Add support for the W83627HF: lm7x like, but with more sensors, and more

registers.
This commit is contained in:
bouyer 2000-07-27 21:49:22 +00:00
parent 46c49082de
commit e955a714ba
2 changed files with 413 additions and 118 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: nslm7x.c,v 1.4 2000/06/24 00:37:19 thorpej Exp $ */ /* $NetBSD: nslm7x.c,v 1.5 2000/07/27 21:49:22 bouyer Exp $ */
/*- /*-
* Copyright (c) 2000 The NetBSD Foundation, Inc. * Copyright (c) 2000 The NetBSD Foundation, Inc.
@ -68,7 +68,7 @@
#endif #endif
const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */ const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
/* for each unit type */ /* for each unit type */
{ 7, 7, ENVSYS_STEMP }, { 7, 7, ENVSYS_STEMP },
{ 8, 10, ENVSYS_SFANRPM }, { 8, 10, ENVSYS_SFANRPM },
{ 1, 0, ENVSYS_SVOLTS_AC }, /* None */ { 1, 0, ENVSYS_SVOLTS_AC }, /* None */
@ -78,12 +78,33 @@ const struct envsys_range lm_ranges[] = { /* sc->sensors sub-intervals */
{ 1, 0, ENVSYS_SAMPS } /* None */ { 1, 0, ENVSYS_SAMPS } /* None */
}; };
u_int8_t lm_readreg __P((struct lm_softc *, int)); u_int8_t lm_readreg __P((struct lm_softc *, int));
void lm_writereg __P((struct lm_softc *, int, int)); void lm_writereg __P((struct lm_softc *, int, int));
int lm_match __P((struct lm_softc *));
void lm_refresh_sensor_data __P((struct lm_softc *)); void lm_refresh_sensor_data __P((struct lm_softc *));
int wb_match __P((struct lm_softc *));
void wb_refresh_sensor_data __P((struct lm_softc *));
int def_match __P((struct lm_softc *));
void lm_common_match __P((struct lm_softc *));
int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *)); int lm_gtredata __P((struct sysmon_envsys *, struct envsys_tre_data *));
int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *)); int lm_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
int wb_streinfo __P((struct sysmon_envsys *, struct envsys_basic_info *));
struct lm_chip {
int (*chip_match) __P((struct lm_softc *));
};
struct lm_chip lm_chips[] = {
{ lm_match},
{ wb_match},
{ def_match} /* Must be last */
};
u_int8_t u_int8_t
lm_readreg(sc, reg) lm_readreg(sc, reg)
@ -147,17 +168,9 @@ lm_attach(lmsc)
{ {
int i; int i;
/* See if we have an LM78 or LM79 */ for (i = 0; i < sizeof(lm_chips) / sizeof(lm_chips[0]); i++)
i = lm_readreg(lmsc, LMD_CHIPID) & LM_ID_MASK; if (lm_chips[i].chip_match(lmsc))
printf(": LM7"); break;
if (i == LM_ID_LM78)
printf("8\n");
else if (i == LM_ID_LM78J)
printf("8J\n");
else if (i == LM_ID_LM79)
printf("9\n");
else
printf("? - Unknown chip ID (%x)\n", i);
/* Start the monitoring loop */ /* Start the monitoring loop */
lm_writereg(lmsc, LMD_CONFIG, 0x01); lm_writereg(lmsc, LMD_CONFIG, 0x01);
@ -166,45 +179,12 @@ lm_attach(lmsc)
timerclear(&lmsc->lastread); timerclear(&lmsc->lastread);
/* Initialize sensors */ /* Initialize sensors */
for (i = 0; i < LM_NUM_SENSORS; ++i) { for (i = 0; i < lmsc->numsensors; ++i) {
lmsc->sensors[i].sensor = lmsc->info[i].sensor = i; lmsc->sensors[i].sensor = lmsc->info[i].sensor = i;
lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID); lmsc->sensors[i].validflags = (ENVSYS_FVALID|ENVSYS_FCURVALID);
lmsc->info[i].validflags = ENVSYS_FVALID; lmsc->info[i].validflags = ENVSYS_FVALID;
lmsc->sensors[i].warnflags = ENVSYS_WARN_OK; lmsc->sensors[i].warnflags = ENVSYS_WARN_OK;
} }
for (i = 0; i < 7; ++i) {
lmsc->sensors[i].units = lmsc->info[i].units =
ENVSYS_SVOLTS_DC;
lmsc->info[i].desc[0] = 'I';
lmsc->info[i].desc[1] = 'N';
lmsc->info[i].desc[2] = i + '0';
lmsc->info[i].desc[3] = 0;
}
/* default correction factors for resistors on higher voltage inputs */
lmsc->info[0].rfact = lmsc->info[1].rfact =
lmsc->info[2].rfact = 10000;
lmsc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
lmsc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
lmsc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
lmsc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
lmsc->sensors[7].units = ENVSYS_STEMP;
strcpy(lmsc->info[7].desc, "Temp");
for (i = 8; i < 11; ++i) {
lmsc->sensors[i].units = lmsc->info[i].units = ENVSYS_SFANRPM;
lmsc->info[i].desc[0] = 'F';
lmsc->info[i].desc[1] = 'a';
lmsc->info[i].desc[2] = 'n';
lmsc->info[i].desc[3] = ' ';
lmsc->info[i].desc[4] = i - 7 + '0';
lmsc->info[i].desc[5] = 0;
}
/* /*
* Hook into the System Monitor. * Hook into the System Monitor.
