link context instead of NULL. Otherwise, if we got a signal while the
lwp had a link context set, the link context would be set to NULL upon
return from signal delivery.
christos@tech-kern: "I think you are right."
(Part 2: drivers)
* Support for detachable sensors.
* Cleaned up the API for simplicity and efficiency.
* Ability to send capacity/critical/warning events to powerd(8).
* Adapted all the code to the new locking order.
* Compatibility with the old envsys API: the ENVSYS_GTREINFO
and ENVSYS_GTREDATA ioctl(2)s are supported.
* Added support for a 'dictionary based communication channel' between
sysmon_power(9) and powerd(8), that means there is no 32 bytes event
size restriction anymore.
* Binary compatibility with old envstat(8) and powerd(8) via COMPAT_40.
* All drivers with the n^2 gtredata bug were fixed, PR kern/36226.
Tested by:
blymn: smsc(4).
bouyer: ipmi(4), mfi(4).
kefren: ug(4).
njoly: viaenv(4), adt7463.c.
riz: owtemp(4).
xtraeme: acpiacad(4), acpibat(4), acpitz(4), aiboost(4), it(4), lm(4).
config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges()
is a thin wrapper for config_handle_wedges(). Share opendisk()
across architectures.
Add kernel code in support of specifying a root partition by wedge
name. E.g., root specifications "wedge:wd0a", "wedge:David's Root
Volume" are possible. (Patches for config(1) coming soon.)
In support of moving disks between architectures (esp. i386 <->
evbmips), I've written a routine convertdisklabel() that ensures
that the raw partition is at RAW_DISK by following these steps:
0 If we have read a disklabel that has a RAW_PART with
p_offset == 0 and p_size != 0, then use that raw partition.
1 If we have read a disklabel that has both partitions 'c'
and 'd', and RAW_PART has p_offset != 0 or p_size == 0,
but the other partition is suitable for a raw partition
(p_offset == 0, p_size != 0), then swap the two partitions
and use the new raw partition.
2 If the architecture's raw partition is 'd', and if there
is no partition 'd', but there is a partition 'c' that
is suitable for a raw partition, then copy partition 'c'
to partition 'd'.
3 Determine the drive's last sector, using either the
d_secperunit the drive reported, or by guessing (0x1fffffff).
If we cannot read the drive's last sector, then fail.
4 If we have read a disklabel that has no partition slot
RAW_PART, then create a partition RAW_PART. Make it span
the whole drive.
5 If there are fewer than MAXPARTITIONS partitions,
then "slide" the unsuitable raw partition RAW_PART, and
subsequent partitions, into partition slots RAW_PART+1
and subsequent slots. Create a raw partition at RAW_PART.
Make it span the whole drive.
The convertdisklabel() procedure can probably stand to be simplified,
but it ought to deal with all but an extraordinarily broken disklabel,
now.
i386: compiled and tested, sparc64: compiled, evbmips: compiled.
Use return value from cpu_switchto for previous lwp in lwp_trampoline.
Also shamelessly steal a comment from uwe written for sparc that explains
all this.
Thanks to tnn, mrg, and uwe for helping to debug this.
from doc/BRANCHES:
idle lwp, and some changes depending on it.
1. separate context switching and thread scheduling.
(cf. gmcgarry_ctxsw)
2. implement idle lwp.
3. clean up related MD/MI interfaces.
4. make scheduler(s) modular.
Do not set the DMMU secondary context to 0 (that would be kernel), and
add a few required membars after switching the secondary dmmu context.
This avoids SIRs caused by double kernel_data_faults, caused by spills
of obsolete user windows after the context for that user pmap is gone.
of a data transfer operation immediately after the data transfer
was finished, instead of waiting for the chip to interrupt us and
tell us that it was finished and had the result for us. This worked
okay for read and write since the operation would be finished very
shortly after the data transfer completed. However, with formatting,
the chip still had most of the rest of the track to do, so we ended
up timing out before the operation was finished.
locators for uhub because a hub can't have sub-devices.
This might be sanity-checked eventually.
Same for ubt now after the change to device attachment.