merge conflicting error sections.
This commit is contained in:
parent
23e6770b50
commit
de3b931d80
|
@ -27,9 +27,9 @@
|
|||
.\"
|
||||
.\" from: @(#)exp.3 6.12 (Berkeley) 7/31/91
|
||||
.\" $FreeBSD: src/lib/msun/man/exp.3,v 1.24 2008/01/18 21:43:00 das Exp $
|
||||
.\" $NetBSD: exp.3,v 1.24 2010/01/11 16:28:39 christos Exp $
|
||||
.\" $NetBSD: exp.3,v 1.25 2010/01/12 15:51:01 christos Exp $
|
||||
.\"
|
||||
.Dd January 11, 2010
|
||||
.Dd January 12, 2010
|
||||
.Dt EXP 3
|
||||
.Os
|
||||
.Sh NAME
|
||||
|
@ -151,17 +151,6 @@ of
|
|||
.Ar x
|
||||
to the exponent
|
||||
.Ar y .
|
||||
.Sh ERROR (due to Roundoff etc.)
|
||||
The values of
|
||||
.Fn exp 0 ,
|
||||
.Fn expm1 0 ,
|
||||
.Fn exp2 integer ,
|
||||
and
|
||||
.Fn pow integer integer
|
||||
are exact provided that they are representable.
|
||||
.\" XXX Is this really true for pow()?
|
||||
Otherwise the error in these functions is generally below one
|
||||
.Em ulp .
|
||||
.Sh RETURN VALUES
|
||||
These functions will return the appropriate computation unless an error
|
||||
occurs or an argument is out of range.
|
||||
|
@ -205,10 +194,19 @@ unless
|
|||
.Fa x
|
||||
\*[Gt] \-1.
|
||||
.Sh ERRORS
|
||||
exp(x), log(x), expm1(x) and log1p(x) are accurate to within
|
||||
an
|
||||
.Em ulp ,
|
||||
and log10(x) to within about 2
|
||||
The values of
|
||||
.Fn exp x ,
|
||||
.Fn expm1 x ,
|
||||
.Fn exp2 x ,
|
||||
.Fn log x ,
|
||||
and
|
||||
.Fn log1p x ,
|
||||
are exact provided that they are representable.
|
||||
Otherwise the error in these functions is generally below one
|
||||
.Em ulp .
|
||||
The values of
|
||||
.Fn log10 x
|
||||
are within about 2
|
||||
.Em ulps ;
|
||||
an
|
||||
.Em ulp
|
||||
|
@ -241,7 +239,7 @@ for
|
|||
.Tn IEEE
|
||||
754 Double.
|
||||
Moderate values of
|
||||
.Fn pow
|
||||
.Fn pow x y
|
||||
are accurate enough that
|
||||
.Fn pow integer integer
|
||||
is exact until it is bigger than 2**56 on a
|
||||
|
@ -250,8 +248,15 @@ is exact until it is bigger than 2**56 on a
|
|||
.Tn IEEE
|
||||
754.
|
||||
.Sh NOTES
|
||||
The functions exp(x)\-1 and log(1+x) are called
|
||||
expm1 and logp1 in
|
||||
The functions
|
||||
.Fn exp x\ \-\ 1
|
||||
and
|
||||
.Fn log 1\ \+\ x
|
||||
are called
|
||||
.Fn expm1 x
|
||||
and
|
||||
.Fn logp1 x
|
||||
in
|
||||
.Tn BASIC
|
||||
on the Hewlett\-Packard
|
||||
.Tn HP Ns \-71B
|
||||
|
@ -261,12 +266,16 @@ Macintosh,
|
|||
.Tn EXP1
|
||||
and
|
||||
.Tn LN1
|
||||
in Pascal, exp1 and log1 in C
|
||||
in Pascal,
|
||||
.Fn exp1 x
|
||||
and
|
||||
.Fn log1 x
|
||||
in C
|
||||
on
|
||||
.Tn APPLE
|
||||
Macintoshes, where they have been provided to make
|
||||
sure financial calculations of ((1+x)**n\-1)/x, namely
|
||||
expm1(n\(**log1p(x))/x, will be accurate when x is tiny.
|
||||
expm1(n*log1p(x))/x, will be accurate when x is tiny.
|
||||
They also provide accurate inverse hyperbolic functions.
|
||||
.Pp
|
||||
The function
|
||||
|
|
Loading…
Reference in New Issue