*/ */
@ -214,9 +194,9 @@ lm_attach(lmsc)
lmsc->sc_sysmon.sme_cookie = lmsc; lmsc->sc_sysmon.sme_cookie = lmsc;
lmsc->sc_sysmon.sme_gtredata = lm_gtredata; lmsc->sc_sysmon.sme_gtredata = lm_gtredata;
lmsc->sc_sysmon.sme_streinfo = lm_streinfo; /* sme_streinfo set in chip-specific attach */
lmsc->sc_sysmon.sme_nsensors = LM_NUM_SENSORS; lmsc->sc_sysmon.sme_nsensors = lmsc->numsensors;
lmsc->sc_sysmon.sme_envsys_version = 1000; lmsc->sc_sysmon.sme_envsys_version = 1000;
if (sysmon_envsys_register(&lmsc->sc_sysmon)) if (sysmon_envsys_register(&lmsc->sc_sysmon))
@ -224,51 +204,239 @@ lm_attach(lmsc)
lmsc->sc_dev.dv_xname); lmsc->sc_dev.dv_xname);
} }
int
lm_match(sc)
struct lm_softc *sc;
{
int i;
/* See if we have an LM78 or LM79 */
i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
switch(i) {
case LM_ID_LM78:
printf(": LM78\n");
break;
case LM_ID_LM78J:
printf(": LM78J\n");
break;
case LM_ID_LM79:
printf(": LM79\n");
break;
default:
return 0;
}
lm_common_match(sc);
return 1;
}
int
def_match(sc)
struct lm_softc *sc;
{
int i;
i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
printf(": Unknow chip (ID %d)\n", i);
lm_common_match(sc);
return 1;
}
void
lm_common_match(sc)
struct lm_softc *sc;
{
int i;
sc->numsensors = LM_NUM_SENSORS;
sc->refresh_sensor_data = lm_refresh_sensor_data;
for (i = 0; i < 7; ++i) {
sc->sensors[i].units = sc->info[i].units =
ENVSYS_SVOLTS_DC;
sprintf(sc->info[i].desc, "IN %d", i);
}
/* default correction factors for resistors on higher voltage inputs */
sc->info[0].rfact = sc->info[1].rfact =
sc->info[2].rfact = 10000;
sc->info[3].rfact = (int)(( 90.9 / 60.4) * 10000);
sc->info[4].rfact = (int)(( 38.0 / 10.0) * 10000);
sc->info[5].rfact = (int)((210.0 / 60.4) * 10000);
sc->info[6].rfact = (int)(( 90.9 / 60.4) * 10000);
sc->sensors[7].units = ENVSYS_STEMP;
strcpy(sc->info[7].desc, "Temp");
for (i = 8; i < 11; ++i) {
sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
sprintf(sc->info[i].desc, "Fan %d", i - 7);
}
sc->sc_sysmon.sme_streinfo = lm_streinfo;
}
int
wb_match(sc)
struct lm_softc *sc;
{
int i, j;
/* See if we have a winbond */
i = lm_readreg(sc, LMD_CHIPID) & LM_ID_MASK;
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_HBAC);
j = lm_readreg(sc, WB_VENDID) << 8;
lm_writereg(sc, WB_BANKSEL, 0);
j |= lm_readreg(sc, WB_VENDID);
DPRINTF(("winbond vend id %d\n", j));
if (j != WB_VENDID_WINBOND)
return 0;
printf(": W83627HF (device ID %d)\n", i);
sc->numsensors = WB_NUM_SENSORS;
sc->refresh_sensor_data = wb_refresh_sensor_data;
sc->sensors[0].units = sc->info[0].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[0].desc, "VCORE A");
sc->info[0].rfact = 10000;
sc->sensors[1].units = sc->info[1].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[1].desc, "VCORE B");
sc->info[1].rfact = 10000;
sc->sensors[2].units = sc->info[2].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[2].desc, "+3.3V");
sc->info[2].rfact = 10000;
