* Increase the size of sigset_t to accomodate 128 signals -- adding new
versions of sys_setprocmask(), sys_sigaction(), sys_sigpending() and
sys_sigsuspend() to handle the changed arguments.
* Abstract the guts of sys_sigaltstack(), sys_setprocmask(), sys_sigaction(),
sys_sigpending() and sys_sigsuspend() into separate functions, and call them
from all the emulations rather than hard-coding everything. (Avoids uses
the stackgap crap for these system calls.)
* Add a new flag (p_checksig) to indicate that a process may have signals
pending and userret() needs to do the full (slow) check.
* Eliminate SAS_ALTSTACK; it's exactly the inverse of SS_DISABLE.
* Correct emulation bugs with restoring SS_ONSTACK.
* Make the signal mask in the sigcontext always use the emulated mask format.
* Store signals internally in sigaction structures, rather than maintaining a
bunch of little sigsets for each SA_* bit.
* Keep track of where we put the signal trampoline, rather than figuring it out
in *_sendsig().
* Issue a warning when a non-emulated sigaction bit is observed.
* Add missing emulated signals, and a native SIGPWR (currently not used).
* Implement the `not reset when caught' semantics for relevant signals.
Note: Only code touched by the i386 port has been modified. Other ports and
emulations need to be updated.
- pread() (#173) and pwrite() (#174), which are defined by XPG4.2. System
call numbers match Solaris.
- preadv() (#289) and pwritev() (#290), which are the positional cousins
of readv() and writev(), but not defined by any standard.
readlink() from type `int' to type `size_t'. This isn't an ABI change, since
the calling convention of our only LP64 platform (the Alpha) already promotes
this argument to a `long'.
This may not be the final action on this matter; readlink() still returns
an `int', which may change in a future revision of the standard.
to be of type size_t; since this imposes an interface change on the Alpha
(sizeof(int) != sizeof(size_t)), allocate a new system call number and make
the previous version a compatibility system call.
and swapctl(). For the former three, they use an 'int' in their user-land
prototype which was a 'u_int' in the kernel, which screwed up automatic
generation/checking of lint syscall stubs. For the latter, the user-land
prototype uses a "const char *", but the syscall just used "char *".
From Chris Demetriou <cgd@pa.dec.com>.
to the stat(2) family and msync(2). This uses a primitive function
versioning scheme.
This reverts the libc shared library major version from 13 to 12, and
adds a few new interfaces to bring us to libc version 12.20.
From Frank van der Linden <fvdl@NetBSD.ORG>.
* change in-kernel syscall prototypes to match user-land prototypes in
the following ways:
+ add 'const' where appropriate.
+ make the following "safe" type changes where appropriate:
caddr_t -> struct msghdr *
caddr_t -> struct sockaddr *
caddr_t -> void *
char * -> void *
int -> uid_t (safe because uid_t not used as index/count)
int -> gid_t (safe because gid_t not used as index/count)
u_int -> size_t
+ change "int" to "u_long" in flags arguments to chflags() and
fchflags(). This is safe because the arguments are used as
flag bits and there's nothing that would cause the top bit
of the int to be set yet, and because the user-land definitions
already specified u_long, so a u_long's worth of argument was
already being passed in.
wrong for a bunch of functions:
void: sys_exit, sys_sync
ssize_t: sys_read, sys_write, sys_recvmsg, sys_sendmsg,
sys_recvfrom, sys_readv, sys_writev, sys_sendto
long: sys_pathconf, sys_fpathconf
void *: sys_shmat
* Note that sys_open, sys_ioctl, and sys_fcntl are defined such that their
last argument is optional.
These changes should not have any real effect, because right now this
information is not actually used for anything.
>- Optional systems calls are "UNIMPL" if the support is not being
> compiled into the kernel.
It had implications that didn't occur to me at the time. *sigh*
- The functions that implement them and the argument names are
prepended with "sys_".
- Optional systems calls are "UNIMPL" if the support is not being
compiled into the kernel.