Split subr_cpu.c out of kern_cpu.c, to contain routines shared with rump.

This commit is contained in:
ad 2019-12-20 21:20:09 +00:00
parent f3db7741b1
commit dd632e5898
4 changed files with 457 additions and 384 deletions

View File

@ -1,4 +1,4 @@
# $NetBSD: files.kern,v 1.39 2019/12/12 22:55:20 pgoyette Exp $
# $NetBSD: files.kern,v 1.40 2019/12/20 21:20:09 ad Exp $
#
# kernel sources
@ -104,6 +104,7 @@ file kern/subr_blist.c vmswap
file kern/subr_bufq.c kern
file kern/subr_callback.c kern
file kern/subr_cprng.c kern
file kern/subr_cpu.c kern
file kern/subr_cpufreq.c kern
file kern/subr_copy.c kern
file kern/subr_csan.c kcsan

View File

@ -1,4 +1,4 @@
/* $NetBSD: kern_cpu.c,v 1.87 2019/12/20 21:05:34 ad Exp $ */
/* $NetBSD: kern_cpu.c,v 1.88 2019/12/20 21:20:09 ad Exp $ */
/*-
* Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc.
@ -55,8 +55,12 @@
* SUCH DAMAGE.
*/
/*
* CPU related routines not shared with rump.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.87 2019/12/20 21:05:34 ad Exp $");
__KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.88 2019/12/20 21:20:09 ad Exp $");
#ifdef _KERNEL_OPT
#include "opt_cpu_ucode.h"
@ -91,7 +95,6 @@ __KERNEL_RCSID(0, "$NetBSD: kern_cpu.c,v 1.87 2019/12/20 21:05:34 ad Exp $");
* verify that the claim is true. This will prevent them from getting out
* of sync.
*/
#ifndef _RUMPKERNEL /* XXX temporary */
#ifdef __HAVE_CPU_DATA_FIRST
CTASSERT(offsetof(struct cpu_info, ci_data) == 0);
#else
@ -117,43 +120,7 @@ const struct cdevsw cpuctl_cdevsw = {
.d_discard = nodiscard,
.d_flag = D_OTHER | D_MPSAFE
};
#endif /* ifndef _RUMPKERNEL XXX */
kmutex_t cpu_lock __cacheline_aligned;
int ncpu __read_mostly;
int ncpuonline __read_mostly;
bool mp_online __read_mostly;
static bool cpu_topology_present __read_mostly;
int64_t cpu_counts[CPU_COUNT_MAX];
/* An array of CPUs. There are ncpu entries. */
struct cpu_info **cpu_infos __read_mostly;
/* Note: set on mi_cpu_attach() and idle_loop(). */
kcpuset_t * kcpuset_attached __read_mostly = NULL;
kcpuset_t * kcpuset_running __read_mostly = NULL;
int (*compat_cpuctl_ioctl)(struct lwp *, u_long, void *) = (void *)enosys;
static char cpu_model[128];
/*
* mi_cpu_init: early initialisation of MI CPU related structures.
*
* Note: may not block and memory allocator is not yet available.
*/
void
mi_cpu_init(void)
{
mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
kcpuset_create(&kcpuset_attached, true);
kcpuset_create(&kcpuset_running, true);
kcpuset_set(kcpuset_running, 0);
}
#ifndef _RUMPKERNEL /* XXX temporary */
int
mi_cpu_attach(struct cpu_info *ci)
{
@ -475,27 +442,8 @@ cpu_setstate(struct cpu_info *ci, bool online)
spc->spc_lastmod = time_second;
return 0;
}
#endif /* ifndef _RUMPKERNEL XXX */
int
cpu_setmodel(const char *fmt, ...)
