Update to the SoftFloat-2c version of softfloat-specialize.h and softfloat.h.

This includes a simplification of the license and updates the comments.  NFC.
This commit is contained in:
thorpej 2020-09-02 03:41:56 +00:00
parent e2052aea2d
commit e450f2e45d
2 changed files with 236 additions and 279 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: softfloat-specialize.h,v 1.2 2008/04/28 20:24:06 martin Exp $ */
/* $NetBSD: softfloat-specialize.h,v 1.3 2020/09/02 03:41:56 thorpej Exp $ */
/* This is a derivative work. */
@ -31,68 +31,55 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
===============================================================================
/*============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
This C source fragment is part of the Berkeley SoftFloat IEEE Floating-Point
Arithmetic Package, Release 2c, by John R. Hauser.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER
PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR
THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY
INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE
(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER
PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR
INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE
SOFTWARE.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works require also that (1) the source code for the derivative work
includes prominent notice that the work is derivative, and (2) the source code
includes prominent notice of these three paragraphs for those parts of this
code that are retained.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Underflow tininess-detection mode, statically initialized to default value.
-------------------------------------------------------------------------------
*/
=============================================================================*/
/*----------------------------------------------------------------------------
| Underflow tininess-detection mode, statically initialized to default value.
| (The declaration in `softfloat.h' must match the `int8' type here.)
*----------------------------------------------------------------------------*/
/* [ MP safe, does not change dynamically ] */
int float_detect_tininess = float_tininess_after_rounding;
/*
-------------------------------------------------------------------------------
Internal canonical NaN format.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Internal canonical NaN format.
*----------------------------------------------------------------------------*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*
-------------------------------------------------------------------------------
The pattern for a default generated single-precision NaN.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| The pattern for a default generated single-precision NaN.
*----------------------------------------------------------------------------*/
#define float32_default_nan 0xFFC00000
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
static flag float32_is_nan( float32 a )
{
@ -100,12 +87,11 @@ static flag float32_is_nan( float32 a )
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float32_is_signaling_nan( float32 a )
{
@ -113,13 +99,12 @@ flag float32_is_signaling_nan( float32 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
@ -132,12 +117,11 @@ static commonNaNT float32ToCommonNaN( float32 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the single-
precision floating-point format.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the single-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float32 commonNaNToFloat32( commonNaNT a )
{
@ -145,13 +129,12 @@ static float32 commonNaNToFloat32( commonNaNT a )
}
/*
-------------------------------------------------------------------------------
Takes two single-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
@ -180,14 +163,17 @@ static float32 propagateFloat32NaN( float32 a, float32 b )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
* float64_default_nan, float64_is_nan(), float64_is_signaling_nan()
* have moved to softfloat.h.
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
@ -200,12 +186,11 @@ static commonNaNT float64ToCommonNaN( float64 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the double-
precision floating-point format.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float64 commonNaNToFloat64( commonNaNT a )
{
@ -216,13 +201,12 @@ static float64 commonNaNToFloat64( commonNaNT a )
}
/*
-------------------------------------------------------------------------------
Takes two double-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Takes two double-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
@ -253,22 +237,19 @@ static float64 propagateFloat64NaN( float64 a, float64 b )
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
The pattern for a default generated extended double-precision NaN. The
`high' and `low' values hold the most- and least-significant bits,
respectively.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| The pattern for a default generated double-extended-precision NaN.
| The `high' and `low' values hold the most- and least-significant bits,
| respectively.
*----------------------------------------------------------------------------*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the double-extended-precision floating-point value `a' is a
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
static flag floatx80_is_nan( floatx80 a )
{
@ -276,12 +257,11 @@ static flag floatx80_is_nan( floatx80 a )
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the double-extended-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
@ -294,13 +274,12 @@ flag floatx80_is_signaling_nan( floatx80 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
invalid exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the double-extended-precision floating-
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
| invalid exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
@ -313,12 +292,11 @@ static commonNaNT floatx80ToCommonNaN( floatx80 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the extended
double-precision floating-point format.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the double-
| extended-precision floating-point format.