sc->sensors[3].units = sc->info[3].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[3].desc, "+5V");
sc->info[3].rfact = 16778;
sc->sensors[4].units = sc->info[4].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[4].desc, "+12V");
sc->info[4].rfact = 38000;
sc->sensors[5].units = sc->info[5].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[5].desc, "-12V");
sc->info[5].rfact = 10000;
sc->sensors[6].units = sc->info[6].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[6].desc, "-5V");
sc->info[6].rfact = 10000;
sc->sensors[7].units = sc->info[7].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[7].desc, "+5VSB");
sc->info[7].rfact = 15151;
sc->sensors[8].units = sc->info[8].units = ENVSYS_SVOLTS_DC;
sprintf(sc->info[8].desc, "VBAT");
sc->info[8].rfact = 10000;
sc->sensors[9].units = ENVSYS_STEMP;
strcpy(sc->info[9].desc, "Temp 1");
sc->sensors[10].units = ENVSYS_STEMP;
strcpy(sc->info[10].desc, "Temp 2");
sc->sensors[11].units = ENVSYS_STEMP;
strcpy(sc->info[11].desc, "Temp 3");
for (i = 12; i < 15; ++i) {
sc->sensors[i].units = sc->info[i].units = ENVSYS_SFANRPM;
sprintf(sc->info[i].desc, "Fan %d", i - 11);
}
sc->sc_sysmon.sme_streinfo = wb_streinfo;
return 1;
}
int int
lm_gtredata(sme, tred) lm_gtredata(sme, tred)
struct sysmon_envsys *sme; struct sysmon_envsys *sme;
struct envsys_tre_data *tred; struct envsys_tre_data *tred;
{ {
static const struct timeval onepointfive = { 1, 500000 }; static const struct timeval onepointfive = { 1, 500000 };
struct timeval t; struct timeval t;
struct lm_softc *sc = sme->sme_cookie; struct lm_softc *sc = sme->sme_cookie;
int i, s; int i, s;
/* read new values at most once every 1.5 seconds */ /* read new values at most once every 1.5 seconds */
timeradd(&sc->lastread, &onepointfive, &t); timeradd(&sc->lastread, &onepointfive, &t);
s = splclock(); s = splclock();
i = timercmp(&mono_time, &t, >); i = timercmp(&mono_time, &t, >);
if (i) { if (i) {
sc->lastread.tv_sec = mono_time.tv_sec; sc->lastread.tv_sec = mono_time.tv_sec;
sc->lastread.tv_usec = mono_time.tv_usec; sc->lastread.tv_usec = mono_time.tv_usec;
} }
splx(s); splx(s);
if (i)
lm_refresh_sensor_data(sc);
*tred = sc->sensors[tred->sensor]; if (i)
sc->refresh_sensor_data(sc);
return (0); *tred = sc->sensors[tred->sensor];
return (0);
} }
int int
lm_streinfo(sme, binfo) lm_streinfo(sme, binfo)
struct sysmon_envsys *sme; struct sysmon_envsys *sme;
struct envsys_basic_info *binfo; struct envsys_basic_info *binfo;
{ {
struct lm_softc *sc = sme->sme_cookie; struct lm_softc *sc = sme->sme_cookie;
int divisor; int divisor;
u_int8_t sdata; u_int8_t sdata;
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC) if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
sc->info[binfo->sensor].rfact = binfo->rfact; sc->info[binfo->sensor].rfact = binfo->rfact;
else { else {
/* FAN1 and FAN2 can have divisors set, but not FAN3 */ /* FAN1 and FAN2 can have divisors set, but not FAN3 */