{
int len;
va_list ap;
va_start(ap, fmt);
len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
va_end(ap);
return len;
}
const char *
cpu_getmodel(void)
{
return cpu_model;
}
#if defined(__HAVE_INTR_CONTROL) && !defined(_RUMPKERNEL) /* XXX */
#if defined(__HAVE_INTR_CONTROL)
static void
cpu_xc_intr(struct cpu_info *ci, void *unused)
{
@ -588,245 +536,6 @@ cpu_intr_count(struct cpu_info *ci)
}
#endif /* __HAVE_INTR_CONTROL */
bool
cpu_softintr_p(void)
{
return (curlwp->l_pflag & LP_INTR) != 0;
}
/*
* Collect CPU topology information as each CPU is attached. This can be
* called early during boot, so we need to be careful what we do.
*/
void
cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
u_int smt_id, u_int numa_id)
{
enum cpu_rel rel;
cpu_topology_present = true;
ci->ci_package_id = package_id;
ci->ci_core_id = core_id;
ci->ci_smt_id = smt_id;
ci->ci_numa_id = numa_id;
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
}
/*
* Link a CPU into the given circular list.
*/
static void
cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
{
struct cpu_info *ci3;
/* Walk to the end of the existing circular list and append. */
for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
ci3->ci_nsibling[rel]++;
if (ci3->ci_sibling[rel] == ci2) {
break;
}
}
ci->ci_sibling[rel] = ci2;
ci3->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
}
/*
* Print out the topology lists.
*/
static void
cpu_topology_dump(void)
{
#if DEBUG
CPU_INFO_ITERATOR cii;
struct cpu_info *ci, *ci2;
const char *names[] = { "core", "package", "peer", "smt" };
enum cpu_rel rel;
int i;
for (CPU_INFO_FOREACH(cii, ci)) {
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
printf("%s has %d %s siblings:", cpu_name(ci),
ci->ci_nsibling[rel], names[rel]);
ci2 = ci->ci_sibling[rel];
i = 0;
do {
printf(" %s", cpu_name(ci2));
ci2 = ci2->ci_sibling[rel];
} while (++i < 64 && ci2 != ci->ci_sibling[rel]);
if (i == 64) {
printf(" GAVE UP");
}
printf("\n");
}
}
#endif /* DEBUG */
}
/*
* Fake up topology info if we have none, or if what we got was bogus.
* Don't override ci_package_id, etc, if cpu_topology_present is set.
* MD code also uses these.
*/
static void
cpu_topology_fake(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
enum cpu_rel rel;
for (CPU_INFO_FOREACH(cii, ci)) {
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
if (!cpu_topology_present) {
ci->ci_package_id = cpu_index(ci);
}
ci->ci_smt_primary = ci;
ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
}
cpu_topology_dump();
}
/*
* Fix up basic CPU topology info. Right now that means attach each CPU to
* circular lists of its siblings in the same core, and in the same package.
*/
void
cpu_topology_init(void)
{
CPU_INFO_ITERATOR cii, cii2;
struct cpu_info *ci, *ci2, *ci3;
u_int ncore, npackage, npeer, minsmt;
bool symmetric;
if (!cpu_topology_present) {
cpu_topology_fake();
return;
}
/* Find siblings in same core and package. */
for (CPU_INFO_FOREACH(cii, ci)) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
/* Avoid bad things happening. */
if (ci2->ci_package_id == ci->ci_package_id &&
ci2->ci_core_id == ci->ci_core_id &&
ci2->ci_smt_id == ci->ci_smt_id &&
ci2 != ci) {
printf("cpu_topology_init: info bogus, "
"faking it\n");
cpu_topology_fake();
return;
}
if (ci2 == ci ||
ci2->ci_package_id != ci->ci_package_id) {
continue;
}
/* Find CPUs in the same core. */
if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
ci->ci_core_id == ci2->ci_core_id) {
cpu_topology_link(ci, ci2, CPUREL_CORE);
}
/* Find CPUs in the same package. */
