overwrite the ro pointer in state.
Tested by Juraj Hercek and supposed to fix PR kern/35273 and kern/35318.
rtcache_init and rtcache_init_noclone lookup ro_dst and store
the result in ro_rt, taking care of the reference counting and
calling the domain specific route cache.
rtcache_free checks if a route was cashed and frees the reference.
rtcache_copy copies ro_dst of the given struct route, checking that
enough space is available and incrementing the reference count of the
cached rtentry if necessary.
rtcache_check validates that the cached route is still up. If it isn't,
it tries to look it up again. Afterwards ro_rt is either a valid again
or NULL.
rtcache_copy is used internally.
Adjust to callers of rtalloc/rtflush in the tree to check the sanity of
ro_dst first (if necessary). If it doesn't fit the expectations, free
the cache, otherwise check if the cached route is still valid. After
that combination, a single check for ro_rt == NULL is enough to decide
whether a new lookup needs to be done with a different ro_dst.
Make the route checking in gre stricter by repeating the loop check
after revalidation.
Remove some unused RADIX_MPATH code in in6_src.c. The logic is slightly
changed here to first validate the route and check RTF_GATEWAY
afterwards. This is sementically equivalent though.
etherip doesn't need sc_route_expire similiar to the gif changes from
dyoung@ earlier.
Based on the earlier patch from dyoung@, reviewed and discussed with
him.
routing caused by stale route caches (struct route). Route caches
are sprinkled throughout PCBs, the IP fast-forwarding table, and
IP tunnel interfaces (gre, gif, stf).
Stale IPv6 and ISO route caches will be treated by separate patches.
Thank you to Christoph Badura for suggesting the general approach
to invalidating route caches that I take here.
Here are the details:
Add hooks to struct domain for tracking and for invalidating each
domain's route caches: dom_rtcache, dom_rtflush, and dom_rtflushall.
Introduce helper subroutines, rtflush(ro) for invalidating a route
cache, rtflushall(family) for invalidating all route caches in a
routing domain, and rtcache(ro) for notifying the domain of a new
cached route.
Chain together all IPv4 route caches where ro_rt != NULL. Provide
in_rtcache() for adding a route to the chain. Provide in_rtflush()
and in_rtflushall() for invalidating IPv4 route caches. In
in_rtflush(), set ro_rt to NULL, and remove the route from the
chain. In in_rtflushall(), walk the chain and remove every route
cache.
In rtrequest1(), call rtflushall() to invalidate route caches when
a route is added.
In gif(4), discard the workaround for stale caches that involves
expiring them every so often.
Replace the pattern 'RTFREE(ro->ro_rt); ro->ro_rt = NULL;' with a
call to rtflush(ro).
Update ipflow_fastforward() and all other users of route caches so
that they expect a cached route, ro->ro_rt, to turn to NULL.
Take care when moving a 'struct route' to rtflush() the source and
to rtcache() the destination.
In domain initializers, use .dom_xxx tags.
KNF here and there.
Notable changes:
* Fixes PR 34268.
* Separates the code from gif(4) (which is more cleaner).
* Allows the usage of STP (Spanning Tree Protocol).
* Removed EtherIP implementation from gif(4)/tap(4).
Some input from Christos.
Also, add ioctls SIOCGIFADDRPREF/SIOCSIFADDRPREF to get/set preference
numbers for addresses. Make ifconfig(8) set/display preference
numbers.
To activate source-address selection policies in your kernel, add
'options IPSELSRC' to your kernel configuration.
Miscellaneous changes in support of source-address selection:
1 Factor out some common code, producing rt_replace_ifa().
2 Abbreviate a for-loop with TAILQ_FOREACH().
3 Add the predicates on IPv4 addresses IN_LINKLOCAL() and
IN_PRIVATE(), that are true for link-local unicast
(169.254/16) and RFC1918 private addresses, respectively.
Add the predicate IN_ANY_LOCAL() that is true for link-local
unicast and multicast.
4 Add IPv4-specific interface attach/detach routines,
in_domifattach and in_domifdetach, which build #ifdef
IPSELSRC.
See in_getifa(9) for a more thorough description of source-address
selection policy.
allowed. It takes three int * arguments indicating domain, type, and
protocol. Replace previous KAUTH_REQ_NETWORK_SOCKET_RAWSOCK with it (but
keep it still).