if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM) if ((sc->info[binfo->sensor].units == ENVSYS_SFANRPM)
&& (binfo->sensor != 10)) { && (binfo->sensor != 10)) {
if (binfo->rpms == 0) {
binfo->validflags = 0;
return (0);
}
/* 153 is the nominal FAN speed value */
divisor = 1350000 / (binfo->rpms * 153);
/* ...but we need lg(divisor) */
if (divisor <= 1)
divisor = 0;
else if (divisor <= 2)
divisor = 1;
else if (divisor <= 4)
divisor = 2;
else
divisor = 3;
/*
* FAN1 div is in bits <5:4>, FAN2 div is
* in <7:6>
*/
sdata = lm_readreg(sc, LMD_VIDFAN);
if ( binfo->sensor == 8 ) { /* FAN1 */
divisor <<= 4;
sdata = (sdata & 0xCF) | divisor;
} else { /* FAN2 */
divisor <<= 6;
sdata = (sdata & 0x3F) | divisor;
}
lm_writereg(sc, LMD_VIDFAN, sdata);
}
memcpy(sc->info[binfo->sensor].desc, binfo->desc,
sizeof(sc->info[binfo->sensor].desc));
sc->info[binfo->sensor].desc[
sizeof(sc->info[binfo->sensor].desc) - 1] = '\0';
binfo->validflags = ENVSYS_FVALID;
}
return (0);
}
int
wb_streinfo(sme, binfo)
struct sysmon_envsys *sme;
struct envsys_basic_info *binfo;
{
struct lm_softc *sc = sme->sme_cookie;
int divisor;
u_int8_t sdata;
int i;
if (sc->info[binfo->sensor].units == ENVSYS_SVOLTS_DC)
sc->info[binfo->sensor].rfact = binfo->rfact;
else {
if (sc->info[binfo->sensor].units == ENVSYS_SFANRPM) {
if (binfo->rpms == 0) { if (binfo->rpms == 0) {
binfo->validflags = 0; binfo->validflags = 0;
@ -279,29 +447,39 @@ lm_streinfo(sme, binfo)
divisor = 1350000 / (binfo->rpms * 153); divisor = 1350000 / (binfo->rpms * 153);
/* ...but we need lg(divisor) */ /* ...but we need lg(divisor) */
if (divisor <= 1) for (i = 0; i < 7; i++) {
divisor = 0; if (divisor <= (1 << i))
else if (divisor <= 2) break;
divisor = 1;
else if (divisor <= 4)
divisor = 2;
else
divisor = 3;
/*
* FAN1 div is in bits <5:4>, FAN2 div is
* in <7:6>
*/
sdata = lm_readreg(sc, LMD_VIDFAN);
if ( binfo->sensor == 8 ) { /* FAN1 */
divisor <<= 4;
sdata = (sdata & 0xCF) | divisor;
} else { /* FAN2 */
divisor <<= 6;
sdata = (sdata & 0x3F) | divisor;
} }
divisor = i;
lm_writereg(sc, LMD_VIDFAN, sdata); if (binfo->sensor == 12 || binfo->sensor == 13) {
/*
* FAN1 div is in bits <5:4>, FAN2 div
* is in <7:6>
*/
sdata = lm_readreg(sc, LMD_VIDFAN);
if ( binfo->sensor == 12 ) { /* FAN1 */
sdata = (sdata & 0xCF) |
((divisor & 0x3) << 4);
} else { /* FAN2 */
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
}
lm_writereg(sc, LMD_VIDFAN, sdata);
} else {
/* FAN3 is in WB_PIN <7:6> */
sdata = lm_readreg(sc, WB_PIN);
sdata = (sdata & 0x3F) |
((divisor & 0x3) << 6);
lm_writereg(sc, LMD_VIDFAN, sdata);
}
/* Bit 2 of divisor is in WB_BANK0_FANBAT */
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
sdata = lm_readreg(sc, WB_BANK0_FANBAT);
sdata &= ~(0x20 << (binfo->sensor - 12));
sdata |= (divisor & 0x4) << (binfo->sensor - 9);
lm_writereg(sc, WB_BANK0_FANBAT, sdata);
} }