if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
}
if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
break;
}
}
}
/* Find peers in other packages, and peer SMTs in same package. */
for (CPU_INFO_FOREACH(cii, ci)) {
if (ci->ci_nsibling[CPUREL_PEER] <= 1) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
if (ci != ci2 &&
ci->ci_package_id != ci2->ci_package_id &&
ci->ci_core_id == ci2->ci_core_id &&
ci->ci_smt_id == ci2->ci_smt_id) {
cpu_topology_link(ci, ci2,
CPUREL_PEER);
break;
}
}
}
if (ci->ci_nsibling[CPUREL_SMT] <= 1) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
if (ci != ci2 &&
ci->ci_package_id == ci2->ci_package_id &&
ci->ci_core_id != ci2->ci_core_id &&
ci->ci_smt_id == ci2->ci_smt_id) {
cpu_topology_link(ci, ci2,
CPUREL_SMT);
break;
}
}
}
}
/* Determine whether the topology is bogus/symmetric. */
npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE];
ncore = curcpu()->ci_nsibling[CPUREL_CORE];
npeer = curcpu()->ci_nsibling[CPUREL_PEER];
symmetric = true;
for (CPU_INFO_FOREACH(cii, ci)) {
if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] ||
ncore != ci->ci_nsibling[CPUREL_CORE] ||
npeer != ci->ci_nsibling[CPUREL_PEER]) {
symmetric = false;
}
}
cpu_topology_dump();
if (symmetric == false) {
printf("cpu_topology_init: not symmetric, faking it\n");
cpu_topology_fake();
return;
}
/* Identify SMT primary in each core. */
for (CPU_INFO_FOREACH(cii, ci)) {
ci2 = ci3 = ci;
minsmt = ci->ci_smt_id;
do {
if (ci2->ci_smt_id < minsmt) {
ci3 = ci2;
minsmt = ci2->ci_smt_id;
}
ci2 = ci2->ci_sibling[CPUREL_CORE];
} while (ci2 != ci);
/*
* Mark the SMT primary, and walk back over the list
* pointing secondaries to the primary.
*/
ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
ci2 = ci;
do {
ci2->ci_smt_primary = ci3;
ci2 = ci2->ci_sibling[CPUREL_CORE];
} while (ci2 != ci);
}
}
/*
* Print basic topology info.
*/
void
cpu_topology_print(struct cpu_info *ci)
{
aprint_normal_dev(ci->ci_dev, "numa %u, package %u, core %u, smt %u\n",
ci->ci_numa_id, ci->ci_package_id, ci->ci_core_id, ci->ci_smt_id);
}
#ifdef CPU_UCODE
int
cpu_ucode_load(struct cpu_ucode_softc *sc, const char *fwname)
@ -876,86 +585,3 @@ err0:
return error;
}
#endif
/*
* Adjust one count, for a counter that's NOT updated from interrupt
* context. Hardly worth making an inline due to preemption stuff.
*/
void
cpu_count(enum cpu_count idx, int64_t delta)
{
lwp_t *l = curlwp;
KPREEMPT_DISABLE(l);
l->l_cpu->ci_counts[idx] += delta;
KPREEMPT_ENABLE(l);
}
/*
* Fetch fresh sum total for all counts. Expensive - don't call often.
*/
void
cpu_count_sync_all(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int64_t sum[CPU_COUNT_MAX], *ptr;
enum cpu_count i;
int s;
KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
if (__predict_true(mp_online)) {
memset(sum, 0, sizeof(sum));
/*
* We want this to be reasonably quick, so any value we get
* isn't totally out of whack, so don't let the current LWP
* get preempted.
*/
s = splvm();
curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++;
for (CPU_INFO_FOREACH(cii, ci)) {
ptr = ci->ci_counts;
for (i = 0; i < CPU_COUNT_MAX; i += 8) {
sum[i+0] += ptr[i+0];
sum[i+1] += ptr[i+1];
sum[i+2] += ptr[i+2];
sum[i+3] += ptr[i+3];
sum[i+4] += ptr[i+4];
sum[i+5] += ptr[i+5];
sum[i+6] += ptr[i+6];
sum[i+7] += ptr[i+7];
}
KASSERT(i == CPU_COUNT_MAX);
}
memcpy(cpu_counts, sum, sizeof(cpu_counts));
splx(s);
} else {
memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
}
}
/*
* Fetch a fresh sum total for one single count. Expensive - don't call often.
