context is not valid on other types.
Prevents the crash reported in PR kern/38889, but does not fix the
mmap of block devices, more work is needed (no size on VBLK vnodes).
- Reorganize locking in UVM and provide extra serialisation for pmap(9).
New lock order: [vmpage-owner-lock] -> pmap-lock.
- Simplify locking in some pmap(9) modules by removing P->V locking.
- Use lock object on vmobjlock (and thus vnode_t::v_interlock) to share
the locks amongst UVM objects where necessary (tmpfs, layerfs, unionfs).
- Rewrite and optimise x86 TLB shootdown code, make it simpler and cleaner.
Add TLBSTATS option for x86 to collect statistics about TLB shootdowns.
- Unify /dev/mem et al in MI code and provide required locking (removes
kernel-lock on some ports). Also, avoid cache-aliasing issues.
Thanks to Andrew Doran and Joerg Sonnenberger, as their initial patches
formed the core changes of this branch.
verified with Mike Hibler it is ok to remove clause 3 on utah copyright,
as per UCB.
based on diff that rmind@ sent me.
no functional change with this commit.
years ago when the kernel was modified to not alter ABI based on
DIAGNOSTIC, and now just call the respective function interfaces
(in lowercase). Plenty of mix'n match upper/lowercase has creeped
into the tree since then. Nuke the macros and convert all callsites
to lowercase.
no functional change
setting vnode sizes, is handled elsewhere: file system vnode creation
or spec_open() for regular files or block special files, respectively.
Add a call to VOP_MMAP() to the pagedvn exec path, since the vnode
is being memory mapped.
reviewed by tech-kern & wrstuden
- LOCKPARENT is no longer relevant for lookup(), relookup() or VOP_LOOKUP().
these now always return the parent vnode locked. namei() works as before.
lookup() and various other paths no longer acquire vnode locks in the
wrong order via vrele(). fixes PR 32535.
as a nice side effect, path lookup is also up to 25% faster.
- the above allows us to get rid of PDIRUNLOCK.
- also get rid of WANTPARENT (just use LOCKPARENT and unlock it).
- remove an assumption in layer_node_find() that all file systems implement
a recursive VOP_LOCK() (unionfs doesn't).
- require that all file systems supply vfs_vptofh and vfs_fhtovp routines.
fill in eopnotsupp() for file systems that don't support being exported
and remove the checks for NULL. (layerfs calls these without checking.)
- in union_lookup1(), don't change refcounts in the ISDOTDOT case, just
adjust which vnode is locked. fixes PR 33374.
- apply fixes for ufs_rename() from ufs_vnops.c rev. 1.61 to ext2fs_rename().
intervened by truncation.
it also fixes a deadlock. (g_glock vs pages locking order)
- uvm_vnp_setsize: modify v_size while holding v_interlock.
reviewed by Chuck Silvers.
this means we can no longer look at the vnode size to determine how many
pages to request in a fault, which is good since for NFS the size can change
out from under us on the server anyway. there's also a new flag UBC_UNMAP
for ubc_release(), so that the file system code can make the decision about
whether to cache mappings for files being used as executables.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.