memcpy(sc->info[binfo->sensor].desc, binfo->desc, memcpy(sc->info[binfo->sensor].desc, binfo->desc,
@ -314,7 +492,6 @@ lm_streinfo(sme, binfo)
return (0); return (0);
} }
/* /*
* pre: last read occured >= 1.5 seconds ago * pre: last read occured >= 1.5 seconds ago
* post: sensors[] current data are the latest from the chip * post: sensors[] current data are the latest from the chip
@ -323,20 +500,20 @@ void
lm_refresh_sensor_data(sc) lm_refresh_sensor_data(sc)
struct lm_softc *sc; struct lm_softc *sc;
{ {
u_int8_t sdata; int sdata;
int i, divisor; int i, divisor;
/* Refresh our stored data for every sensor */ /* Refresh our stored data for every sensor */
for (i = 0; i < LM_NUM_SENSORS; ++i) { for (i = 0; i < LM_NUM_SENSORS; ++i) {
sdata = lm_readreg(sc, LMD_SENSORBASE + i); sdata = lm_readreg(sc, LMD_SENSORBASE + i);
switch (sc->sensors[i].units) { switch (sc->sensors[i].units) {
case ENVSYS_STEMP: case ENVSYS_STEMP:
/* temp is given in deg. C, we convert to uK */ /* temp is given in deg. C, we convert to uK */
sc->sensors[i].cur.data_us = sdata * 1000000 + sc->sensors[i].cur.data_us = sdata * 1000000 +
273150000; 273150000;
break; break;
case ENVSYS_SVOLTS_DC: case ENVSYS_SVOLTS_DC:
/* voltage returned as (mV >> 4), we convert to uVDC */ /* voltage returned as (mV >> 4), we convert to uVDC */
sc->sensors[i].cur.data_s = (sdata << 4); sc->sensors[i].cur.data_s = (sdata << 4);
@ -344,13 +521,13 @@ lm_refresh_sensor_data(sc)
sc->sensors[i].cur.data_s *= sc->info[i].rfact; sc->sensors[i].cur.data_s *= sc->info[i].rfact;
/* division by 10 gets us back to uVDC */ /* division by 10 gets us back to uVDC */
sc->sensors[i].cur.data_s /= 10; sc->sensors[i].cur.data_s /= 10;
/* these two are negative voltages */ /* these two are negative voltages */
if ( (i == 5) || (i == 6) ) if ( (i == 5) || (i == 6) )
sc->sensors[i].cur.data_s *= -1; sc->sensors[i].cur.data_s *= -1;
break; break;
case ENVSYS_SFANRPM: case ENVSYS_SFANRPM:
if (i == 10) if (i == 10)
divisor = 2; /* Fixed divisor for FAN3 */ divisor = 2; /* Fixed divisor for FAN3 */
@ -360,17 +537,99 @@ lm_refresh_sensor_data(sc)
else else
divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) &
0x3; 0x3;
sc->sensors[i].cur.data_us = 1350000 / if (sdata == 0xff || sdata == 0x00) {
(sdata << divisor); sc->sensors[i].cur.data_us = 0;
} else {
sc->sensors[i].cur.data_us = 1350000 /
(sdata << divisor);
}
break; break;
default: default:
/* XXX - debug log something? */ /* XXX - debug log something? */
sc->sensors[i].validflags = 0; sc->sensors[i].validflags = 0;
break; break;
} }
} }
} }
void
wb_refresh_sensor_data(sc)
struct lm_softc *sc;
{
int sdata;
int i, divisor;
/* Refresh our stored data for every sensor */
/* first voltage sensors */
for (i = 0; i < 9; ++i) {
if (i < 7) {
sdata = lm_readreg(sc, LMD_SENSORBASE + i);
} else {
/* from bank5 */
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B5);
sdata = lm_readreg(sc, (i == 7) ?