*/
int64_t
cpu_count_sync(enum cpu_count count)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int64_t sum;
int s;
if (__predict_true(mp_online)) {
s = splvm();
curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++;
sum = 0;
for (CPU_INFO_FOREACH(cii, ci)) {
sum += ci->ci_counts[count];
}
splx(s);
} else {
/* XXX Early boot, iterator might not be available. */
sum = curcpu()->ci_counts[count];
}
return cpu_counts[count] = sum;
}

446
sys/kern/subr_cpu.c Normal file
View File

@ -0,0 +1,446 @@
/* $NetBSD: subr_cpu.c,v 1.1 2019/12/20 21:20:09 ad Exp $ */
/*-
* Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2007 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* CPU related routines shared with rump.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.1 2019/12/20 21:20:09 ad Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/conf.h>
#include <sys/cpu.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
kmutex_t cpu_lock __cacheline_aligned;
int ncpu __read_mostly;
int ncpuonline __read_mostly;
bool mp_online __read_mostly;
static bool cpu_topology_present __read_mostly;
int64_t cpu_counts[CPU_COUNT_MAX];
/* An array of CPUs. There are ncpu entries. */
struct cpu_info **cpu_infos __read_mostly;
/* Note: set on mi_cpu_attach() and idle_loop(). */
kcpuset_t * kcpuset_attached __read_mostly = NULL;
kcpuset_t * kcpuset_running __read_mostly = NULL;
int (*compat_cpuctl_ioctl)(struct lwp *, u_long, void *) = (void *)enosys;
static char cpu_model[128];
/*
* mi_cpu_init: early initialisation of MI CPU related structures.
*
* Note: may not block and memory allocator is not yet available.
*/
void
mi_cpu_init(void)
{
mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
kcpuset_create(&kcpuset_attached, true);
kcpuset_create(&kcpuset_running, true);
kcpuset_set(kcpuset_running, 0);
}
int
cpu_setmodel(const char *fmt, ...)
{
int len;
va_list ap;
va_start(ap, fmt);
len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
va_end(ap);
return len;
}
const char *
cpu_getmodel(void)
{
return cpu_model;
}
bool
cpu_softintr_p(void)
{
return (curlwp->l_pflag & LP_INTR) != 0;
}
/*
* Collect CPU topology information as each CPU is attached. This can be
* called early during boot, so we need to be careful what we do.
*/
void
cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
u_int smt_id, u_int numa_id)
{
enum cpu_rel rel;
cpu_topology_present = true;
ci->ci_package_id = package_id;
ci->ci_core_id = core_id;
ci->ci_smt_id = smt_id;
ci->ci_numa_id = numa_id;
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
}
/*
* Link a CPU into the given circular list.
*/
static void
cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
{
struct cpu_info *ci3;
/* Walk to the end of the existing circular list and append. */
for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
ci3->ci_nsibling[rel]++;
if (ci3->ci_sibling[rel] == ci2) {
break;
}
}
ci->ci_sibling[rel] = ci2;
ci3->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
}
/*
* Print out the topology lists.
*/
static void
cpu_topology_dump(void)
{
#if DEBUG
CPU_INFO_ITERATOR cii;
struct cpu_info *ci, *ci2;
const char *names[] = { "core", "package", "peer", "smt" };
enum cpu_rel rel;
int i;
for (CPU_INFO_FOREACH(cii, ci)) {
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
printf("%s has %d %s siblings:", cpu_name(ci),
ci->ci_nsibling[rel], names[rel]);
ci2 = ci->ci_sibling[rel];
i = 0;
do {
printf(" %s", cpu_name(ci2));
ci2 = ci2->ci_sibling[rel];
} while (++i < 64 && ci2 != ci->ci_sibling[rel]);
if (i == 64) {
printf(" GAVE UP");
}
printf("\n");
}
}
#endif /* DEBUG */
}
/*
* Fake up topology info if we have none, or if what we got was bogus.