Places that used to explicitly check for privileged context now don't
need it anymore, so I replaced these with XXX comment indiacting it for
future reference.
Documented and updated examples as well.
NetBSD/alpha and NetBSD/sparc. This fixes PR#34751.
The problem most likely started to show in gcc4 and is caused by the use of
a casting to an uint32_t pointer that is later copied from using memcpy.
Gcc detects the copying of 4 bytes from an uint32_t pointer and decides to
just replace it with an aligned copy causing the trap.
Fix provided by Izumi Tsutsui and ok'd by Martin.
from Kentaro A. Kurahone, with minor adjustments by me.
the ack prediction part of the original patch was omitted because
it's a separate change. reviewed by Rui Paulo.
one or two segments on partial acks. even if sack_bytes_rxmt==0,
if we are in fast recovory with sack, snd_cwnd has somewhat special
meaning here. PR/34749.
The code to generate an ISS via an MD5 hash has been present in the
NetBSD kernel since 2001, but it wasn't even exported to userland at
that time. It was agreed on tech-net with the original author <thorpej>
that we should let the user decide if he wants to enable it or not.
Not enabled by default.
credentials on sockets, at least not anytime soon, this is a way to check
if we can "look" at a socket. Later on when (and if) we do have socket
credentials, the interface usage remains the same because we pass the
socket.
This also fixes sysctl for inet/inet6 pcblist.
happen in the TCP stack, this interface calls the specified callback to
handle the situation according to the currently selected congestion
control algorithm.
A new sysctl node was created: net.inet.tcp.congctl.{available,selected}
with obvious meanings.
The old net.inet.tcp.newreno MIB was removed.
The API is discussed in tcp_congctl(9).
In the near future, it will be possible to selected a congestion control
algorithm on a per-socket basis.
Discussed on tech-net and reviewed by <yamt>.
all callers of these functions are at splsoftnet already:
tcp_sack_option
tcp_input ok
tcp_del_sackholes
tcp_input ok
tcp_free_sackholes
tcp_close ok
tcp_timer_rexmt ok
tcp_timer_2msl ok
all callers of tcp_close are at splsoftnet already:
tcp_close
tcp_input ok
tcp_disconnect
tcp_usrreq ok
tcp_usrclosed
tcp_usrreq ok
tcp_disconnect
tcp_timer_2msl ok
tcp_drop
tcp_usrreq
tcp_disconnect
tcp_timer_rexmt ok
tcp_timer_persist ok
tcp_timer_keep ok
tcp_input
syn_cache_get
tcp_input
with spl used to protect other allocations and frees, or datastructure
element insertion and removal, in adjacent code.
It is almost unquestionably the case that some of the spl()/splx() calls
added here are superfluous, but it really seems wrong to see:
s=splfoo();
/* frob data structure */
splx(s);
pool_put(x);
and if we think we need to protect the first operation, then it is hard
to see why we should not think we need to protect the next. "Better
safe than sorry".
It is also almost unquestionably the case that I missed some pool
gets/puts from interrupt context with my strategy for finding these
calls; use of PR_NOWAIT is a strong hint that a pool may be used from
interrupt context but many callers in the kernel pass a "can wait/can't
wait" flag down such that my searches might not have found them. One
notable area that needs to be looked at is pf.
See also:
http://mail-index.netbsd.org/tech-kern/2006/07/19/0003.htmlhttp://mail-index.netbsd.org/tech-kern/2006/07/19/0009.html
to break free of the constraint if the range minimum boundary is larger than
the maximum boundary.
Discovered by jmg@FreeBSD.org. (See FreeBSD's tcp_timer.h rev 1.31).
- Add a few scopes to the kernel: system, network, and machdep.
- Add a few more actions/sub-actions (requests), and start using them as
opposed to the KAUTH_GENERIC_ISSUSER place-holders.
- Introduce a basic set of listeners that implement our "traditional"
security model, called "bsd44". This is the default (and only) model we
have at the moment.
- Update all relevant documentation.
- Add some code and docs to help folks who want to actually use this stuff:
* There's a sample overlay model, sitting on-top of "bsd44", for
fast experimenting with tweaking just a subset of an existing model.
This is pretty cool because it's *really* straightforward to do stuff
you had to use ugly hacks for until now...
* And of course, documentation describing how to do the above for quick
reference, including code samples.