WB_BANK5_5VSB : WB_BANK5_VBAT);
}
DPRINTF(("sdata[%d] 0x%x\n", i, sdata));
/* voltage returned as (mV >> 4), we convert to uV */
sdata = sdata << 4;
/* special case for negative voltages */
if (i == 5) {
/*
* -12Vdc, assume Winbond recommended values for
* resistors
*/
sdata = ((sdata * 1000) - (3600 * 805)) / 195;
} else if (i == 6) {
/*
* -5Vdc, assume Winbond recommended values for
* resistors
*/
sdata = ((sdata * 1000) - (3600 * 682)) / 318;
}
/* rfact is (factor * 10^4) */
sc->sensors[i].cur.data_s = sdata * sc->info[i].rfact;
/* division by 10 gets us back to uVDC */
sc->sensors[i].cur.data_s /= 10;
}
/* temperatures. Given in dC, we convert to uK */
sdata = lm_readreg(sc, LMD_SENSORBASE + 7);
DPRINTF(("sdata[%d] 0x%x\n", 9, sdata));
sc->sensors[9].cur.data_us = sdata * 1000000 + 273150000;
/* from bank1 */
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B1);
sdata = lm_readreg(sc, WB_BANK1_T2H) << 1;
sdata |= (lm_readreg(sc, WB_BANK1_T2L) & 0x80) >> 7;
DPRINTF(("sdata[%d] 0x%x\n", 10, sdata));
sc->sensors[10].cur.data_us = (sdata * 1000000) / 2 + 273150000;
/* from bank2 */
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B2);
sdata = lm_readreg(sc, WB_BANK2_T3H) << 1;
sdata |= (lm_readreg(sc, WB_BANK2_T3L) & 0x80) >> 7;
DPRINTF(("sdata[%d] 0x%x\n", 11, sdata));
sc->sensors[11].cur.data_us = (sdata * 1000000) / 2 + 273150000;
/* Fans */
lm_writereg(sc, WB_BANKSEL, WB_BANKSEL_B0);
for (i = 12; i < 15; i++) {
sdata = lm_readreg(sc, LMD_SENSORBASE + i - 4);
if (i == 12)
divisor = (lm_readreg(sc, LMD_VIDFAN) >> 4) & 0x3;
else if (i == 13)
divisor = (lm_readreg(sc, LMD_VIDFAN) >> 6) & 0x3;
else
divisor = (lm_readreg(sc, WB_PIN) >> 6) & 0x3;
divisor |= (lm_readreg(sc, WB_BANK0_FANBAT) >> (i - 9)) & 0x4;
DPRINTF(("sdata[%d] 0x%x div 0x%x\n", i, sdata, divisor));
if (sdata == 0xff || sdata == 0x00) {
sc->sensors[i].cur.data_us = 0;
} else {
sc->sensors[i].cur.data_us = 1350000 /
(sdata << divisor);
}
}
}

View File

@ -1,4 +1,4 @@
/* $NetBSD: nslm7xvar.h,v 1.3 2000/06/24 00:37:19 thorpej Exp $ */ /* $NetBSD: nslm7xvar.h,v 1.4 2000/07/27 21:49:22 bouyer Exp $ */
/*- /*-
* Copyright (c) 2000 The NetBSD Foundation, Inc. * Copyright (c) 2000 The NetBSD Foundation, Inc.
@ -67,6 +67,40 @@
#define LM_ID_LM79 0xC0 #define LM_ID_LM79 0xC0
#define LM_ID_MASK 0xFE #define LM_ID_MASK 0xFE
/* additionnal registers for the Winbond W83627HF */
#define WB_PIN 0x4B /* pin & fan3 divider */
#define WB_BANKSEL 0x4E /* banck select register */
#define WB_BANKSEL_B0 0x00 /* select bank 0 */
#define WB_BANKSEL_B1 0x01 /* select bank 1 */
#define WB_BANKSEL_B2 0x02 /* select bank 2 */
#define WB_BANKSEL_B3 0x03 /* select bank 3 */
#define WB_BANKSEL_B4 0x04 /* select bank 4 */
#define WB_BANKSEL_B5 0x05 /* select bank 5 */
#define WB_BANKSEL_HBAC 0x80 /* hight byte access */
#define WB_VENDID 0x4F /* vendor ID register */
#define WB_VENDID_WINBOND 0x5CA3
/* Bank0 regs */
#define WB_BANK0_FANBAT 0x5D
/* Bank1 regs */
#define WB_BANK1_T2H 0x50
#define WB_BANK1_T2L 0x51
/* Bank2 regs */
#define WB_BANK2_T3H 0x50
#define WB_BANK2_T3L 0x51
/* Bank4 regs */
#define WB_BANK4_T1OFF 0x54
#define WB_BANK4_T2OFF 0x55
#define WB_BANK4_T3OFF 0x56
/* Bank5 regs */
#define WB_BANK5_5VSB 0x50
#define WB_BANK5_VBAT 0x51
#define WB_NUM_SENSORS 15
struct lm_softc { struct lm_softc {
struct device sc_dev; struct device sc_dev;
@ -76,8 +110,10 @@ struct lm_softc {
int sc_flags; int sc_flags;
struct timeval lastread; /* only allow reads every 1.5 seconds */ struct timeval lastread; /* only allow reads every 1.5 seconds */
struct envsys_tre_data sensors[LM_NUM_SENSORS]; struct envsys_tre_data sensors[WB_NUM_SENSORS];
struct envsys_basic_info info[LM_NUM_SENSORS]; struct envsys_basic_info info[WB_NUM_SENSORS];
int numsensors;
void (*refresh_sensor_data) __P((struct lm_softc *));
struct sysmon_envsys sc_sysmon; struct sysmon_envsys sc_sysmon;
}; };