Implement MP callouts as discussed on tech-kern. The CPU binding code is

disabled for the moment until we figure out what we want to do with CPUs
being offlined.
This commit is contained in:
ad 2008-04-22 11:45:28 +00:00
parent 3fbed79bb8
commit ecebc8b473
6 changed files with 340 additions and 212 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: kern_clock.c,v 1.120 2008/04/21 00:13:46 ad Exp $ */
/* $NetBSD: kern_clock.c,v 1.121 2008/04/22 11:45:28 ad Exp $ */
/*-
* Copyright (c) 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
@ -76,7 +76,7 @@
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.120 2008/04/21 00:13:46 ad Exp $");
__KERNEL_RCSID(0, "$NetBSD: kern_clock.c,v 1.121 2008/04/22 11:45:28 ad Exp $");
#include "opt_ntp.h"
#include "opt_multiprocessor.h"
@ -227,17 +227,12 @@ hardclock(struct clockframe *frame)
sched_tick(ci);
#if defined(MULTIPROCESSOR)
/*
* If we are not the primary CPU, we're not allowed to do
* any more work.
*/
if (CPU_IS_PRIMARY(ci) == 0)
return;
if (CPU_IS_PRIMARY(ci))
#endif
hardclock_ticks++;
tc_ticktock();
{
hardclock_ticks++;
tc_ticktock();
}
/*
* Update real-time timeout queue. Callouts are processed at a

View File

@ -1,4 +1,4 @@
/* $NetBSD: kern_cpu.c,v 1.26 2008/04/12 17:16:09 ad Exp $ */
/* $NetBSD: kern_cpu.c,v 1.27 2008/04/22 11:45:28 ad Exp $ */
/*-
* Copyright (c) 2007, 2008 The NetBSD Foundation, Inc.
@ -64,7 +64,7 @@
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.26 2008/04/12 17:16:09 ad Exp $");
__KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.27 2008/04/22 11:45:28 ad Exp $");
#include <sys/param.h>
#include <sys/systm.h>
@ -83,6 +83,7 @@ __KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.26 2008/04/12 17:16:09 ad Exp $");
#include <sys/kmem.h>
#include <sys/select.h>
#include <sys/namei.h>
#include <sys/callout.h>
#include <uvm/uvm_extern.h>
@ -132,6 +133,7 @@ mi_cpu_attach(struct cpu_info *ci)
percpu_init_cpu(ci);
softint_init(ci);
callout_init_cpu(ci);
xc_init_cpu(ci);
pool_cache_cpu_init(ci);
selsysinit(ci);

View File

@ -1,4 +1,4 @@
/* $NetBSD: kern_timeout.c,v 1.35 2008/03/29 14:07:23 ad Exp $ */
/* $NetBSD: kern_timeout.c,v 1.36 2008/04/22 11:45:28 ad Exp $ */
/*-
* Copyright (c) 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
@ -66,14 +66,14 @@
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.35 2008/03/29 14:07:23 ad Exp $");
__KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.36 2008/04/22 11:45:28 ad Exp $");
/*
* Timeouts are kept in a hierarchical timing wheel. The c_time is the
* value of the global variable "hardclock_ticks" when the timeout should
* be called. There are four levels with 256 buckets each. See 'Scheme 7'
* in "Hashed and Hierarchical Timing Wheels: Efficient Data Structures
* for Implementing a Timer Facility" by George Varghese and Tony Lauck.
* value of c_cpu->cc_ticks when the timeout should be called. There are
* four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
* Hierarchical Timing Wheels: Efficient Data Structures for Implementing
* a Timer Facility" by George Varghese and Tony Lauck.
*
* Some of the "math" in here is a bit tricky. We have to beware of
* wrapping ints.
@ -84,7 +84,7 @@ __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.35 2008/03/29 14:07:23 ad Exp $")
* be positive or negative so comparing it with anything is dangerous.
* The only way we can use the c->c_time value in any predictable way is
* when we calculate how far in the future `to' will timeout - "c->c_time
* - hardclock_ticks". The result will always be positive for future
* - c->c_cpu->cc_ticks". The result will always be positive for future
* timeouts and 0 or negative for due timeouts.
