of the sibling list so that find_stopped_child can be optimised to avoid
traversing the entire sibling list - helps when a process has a lot of
children.
- Modify locking in pfind() and pgfind() to that the caller can rely on the
result being valid, allow caller to request that zombies be findable.
- Rename pfind() to p_find() to ensure we break binary compatibility.
- Remove svr4_pfind since p_find willnow do the job.
- Modify some of the SMP locking of the proc lists - signals are still stuffed.
Welcome to 1.6ZF
Remove p_raslock and rename p_lwplock p_lock (one lock is enough).
Simplify window test when adding a ras and correct test on VM_MAXUSER_ADDRESS.
Avoid unpredictable branch in i386 locore.S
(pad fields left in struct proc to avoid kernel bump)
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
lookup and allocation, and any dependency on NPROC or MAXUSERS.
NO_PID changed to -1 (and renamed NO_PGID) to remove artificial limit
on PID_MAX.
As discussed on tech-kern.
and make the sleep length depend on value of variable forkfsleep;
it's set to zero by default (no sleep)
this is a preparation for making the sleep length settable via sysctl
- leave 5 processes for root-only use, the previous value of 1
was unsufficient to execute additional commands once logged, and
perhaps also not enough to actually login remotely with recent (open)sshd
- protect the log of "proc: table full" with ratecheck(), so that
the message is only logged once per 10 seconds; though syslogd normally
doesn't pass the repeated messages through, this avoids flooding
syslogd and potentially also screen/logs
- If the process hits either system limit of number of processes in system,
or user's limit of same, force the process to sleep for 0.5 seconds
before returning failure. This turns 2000 rampaging fork monsters into
2000 harmlessly snoozing fork monsters.
The sleep is intentionally uninterruptible by signals.
These are not intended as ultimate protection agains fork-bombs.
Determined attacker can eat CPU differently than via repeating
fork() calls. But this is good enough to help protect against
programming mistakes or simple-minded tests.
Based on FreeBSD kern_fork.c change in revision 1.132 by
Mike Silbersack <silby at FreeBSD org>
Change also discussed on tech-kern@NetBSD.org, thread
'Fork bomb protection patch'.
backed by physical pages (ie. because it reused a previously-freed one),
so that we can skip a bunch of useless work in that case.
this fixes the underlying problem behind PR 18543, and also speeds up fork()
quite a bit (eg. 7% on my pc, 1% on my ultra2) when we get a cache hit.
that can be used to block a process after fork(2) or exec(2) calls. The
new process is created in the SSTOP state and is never scheduled for running.
This feature is designed so that it is esay to attach the process using gdb
before it has done anything.
It works also with sproc, kthread_create, clone...
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
only signal handler array sharable between threads
move other random signal stuff from struct proc to struct sigctx
This addresses kern/10981 by Matthew Orgass.
* __HAVE_SYSCALL_INTERN. If this is defined, e_syscall is replaced by
e_syscall_intern, which is called at key places in the kernel. This can be
used to set a MD syscall handler pointer. This obsoletes and replaces the
*_HAS_SEPARATED_SYSCALL flags.
* __HAVE_MINIMAL_EMUL. If this is defined, certain (deprecated) elements in
struct emul are omitted.
and adding it to allproc) after it's fully initialized.
this prevents the scheduler from coming in via a clock interrupt
and tripping over a partially-initialized proc.
emulation-specific data
add process exit, exec and fork function hooks into struct emul:
* e_proc_fork() - called in fork1() after the new forked process is setup
* e_proc_exec() - called in sys_execve() after the executed process is setup
* e_proc_exit() - called in exit1() after all the other process cleanups are
done, right before machine-dependant switch to new context; also called
for "old" emulation from sys_execve() if emulation of executed program and
the original process is different
This was discussed on tech-kern.