All of these changes were tested for regressions using a Python-based
testsuite that will be (I hope) available soon via pkgsrc. Information
about the tests, and how to write new ones, can be found on:
http://kauth.linbsd.org/kauthwiki
NOTE FOR DEVELOPERS: *PLEASE* don't add any code that does any of the
following:
- Uses a KAUTH_GENERIC_ISSUSER kauth(9) request,
- Checks 'securelevel' directly,
- Checks a uid/gid directly.
(or if you feel you have to, contact me first)
This is still work in progress; It's far from being done, but now it'll
be a lot easier.
Relevant mailing list threads:
http://mail-index.netbsd.org/tech-security/2006/01/25/0011.htmlhttp://mail-index.netbsd.org/tech-security/2006/03/24/0001.htmlhttp://mail-index.netbsd.org/tech-security/2006/04/18/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/05/15/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/08/01/0000.htmlhttp://mail-index.netbsd.org/tech-security/2006/08/25/0000.html
Many thanks to YAMAMOTO Takashi, Matt Thomas, and Christos Zoulas for help
stablizing kauth(9).
Full credit for the regression tests, making sure these changes didn't break
anything, goes to Matt Fleming and Jaime Fournier.
Happy birthday Randi! :)
Both available for IPv4 and IPv6.
Basic implementation test results are available at
http://netbsd-soc.sourceforge.net/projects/ecn/testresults.html.
Work sponsored by the Google Summer of Code project 2006.
Special thanks to Kentaro Kurahone, Allen Briggs and Matt Thomas for their
help, comments and support during the project.
Fix MOBILE encapsulation. Add many debugging printfs (mainly
concerning UDP mode). Clean up the gre(4) code a bit. Add the
capability to setup UDP tunnels to ifconfig. Update documentation.
In UDP mode, gre(4) puts a GRE header onto transmitted packets,
and hands them to a UDP socket for transmission. That is, the
encapsulation looks like this: IP+UDP+GRE+encapsulated packet.
There are two ways to set up a UDP tunnel. One way is to tell the
source and destination IP+port to gre(4), and let gre(4) create
the socket. The other way to create a UDP tunnel is for userland
to "delegate" a UDP socket to the kernel.
sysctl(9) flags CTLFLAG_READONLY[12]. luckily they're not documented
so it's only half regression.
only two knobs used them; proc.curproc.corename (check added in the
existing handler; its CTLFLAG_ANYWRITE, yay) and net.inet.ip.forwsrcrt,
that got its own handler now too.
the data is read-only/shared and call m_pullup(). Otherwise,
extract a const pointer to the mbuf data.
XXX I should extract a new macro, M_WRITABLE(m, len), that is true
if m has len consecutive writable bytes at its front.
KNF slightly.
Use bpf_mtap_af().
the data is read-only/shared and call m_pullup(). Otherwise,
extract a const pointer to the mbuf data.
XXX I should extract a new macro, M_WRITABLE(m, len), that is true
if m has len consecutive writable bytes at its front.
the mbuf which supposed to get sent out:
- Complain in ip_output() if any of the IPv6 related flags are set.
- Complain in ip6_output() if any of the IPv4 related flags are set.
- Complain in both functions if the flags indicate that both a TCP and
UCP checksum should be calculated by the hardware.
This is needed because the pf code can call icmp_error with setting
this tag, but the new packet should not be filtered when it comes back
to pf(4).
ok christos@
- struct timeval time is gone
time.tv_sec -> time_second
- struct timeval mono_time is gone
mono_time.tv_sec -> time_uptime
- access to time via
{get,}{micro,nano,bin}time()
get* versions are fast but less precise
- support NTP nanokernel implementation (NTP API 4)
- further reading:
Timecounter Paper: http://phk.freebsd.dk/pubs/timecounter.pdf
NTP Nanokernel: http://www.eecis.udel.edu/~mills/ntp/html/kern.html
it has to change the mbuf chain. I experience hard hang on a Xen2 domU after
TCP connections have been closed, and a crash has been reported which may be
caused by this too.
that expect real addresses. explicitly KASSERT() that it is not
NULL in the kernel and just avoid using it userland.
(the kernel could be more defensive about this, but, until now it
would have just crashed anyway.)
* RFC 3542 isn't binary compatible with RFC 2292.
* RFC 2292 support is on by default but can be disabled.
* update ping6, telnet and traceroute6 to the new API.
From the KAME project (www.kame.net).
Reviewed by core.