*/
@ -101,6 +101,7 @@ __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.35 2008/03/29 14:07:23 ad Exp $")
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <sys/cpu.h>
#include <sys/kmem.h>
#ifdef DDB
#include <machine/db_machdep.h>
@ -115,23 +116,20 @@ __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.35 2008/03/29 14:07:23 ad Exp $")
#define WHEELMASK 255
#define WHEELBITS 8
static struct callout_circq timeout_wheel[BUCKETS]; /* Queues of timeouts */
static struct callout_circq timeout_todo; /* Worklist */
#define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
#define BUCKET(rel, abs) \
#define BUCKET(cc, rel, abs) \
(((rel) <= (1 << (2*WHEELBITS))) \
? ((rel) <= (1 << WHEELBITS)) \
? &timeout_wheel[MASKWHEEL(0, (abs))] \
: &timeout_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
? &(cc)->cc_wheel[MASKWHEEL(0, (abs))] \
: &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE] \
: ((rel) <= (1 << (3*WHEELBITS))) \
? &timeout_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
: &timeout_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE] \
: &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
#define MOVEBUCKET(wheel, time) \
CIRCQ_APPEND(&timeout_todo, \
&timeout_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
#define MOVEBUCKET(cc, wheel, time) \
CIRCQ_APPEND(&(cc)->cc_todo, \
&(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
/*
* Circular queue definitions.
@ -175,72 +173,129 @@ do { \
static void callout_softclock(void *);
/*
* All wheels are locked with the same lock (which must also block out
* all interrupts). Eventually this should become per-CPU.
*/
kmutex_t callout_lock;
sleepq_t callout_sleepq;
void *callout_si;
struct callout_cpu {
kmutex_t cc_lock;
sleepq_t cc_sleepq;
u_int cc_nwait;
u_int cc_ticks;
lwp_t *cc_lwp;
callout_impl_t *cc_active;
callout_impl_t *cc_cancel;
struct evcnt cc_ev_late;
struct evcnt cc_ev_block;
struct callout_circq cc_todo; /* Worklist */
struct callout_circq cc_wheel[BUCKETS]; /* Queues of timeouts */
char cc_name1[12];
char cc_name2[12];
};
static struct evcnt callout_ev_late;
static struct evcnt callout_ev_block;
static struct callout_cpu callout_cpu0;
static void *callout_sih;
static inline kmutex_t *
callout_lock(callout_impl_t *c)
{
kmutex_t *lock;
for (;;) {
lock = &c->c_cpu->cc_lock;
mutex_spin_enter(lock);
if (__predict_true(lock == &c->c_cpu->cc_lock))
return lock;
mutex_spin_exit(lock);
}
}
/*
* callout_startup:
*
* Initialize the callout facility, called at system startup time.
* Do just enough to allow callouts to be safely registered.
*/
void
callout_startup(void)
{
struct callout_cpu *cc;
int b;
KASSERT(curcpu()->ci_data.cpu_callout == NULL);
cc = &callout_cpu0;
mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
CIRCQ_INIT(&cc->cc_todo);
for (b = 0; b < BUCKETS; b++)
CIRCQ_INIT(&cc->cc_wheel[b]);
curcpu()->ci_data.cpu_callout = cc;
}
/*
* callout_init_cpu:
*
* Per-CPU initialization.
*/
void
callout_init_cpu(struct cpu_info *ci)
{
struct callout_cpu *cc;
int b;
KASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
CIRCQ_INIT(&timeout_todo);
for (b = 0; b < BUCKETS; b++)
CIRCQ_INIT(&timeout_wheel[b]);
if ((cc = ci->ci_data.cpu_callout) == NULL) {
cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
if (cc == NULL)
panic("callout_init_cpu (1)");
mutex_init(&cc->cc_lock, MUTEX_DEFAULT, IPL_SCHED);
CIRCQ_INIT(&cc->cc_todo);
for (b = 0; b < BUCKETS; b++)
CIRCQ_INIT(&cc->cc_wheel[b]);
} else {
/* Boot CPU, one time only. */
callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
callout_softclock, NULL);
if (callout_sih == NULL)
panic("callout_init_cpu (2)");
}
mutex_init(&callout_lock, MUTEX_DEFAULT, IPL_SCHED);
sleepq_init(&callout_sleepq, &callout_lock);
sleepq_init(&cc->cc_sleepq, &cc->cc_lock);
evcnt_attach_dynamic(&callout_ev_late, EVCNT_TYPE_MISC,
NULL, "callout", "late");
evcnt_attach_dynamic(&callout_ev_block, EVCNT_TYPE_MISC,
NULL, "callout", "wait for completion");
}
snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
cpu_index(ci));
evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
NULL, "callout", cc->cc_name1);
/*
* callout_startup2:
*
* Complete initialization once soft interrupts are available.