*----------------------------------------------------------------------------*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
@ -329,13 +307,12 @@ static floatx80 commonNaNToFloatx80( commonNaNT a )
}
/*
-------------------------------------------------------------------------------
Takes two extended double-precision floating-point values `a' and `b', one
of which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Takes two double-extended-precision floating-point values `a' and `b', one
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
@ -368,21 +345,18 @@ static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
The pattern for a default generated quadruple-precision NaN. The `high' and
`low' values hold the most- and least-significant bits, respectively.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| The pattern for a default generated quadruple-precision NaN. The `high' and
| `low' values hold the most- and least-significant bits, respectively.
*----------------------------------------------------------------------------*/
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
#define float128_default_nan_low LIT64( 0x0000000000000000 )
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_nan( float128 a )
{
@ -392,12 +366,11 @@ flag float128_is_nan( float128 a )
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
flag float128_is_signaling_nan( float128 a )
{
@ -407,13 +380,12 @@ flag float128_is_signaling_nan( float128 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the quadruple-precision floating-point NaN
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
| exception is raised.
*----------------------------------------------------------------------------*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
@ -425,12 +397,11 @@ static commonNaNT float128ToCommonNaN( float128 a )
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the quadruple-
precision floating-point format.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Returns the result of converting the canonical NaN `a' to the quadruple-
| precision floating-point format.
*----------------------------------------------------------------------------*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
@ -441,13 +412,12 @@ static float128 commonNaNToFloat128( commonNaNT a )
}
/*
-------------------------------------------------------------------------------
Takes two quadruple-precision floating-point values `a' and `b', one of
which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Takes two quadruple-precision floating-point values `a' and `b', one of
| which is a NaN, and returns the appropriate NaN result. If either `a' or
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;

View File

@ -1,4 +1,4 @@
/* $NetBSD: softfloat.h,v 1.5 2017/12/31 11:43:42 martin Exp $ */
/* $NetBSD: softfloat.h,v 1.6 2020/09/02 03:41:56 thorpej Exp $ */
/* This is a derivative work. */
@ -31,35 +31,29 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
===============================================================================
/*============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
This C header file template is part of the Berkeley SoftFloat IEEE Floating-
Point Arithmetic Package, Release 2c, by John R. Hauser.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TOLERATE ALL LOSSES, COSTS, OR OTHER
PROBLEMS THEY INCUR DUE TO THE SOFTWARE WITHOUT RECOMPENSE FROM JOHN HAUSER OR
THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE, AND WHO FURTHERMORE EFFECTIVELY
INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE INSTITUTE
(possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR OTHER
PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE, OR
INCURRED BY ANYONE DUE TO A DERIVATIVE WORK THEY CREATE USING ANY PART OF THE
SOFTWARE.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works require also that (1) the source code for the derivative work
includes prominent notice that the work is derivative, and (2) the source code
includes prominent notice of these three paragraphs for those parts of this
code that are retained.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
=============================================================================*/
#include <sys/types.h>
@ -72,23 +66,19 @@ this code that are retained.
#endif
#include <sys/endian.h>
/*
-------------------------------------------------------------------------------
The macro `FLOATX80' must be defined to enable the extended double-precision
floating-point format `floatx80'. If this macro is not defined, the
`floatx80' type will not be defined, and none of the functions that either
input or output the `floatx80' type will be defined. The same applies to
the `FLOAT128' macro and the quadruple-precision format `float128'.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| The macro `FLOATX80' must be defined to enable the double-extended-precision
| floating-point format `floatx80'. If this macro is not defined, the
| `floatx80' type will not be defined, and none of the functions that either
| input or output the `floatx80' type will be defined. The same applies to
| the `FLOAT128' macro and the quadruple-precision format `float128'.
*----------------------------------------------------------------------------*/
/* #define FLOATX80 */
/* #define FLOAT128 */
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point types.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE floating-point types.
