based on the existing net/if_spppsubr.c stuff.
While there are completely userland (bpf based) implementations available,
those have a vastly larger per packet overhead thus causing major CPU
overhead and higher latency. On an i386 base router, running a 486DX at 50MHz
my line (768kBit/s downstream) was limited to something (varying) between 10
and 20 kByte/s effective download rate. With this implementation I get full
bandwidth (~85kByte/s).
This is client side only. Arguably the right way to add full PPPoE support
(including server side) would be a variation of the ppp line discipline and
appropriate modifications to pppd. I promise every help I can give to anyone
doing that - but I needed this realy fast. Besids, on low memory NAT boxes
with typically a single PPPoE connection, this implementation is more
lightweight than a pppd based one, which nicely fits my needs.
algorithm (Solaris calls this "Bin Hopping").
This implementation currently relies on MD code to define a
constant defining the number of buckets. This will change
reasonably soon (MD code will be able to dynamically size
the bucket array).
given filename.
* Use strip_txz() inside the FTP-wildcard-depends handling code to
prevent it handing a combination of glob and dewey pattern to pmatch(),
which our pattern matching code currently does not handle. Bugfix!
XXX The other places that could be changed to use strip_txz() are not
touched in this commit to keep the impact of this change small in the
light of the approaching 1.5.1 release. I'll revisit them.
to <sys/types.h> and <sys/stdint.h>.
* Add a new C99 <stdint.h> header, which provides integer types of
explicit width, related limits and integer constant macros.
* Extend <inttypes.h> to provide <stdint.h> definitions and format
macros for printf() and scanf().
* Add C99 strtoimax() and strtoumax() functions.
* Use the latter within scanf().
* Add C99 %j, %t and %z printf()/scanf() conversions for
intmax_t, pointer-type and size_t arguments.
using the cycle counter. MP-safeness is achieved by giving each
CPU its own PCC frequency variables, and kicking the non-primary
processors via an IPI once per second.
Based on the sample code from David Mills' "A Kernel Model for
Precision Timekeeping".
Both models tested and seem to be quite stable and fast.
Thanks to:
- Hans Hubner <hans@Huebner.org> for giving me the cards for testing
- Georg Klug of Syskonnect, who provided me with hw docs for these cards,
very promptly and willingly - I wish all vendors would be like this
- Alfred Arnold, Linux SKNET driver author, for giving me valuable Syskonnect
contact :)