*/
void
callout_startup2(void)
{
snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
cpu_index(ci));
evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
NULL, "callout", cc->cc_name2);
callout_si = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
callout_softclock, NULL);
if (callout_si == NULL)
panic("callout_startup2: unable to register softclock intr");
ci->ci_data.cpu_callout = cc;
}
/*
* callout_init:
*
* Initialize a callout structure.
* Initialize a callout structure. This must be quick, so we fill
* only the minimum number of fields.
*/
void
callout_init(callout_t *cs, u_int flags)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
memset(c, 0, sizeof(*c));
c->c_flags = flags;
cc = curcpu()->ci_data.cpu_callout;
c->c_func = NULL;
c->c_magic = CALLOUT_MAGIC;
if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
c->c_flags = flags;
c->c_cpu = cc;
return;
}
c->c_flags = flags | CALLOUT_BOUND;
c->c_cpu = &callout_cpu0;
}
/*
@ -259,12 +314,8 @@ callout_destroy(callout_t *cs)
* running, the current thread should have stopped it.
*/
KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
if (c->c_oncpu != NULL && c->c_onlwp != curlwp) {
KASSERT(
((struct cpu_info *)c->c_oncpu)->ci_data.cpu_callout != c);
}
KASSERT(c->c_cpu->cc_lwp == curlwp || c->c_cpu->cc_active != c);
KASSERT(c->c_magic == CALLOUT_MAGIC);
c->c_magic = 0;
}
@ -276,32 +327,51 @@ callout_destroy(callout_t *cs)
* callout_lock.
*/
static void
callout_schedule_locked(callout_impl_t *c, int to_ticks)
callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
{
struct callout_cpu *cc, *occ;
int old_time;
KASSERT(to_ticks >= 0);
KASSERT(c->c_func != NULL);
/* Initialize the time here, it won't change. */
old_time = c->c_time;
c->c_time = to_ticks + hardclock_ticks;
occ = c->c_cpu;
c->c_flags &= ~CALLOUT_FIRED;
/*
* If this timeout is already scheduled and now is moved
* earlier, reschedule it now. Otherwise leave it in place
* earlier, reschedule it now. Otherwise leave it in place
* and let it be rescheduled later.
*/
if ((c->c_flags & CALLOUT_PENDING) != 0) {
/* Leave on existing CPU. */
old_time = c->c_time;
c->c_time = to_ticks + occ->cc_ticks;
if (c->c_time - old_time < 0) {
CIRCQ_REMOVE(&c->c_list);
CIRCQ_INSERT(&c->c_list, &timeout_todo);
CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
}
} else {
c->c_flags |= CALLOUT_PENDING;
CIRCQ_INSERT(&c->c_list, &timeout_todo);
mutex_spin_exit(lock);
return;
}
cc = curcpu()->ci_data.cpu_callout;
if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
!mutex_tryenter(&cc->cc_lock)) {
/* Leave on existing CPU. */
c->c_time = to_ticks + occ->cc_ticks;
c->c_flags |= CALLOUT_PENDING;
CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
} else {
/* Move to this CPU. */
c->c_cpu = cc;
c->c_time = to_ticks + cc->cc_ticks;
c->c_flags |= CALLOUT_PENDING;
CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
mutex_spin_exit(&cc->cc_lock);
}
mutex_spin_exit(lock);
}
/*
@ -314,17 +384,14 @@ void
callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
c->c_func = func;
c->c_arg = arg;
callout_schedule_locked(c, to_ticks);
mutex_spin_exit(&callout_lock);
callout_schedule_locked(c, lock, to_ticks);
}
/*
@ -337,47 +404,49 @@ void
callout_schedule(callout_t *cs, int to_ticks)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
callout_schedule_locked(c, to_ticks);
mutex_spin_exit(&callout_lock);
lock = callout_lock(c);
callout_schedule_locked(c, lock, to_ticks);
}
/*
* callout_stop:
*
* Try to cancel a pending callout.