*----------------------------------------------------------------------------*/
typedef u_int32_t float32;
typedef u_int64_t float64;
#ifdef FLOATX80
@ -116,24 +106,18 @@ typedef struct {
#define float_rounding_mode() fpgetround()
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point underflow tininess-detection mode.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE floating-point underflow tininess-detection mode.
*----------------------------------------------------------------------------*/
extern int float_detect_tininess;
enum {
float_tininess_after_rounding = 1,
float_tininess_before_rounding = 0
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point rounding mode.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE floating-point rounding mode.
*----------------------------------------------------------------------------*/
enum {
float_round_nearest_even = FP_RN,
float_round_to_zero = FP_RZ,
@ -141,12 +125,9 @@ enum {
float_round_up = FP_RP
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point exception flags.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE floating-point exception flags.
*----------------------------------------------------------------------------*/
enum {
float_flag_inexact = FP_X_IMP,
float_flag_underflow = FP_X_UFL,
@ -155,11 +136,21 @@ enum {
float_flag_invalid = FP_X_INV
};
/*----------------------------------------------------------------------------
| Routine to raise any or all of the software IEEE floating-point exception
| flags.
*----------------------------------------------------------------------------*/
/*
-------------------------------------------------------------------------------
Software IEC/IEEE integer-to-floating-point conversion routines.
-------------------------------------------------------------------------------
*/
* Routines provided by <machine/ieeefp.h>:
*
* float_raise()
* float_set_inexact()
* float_set_invalid()
*/
/*----------------------------------------------------------------------------
| Software IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32( int );
float64 int32_to_float64( int );
#ifdef FLOATX80
@ -179,11 +170,9 @@ float128 int64_to_float128( int64_t );
#endif
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision conversion routines.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 );
int float32_to_int32_round_to_zero( float32 );
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
@ -198,11 +187,9 @@ floatx80 float32_to_floatx80( float32 );
float128 float32_to_float128( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision operations.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 );
@ -220,11 +207,9 @@ int float32_lt_quiet( float32, float32 );
int float32_is_signaling_nan( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision conversion routines.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 );
int float64_to_int32_round_to_zero( float64 );
#ifndef SOFTFLOAT_FOR_GCC /* __fix?fdi provided by libgcc2.c */
@ -240,19 +225,31 @@ floatx80 float64_to_floatx80( float64 );
float128 float64_to_float128( float64 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision operations.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE double-precision operations.
*----------------------------------------------------------------------------*/
/*----------------------------------------------------------------------------
| The pattern for a default generated double-precision NaN.
*----------------------------------------------------------------------------*/
#define float64_default_nan 0xFFF8000000000000LL
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a NaN;
| otherwise returns 0.
*----------------------------------------------------------------------------*/
static __inline int
float64_is_nan(float64 a)
{
return 0xFFE0000000000000LL < a << 1;
}
/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a signaling
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
static __inline int
float64_is_signaling_nan(float64 a)
{
@ -278,11 +275,9 @@ int float64_is_signaling_nan( float64 );
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision conversion routines.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE double-extended-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 );
int floatx80_to_int32_round_to_zero( floatx80 );
int64_t floatx80_to_int64( floatx80 );
@ -293,19 +288,15 @@ float64 floatx80_to_float64( floatx80 );
float128 floatx80_to_float128( floatx80 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision rounding precision. Valid
values are 32, 64, and 80.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE double-extended-precision rounding precision. Valid values
| are 32, 64, and 80.
*----------------------------------------------------------------------------*/
extern int floatx80_rounding_precision;
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision operations.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE double-extended-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 );
@ -325,11 +316,9 @@ int floatx80_is_signaling_nan( floatx80 );
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision conversion routines.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE quadruple-precision conversion routines.
*----------------------------------------------------------------------------*/
int float128_to_int32( float128 );
int float128_to_int32_round_to_zero( float128 );
int64_t float128_to_int64( float128 );
@ -340,11 +329,9 @@ float64 float128_to_float64( float128 );
floatx80 float128_to_floatx80( float128 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision operations.
-------------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
| Software IEEE quadruple-precision operations.
*----------------------------------------------------------------------------*/
float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 );