* Don't override ci_package_id, etc, if cpu_topology_present is set.
* MD code also uses these.
*/
static void
cpu_topology_fake(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
enum cpu_rel rel;
for (CPU_INFO_FOREACH(cii, ci)) {
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
if (!cpu_topology_present) {
ci->ci_package_id = cpu_index(ci);
}
ci->ci_smt_primary = ci;
ci->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
}
cpu_topology_dump();
}
/*
* Fix up basic CPU topology info. Right now that means attach each CPU to
* circular lists of its siblings in the same core, and in the same package.
*/
void
cpu_topology_init(void)
{
CPU_INFO_ITERATOR cii, cii2;
struct cpu_info *ci, *ci2, *ci3;
u_int ncore, npackage, npeer, minsmt;
bool symmetric;
if (!cpu_topology_present) {
cpu_topology_fake();
return;
}
/* Find siblings in same core and package. */
for (CPU_INFO_FOREACH(cii, ci)) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
/* Avoid bad things happening. */
if (ci2->ci_package_id == ci->ci_package_id &&
ci2->ci_core_id == ci->ci_core_id &&
ci2->ci_smt_id == ci->ci_smt_id &&
ci2 != ci) {
printf("cpu_topology_init: info bogus, "
"faking it\n");
cpu_topology_fake();
return;
}
if (ci2 == ci ||
ci2->ci_package_id != ci->ci_package_id) {
continue;
}
/* Find CPUs in the same core. */
if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
ci->ci_core_id == ci2->ci_core_id) {
cpu_topology_link(ci, ci2, CPUREL_CORE);
}
/* Find CPUs in the same package. */
if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
}
if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
break;
}
}
}
/* Find peers in other packages, and peer SMTs in same package. */
for (CPU_INFO_FOREACH(cii, ci)) {
if (ci->ci_nsibling[CPUREL_PEER] <= 1) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
if (ci != ci2 &&
ci->ci_package_id != ci2->ci_package_id &&
ci->ci_core_id == ci2->ci_core_id &&
ci->ci_smt_id == ci2->ci_smt_id) {
cpu_topology_link(ci, ci2,
CPUREL_PEER);
break;
}
}
}
if (ci->ci_nsibling[CPUREL_SMT] <= 1) {
for (CPU_INFO_FOREACH(cii2, ci2)) {
if (ci != ci2 &&
ci->ci_package_id == ci2->ci_package_id &&
ci->ci_core_id != ci2->ci_core_id &&
ci->ci_smt_id == ci2->ci_smt_id) {
cpu_topology_link(ci, ci2,
CPUREL_SMT);
break;
}
}
}
}
/* Determine whether the topology is bogus/symmetric. */
npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE];
ncore = curcpu()->ci_nsibling[CPUREL_CORE];
npeer = curcpu()->ci_nsibling[CPUREL_PEER];
symmetric = true;
for (CPU_INFO_FOREACH(cii, ci)) {
if (npackage != ci->ci_nsibling[CPUREL_PACKAGE] ||
ncore != ci->ci_nsibling[CPUREL_CORE] ||
npeer != ci->ci_nsibling[CPUREL_PEER]) {
symmetric = false;
}
}
cpu_topology_dump();
if (symmetric == false) {
printf("cpu_topology_init: not symmetric, faking it\n");
cpu_topology_fake();
return;
}
/* Identify SMT primary in each core. */
for (CPU_INFO_FOREACH(cii, ci)) {
ci2 = ci3 = ci;
minsmt = ci->ci_smt_id;
do {
if (ci2->ci_smt_id < minsmt) {
ci3 = ci2;
minsmt = ci2->ci_smt_id;
}
ci2 = ci2->ci_sibling[CPUREL_CORE];
} while (ci2 != ci);
/*
* Mark the SMT primary, and walk back over the list
* pointing secondaries to the primary.