* Try to cancel a pending callout. It may be too late: the callout
* could be running on another CPU. If called from interrupt context,
* the callout could already be in progress at a lower priority.
*/
bool
callout_stop(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct cpu_info *ci;
struct callout_cpu *cc;
kmutex_t *lock;
bool expired;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
if ((c->c_flags & CALLOUT_PENDING) != 0)
CIRCQ_REMOVE(&c->c_list);
expired = ((c->c_flags & CALLOUT_FIRED) != 0);
c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
if ((ci = c->c_oncpu) != NULL && ci->ci_data.cpu_callout == c) {
cc = c->c_cpu;
if (cc->cc_active == c) {
/*
* This is for non-MPSAFE callouts only. To synchronize
* effectively we must be called with kernel_lock held.
* It's also taken in callout_softclock.
*/
ci = c->c_oncpu;
ci->ci_data.cpu_callout_cancel = c;
cc->cc_cancel = c;
}
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return expired;
}
@ -386,20 +455,23 @@ callout_stop(callout_t *cs)
* callout_halt:
*
* Cancel a pending callout. If in-flight, block until it completes.
* May not be called from a hard interrupt handler.
* May not be called from a hard interrupt handler. If the callout
* can take locks, the caller of callout_halt() must not hold any of
* those locks, otherwise the two could deadlock.
*/
bool
callout_halt(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct cpu_info *ci;
struct callout_cpu *cc;
struct lwp *l;
kmutex_t *lock;
bool expired;
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(!cpu_intr_p());
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
expired = ((c->c_flags & CALLOUT_FIRED) != 0);
if ((c->c_flags & CALLOUT_PENDING) != 0)
@ -407,50 +479,91 @@ callout_halt(callout_t *cs)
c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
l = curlwp;
while (__predict_false((ci = c->c_oncpu) != NULL &&
ci->ci_data.cpu_callout == c && c->c_onlwp != l)) {
for (;;) {
cc = c->c_cpu;
if (__predict_true(cc->cc_active != c || cc->cc_lwp == l))
break;
KASSERT(l->l_wchan == NULL);
ci->ci_data.cpu_callout_nwait++;
callout_ev_block.ev_count++;
cc->cc_nwait++;
cc->cc_ev_block.ev_count++;
l->l_kpriority = true;
sleepq_enter(&callout_sleepq, l);
sleepq_enqueue(&callout_sleepq, ci, "callout", &sleep_syncobj);
sleepq_enter(&cc->cc_sleepq, l);
sleepq_enqueue(&cc->cc_sleepq, cc, "callout", &sleep_syncobj);
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
sleepq_block(0, false);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
}
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return expired;
}
#ifdef notyet
/*
* callout_bind:
*
* Bind a callout so that it will only execute on one CPU.
* The callout must be stopped, and must be MPSAFE.
*
* XXX Disabled for now until it is decided how to handle
* offlined CPUs. We may want weak+strong binding.
*/
void
callout_bind(callout_t *cs, struct cpu_info *ci)
{
callout_impl_t *c = (callout_impl_t *)cs;
struct callout_cpu *cc;
kmutex_t *lock;
KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
KASSERT(c->c_cpu->cc_active != c);
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
lock = callout_lock(c);
cc = ci->ci_data.cpu_callout;
c->c_flags |= CALLOUT_BOUND;
if (c->c_cpu != cc) {
/*
* Assigning c_cpu effectively unlocks the callout
* structure, as we don't hold the new CPU's lock.
* Issue memory barrier to prevent accesses being
* reordered.
*/
membar_exit();
c->c_cpu = cc;
}
mutex_spin_exit(lock);
}
#endif
void
callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
c->c_func = func;
c->c_arg = arg;
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
}
bool
callout_expired(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_FIRED) != 0);
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return rv;
}
@ -459,13 +572,14 @@ bool
callout_active(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return rv;
}
@ -474,13 +588,14 @@ bool
callout_pending(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_PENDING) != 0);
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return rv;
}
@ -489,13 +604,14 @@ bool
callout_invoking(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
bool rv;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
return rv;
}
@ -504,118 +620,131 @@ void
callout_ack(callout_t *cs)
{
callout_impl_t *c = (callout_impl_t *)cs;
kmutex_t *lock;
KASSERT(c->c_magic == CALLOUT_MAGIC);
mutex_spin_enter(&callout_lock);
lock = callout_lock(c);
c->c_flags &= ~CALLOUT_INVOKING;
mutex_spin_exit(&callout_lock);
mutex_spin_exit(lock);
}
/*
* This is called from hardclock() once every tick.
* We schedule callout_softclock() if there is work
* to be done.
* callout_hardclock:
*
* Called from hardclock() once every tick. We schedule a soft
* interrupt if there is work to be done.
*/
void
callout_hardclock(void)
{
int needsoftclock;
struct callout_cpu *cc;
int needsoftclock, ticks;
mutex_spin_enter(&callout_lock);
cc = curcpu()->ci_data.cpu_callout;
mutex_spin_enter(&cc->cc_lock);
MOVEBUCKET(0, hardclock_ticks);
if (MASKWHEEL(0, hardclock_ticks) == 0) {
MOVEBUCKET(1, hardclock_ticks);
if (MASKWHEEL(1, hardclock_ticks) == 0) {
MOVEBUCKET(2, hardclock_ticks);
if (MASKWHEEL(2, hardclock_ticks) == 0)
MOVEBUCKET(3, hardclock_ticks);
ticks = ++cc->cc_ticks;
MOVEBUCKET(cc, 0, ticks);
if (MASKWHEEL(0, ticks) == 0) {
MOVEBUCKET(cc, 1, ticks);
if (MASKWHEEL(1, ticks) == 0) {
MOVEBUCKET(cc, 2, ticks);
if (MASKWHEEL(2, ticks) == 0)
MOVEBUCKET(cc, 3, ticks);
}
}
needsoftclock = !CIRCQ_EMPTY(&timeout_todo);
mutex_spin_exit(&callout_lock);
needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
mutex_spin_exit(&cc->cc_lock);
if (needsoftclock)
softint_schedule(callout_si);
softint_schedule(callout_sih);
}
/* ARGSUSED */
/*
* callout_softclock:
*
* Soft interrupt handler, scheduled above if there is work to
* be done. Callouts are made in soft interrupt context.
*/
static void
callout_softclock(void *v)
{
callout_impl_t *c;
struct cpu_info *ci;
struct callout_cpu *cc;
void (*func)(void *);
void *arg;
u_int mpsafe, count;
int mpsafe, count, ticks, delta;
lwp_t *l;
l = curlwp;
ci = l->l_cpu;
KASSERT(l->l_cpu == curcpu());
cc = l->l_cpu->ci_data.cpu_callout;
mutex_spin_enter(&callout_lock);
while (!CIRCQ_EMPTY(&timeout_todo)) {
c = CIRCQ_FIRST(&timeout_todo);
mutex_spin_enter(&cc->cc_lock);
cc->cc_lwp = l;
while (!CIRCQ_EMPTY(&cc->cc_todo)) {
c = CIRCQ_FIRST(&cc->cc_todo);
KASSERT(c->c_magic == CALLOUT_MAGIC);
KASSERT(c->c_func != NULL);
KASSERT(c->c_cpu == cc);
KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
CIRCQ_REMOVE(&c->c_list);
/* If due run it, otherwise insert it into the right bucket. */
if (c->c_time - hardclock_ticks > 0) {
CIRCQ_INSERT(&c->c_list,
BUCKET((c->c_time - hardclock_ticks), c->c_time));
} else {
if (c->c_time - hardclock_ticks < 0)
callout_ev_late.ev_count++;
ticks = cc->cc_ticks;
delta = c->c_time - ticks;
if (delta > 0) {
CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
continue;
}
if (delta < 0)
cc->cc_ev_late.ev_count++;
c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
mpsafe = (c->c_flags & CALLOUT_MPSAFE);
func = c->c_func;
arg = c->c_arg;
c->c_oncpu = ci;
c->c_onlwp = l;
ci->ci_data.cpu_callout = c;
c->c_flags ^= (CALLOUT_PENDING | CALLOUT_FIRED);
mpsafe = (c->c_flags & CALLOUT_MPSAFE);
func = c->c_func;
arg = c->c_arg;
cc->cc_active = c;
mutex_spin_exit(&callout_lock);
if (!mpsafe) {
KERNEL_LOCK(1, curlwp);
(*func)(arg);
KERNEL_UNLOCK_ONE(curlwp);
} else
(*func)(arg);
mutex_spin_enter(&callout_lock);
mutex_spin_exit(&cc->cc_lock);
if (!mpsafe) {
KERNEL_LOCK(1, NULL);
(*func)(arg);
KERNEL_UNLOCK_ONE(NULL);
} else
(*func)(arg);
mutex_spin_enter(&cc->cc_lock);
/*
* We can't touch 'c' here because it might be
* freed already. If LWPs waiting for callout
* to complete, awaken them.