*/
ci3->ci_schedstate.spc_flags |= SPCF_SMTPRIMARY;
ci2 = ci;
do {
ci2->ci_smt_primary = ci3;
ci2 = ci2->ci_sibling[CPUREL_CORE];
} while (ci2 != ci);
}
}
/*
* Print basic topology info.
*/
void
cpu_topology_print(struct cpu_info *ci)
{
aprint_normal_dev(ci->ci_dev, "numa %u, package %u, core %u, smt %u\n",
ci->ci_numa_id, ci->ci_package_id, ci->ci_core_id, ci->ci_smt_id);
}
/*
* Adjust one count, for a counter that's NOT updated from interrupt
* context. Hardly worth making an inline due to preemption stuff.
*/
void
cpu_count(enum cpu_count idx, int64_t delta)
{
lwp_t *l = curlwp;
KPREEMPT_DISABLE(l);
l->l_cpu->ci_counts[idx] += delta;
KPREEMPT_ENABLE(l);
}
/*
* Fetch fresh sum total for all counts. Expensive - don't call often.
*/
void
cpu_count_sync_all(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int64_t sum[CPU_COUNT_MAX], *ptr;
enum cpu_count i;
int s;
KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
if (__predict_true(mp_online)) {
memset(sum, 0, sizeof(sum));
/*
* We want this to be reasonably quick, so any value we get
* isn't totally out of whack, so don't let the current LWP
* get preempted.
*/
s = splvm();
curcpu()->ci_counts[CPU_COUNT_SYNC_ALL]++;
for (CPU_INFO_FOREACH(cii, ci)) {
ptr = ci->ci_counts;
for (i = 0; i < CPU_COUNT_MAX; i += 8) {
sum[i+0] += ptr[i+0];
sum[i+1] += ptr[i+1];
sum[i+2] += ptr[i+2];
sum[i+3] += ptr[i+3];
sum[i+4] += ptr[i+4];
sum[i+5] += ptr[i+5];
sum[i+6] += ptr[i+6];
sum[i+7] += ptr[i+7];
}
KASSERT(i == CPU_COUNT_MAX);
}
memcpy(cpu_counts, sum, sizeof(cpu_counts));
splx(s);
} else {
memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
}
}
/*
* Fetch a fresh sum total for one single count. Expensive - don't call often.
*/
int64_t
cpu_count_sync(enum cpu_count count)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int64_t sum;
int s;
if (__predict_true(mp_online)) {
s = splvm();
curcpu()->ci_counts[CPU_COUNT_SYNC_ONE]++;
sum = 0;
for (CPU_INFO_FOREACH(cii, ci)) {
sum += ci->ci_counts[count];
}
splx(s);
} else {
/* XXX Early boot, iterator might not be available. */
sum = curcpu()->ci_counts[count];
}
return cpu_counts[count] = sum;
}

View File

@ -1,4 +1,4 @@
# $NetBSD: Makefile.rumpkern,v 1.180 2019/12/16 22:47:55 ad Exp $
# $NetBSD: Makefile.rumpkern,v 1.181 2019/12/20 21:20:09 ad Exp $
#
IOCONFDIR:= ${.PARSEDIR}
@ -69,7 +69,6 @@ SRCS+= init_sysctl_base.c \
kern_auth.c \
kern_cfglock.c \
kern_clock.c \
kern_cpu.c \
kern_descrip.c \
kern_event.c \
kern_hook.c \
@ -103,6 +102,7 @@ SRCS+= init_sysctl_base.c \
subr_callback.c \
subr_copy.c \
subr_cprng.c \
subr_cpu.c \
subr_device.c \
subr_devsw.c \
subr_evcnt.c \