*/
ci->ci_data.cpu_callout = NULL;
if ((count = ci->ci_data.cpu_callout_nwait) != 0) {
ci->ci_data.cpu_callout_nwait = 0;
/* sleepq_wake() drops the lock. */
sleepq_wake(&callout_sleepq, ci, count);
mutex_spin_enter(&callout_lock);
}
/*
* We can't touch 'c' here because it might be
* freed already. If LWPs waiting for callout
* to complete, awaken them.
*/
cc->cc_active = NULL;
if ((count = cc->cc_nwait) != 0) {
cc->cc_nwait = 0;
/* sleepq_wake() drops the lock. */
sleepq_wake(&cc->cc_sleepq, cc, count);
mutex_spin_enter(&cc->cc_lock);
}
}
mutex_spin_exit(&callout_lock);
cc->cc_lwp = NULL;
mutex_spin_exit(&cc->cc_lock);
}
#ifdef DDB
static void
db_show_callout_bucket(struct callout_circq *bucket)
db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *bucket)
{
callout_impl_t *c;
db_expr_t offset;
const char *name;
static char question[] = "?";
int b;
if (CIRCQ_EMPTY(bucket))
return;
@ -624,16 +753,12 @@ db_show_callout_bucket(struct callout_circq *bucket)
db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
&offset);
name = name ? name : question;
#ifdef _LP64
#define POINTER_WIDTH "%16lx"
#else
#define POINTER_WIDTH "%8lx"
#endif
db_printf("%9d %2d/%-4d " POINTER_WIDTH " %s\n",
c->c_time - hardclock_ticks,
(int)((bucket - timeout_wheel) / WHEELSIZE),
(int)(bucket - timeout_wheel), (u_long) c->c_arg, name);
b = (bucket - cc->cc_wheel);
if (b < 0)
b = -WHEELSIZE;
db_printf("%9d %2d/%-4d %16lx %s\n",
c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
(u_long)c->c_arg, name);
if (CIRCQ_LAST(&c->c_list, bucket))
break;
}
@ -642,23 +767,28 @@ db_show_callout_bucket(struct callout_circq *bucket)
void
db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
{
CPU_INFO_ITERATOR cii;
struct callout_cpu *cc;
struct cpu_info *ci;
int b;
db_printf("hardclock_ticks now: %d\n", hardclock_ticks);
#ifdef _LP64
db_printf(" ticks wheel arg func\n");
#else
db_printf(" ticks wheel arg func\n");
#endif
/*
* Don't lock the callwheel; all the other CPUs are paused
* anyhow, and we might be called in a circumstance where
* some other CPU was paused while holding the lock.
*/
db_show_callout_bucket(&timeout_todo);
for (b = 0; b < BUCKETS; b++)
db_show_callout_bucket(&timeout_wheel[b]);
for (CPU_INFO_FOREACH(cii, ci)) {
cc = ci->ci_data.cpu_callout;
db_show_callout_bucket(cc, &cc->cc_todo);
}
for (b = 0; b < BUCKETS; b++) {
for (CPU_INFO_FOREACH(cii, ci)) {
cc = ci->ci_data.cpu_callout;
db_show_callout_bucket(cc, &cc->cc_wheel[b]);
}
}
}
#endif /* DDB */

View File

@ -1,4 +1,4 @@
/* $NetBSD: subr_autoconf.c,v 1.144 2008/04/14 18:07:51 ad Exp $ */
/* $NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $ */
/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
@ -77,7 +77,7 @@
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.144 2008/04/14 18:07:51 ad Exp $");
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.145 2008/04/22 11:45:28 ad Exp $");
#include "opt_multiprocessor.h"
#include "opt_ddb.h"
@ -433,9 +433,6 @@ configure(void)
/* Initialize SSP. */
ssp_init();
/* Initialize callouts, part 2. */
callout_startup2();
/*
* Now that we've found all the hardware, start the real time
* and statistics clocks.

View File

@ -1,4 +1,4 @@
/* $NetBSD: callout.h,v 1.27 2008/03/28 20:44:38 ad Exp $ */
/* $NetBSD: callout.h,v 1.28 2008/04/22 11:45:28 ad Exp $ */
/*-
* Copyright (c) 2000, 2003, 2006, 2007, 2008 The NetBSD Foundation, Inc.
@ -57,6 +57,7 @@ typedef struct callout {
} callout_t;
/* Internal flags. */
#define CALLOUT_BOUND 0x0001 /* bound to a specific CPU */
#define CALLOUT_PENDING 0x0002 /* callout is on the queue */
#define CALLOUT_FIRED 0x0004 /* callout has fired */
#define CALLOUT_INVOKING 0x0008 /* callout function is being invoked */
@ -85,15 +86,15 @@ struct callout_circq {
#define cq_next_l cq_next.list
#define cq_prev_l cq_prev.list
struct callout_cpu;
typedef struct callout_impl {
struct callout_circq c_list; /* linkage on queue */
void (*c_func)(void *); /* function to call */
void *c_arg; /* function argument */
void *c_oncpu; /* non-NULL while running */
void *c_onlwp; /* non-NULL while running */
struct callout_cpu * volatile c_cpu; /* associated CPU */
int c_time; /* when callout fires */
u_int c_flags; /* state of this entry */
u_int c_runwait; /* number of waiters */
u_int c_magic; /* magic number */
} callout_impl_t;
#define CALLOUT_MAGIC 0x11deeba1
@ -101,8 +102,10 @@ typedef struct callout_impl {
#endif /* _CALLOUT_PRIVATE */
#ifdef _KERNEL
struct cpu_info;
void callout_startup(void);
void callout_startup2(void);
void callout_init_cpu(struct cpu_info *);
void callout_hardclock(void);
void callout_init(callout_t *, u_int);
@ -117,6 +120,7 @@ bool callout_expired(callout_t *);
bool callout_active(callout_t *);
bool callout_invoking(callout_t *);
void callout_ack(callout_t *);
void callout_bind(callout_t *, struct cpu_info *);
#endif /* _KERNEL */
#endif /* !_SYS_CALLOUT_H_ */

View File

@ -1,4 +1,4 @@
/* $NetBSD: cpu_data.h,v 1.21 2008/04/11 15:31:34 ad Exp $ */
/* $NetBSD: cpu_data.h,v 1.22 2008/04/22 11:45:28 ad Exp $ */
/*-
* Copyright (c) 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
@ -67,9 +67,9 @@ struct cpu_data {
* it is cache hot.
*/
lwp_t *cpu_biglock_wanted; /* LWP spinning on biglock */
void *cpu_callout; /* running callout */
void *cpu_callout_cancel; /* callout to be cancelled */
u_int cpu_callout_nwait; /* # LWPs waiting on callout */
void *cpu_callout; /* per-CPU callout state */
void *cpu_unused1; /* unused */
u_int cpu_unused2; /* unused */
struct schedstate_percpu cpu_schedstate; /* scheduler state */
kcondvar_t cpu_xcall; /* cross-call support */
int cpu_xcall_pending; /* cross-call support */