Add softfloat and quad softfloat setup for sparc64 (thanks to Andrey Petrov

for most of this. I just integrated the build).

This adds proper functions for the _Qp* parts of the sparc64 ABI (which
handle quad softfloat). The routines work but need additional testing.
However if the compiler calls these currently bad things (core dumps)
will happen as gcc 2.95.3 generates bad calls for these.

Until that problem is fixed in the toolchain -msoft-quad-float cannot be
enabled as the default option for all builds (but the routines need to be
in libc as libgcc contains some references to these and anything including
it via --whole-archive will need the symbols to at least resolve).
This commit is contained in:
jmc 2002-02-05 07:53:05 +00:00
parent 90503a3cda
commit d9c86555ad
6 changed files with 1158 additions and 0 deletions

View File

@ -0,0 +1,48 @@
/* $NetBSD: milieu.h,v 1.1 2002/02/05 07:53:05 jmc Exp $ */
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Include common integer types and flags.
-------------------------------------------------------------------------------
*/
#include "sparc64-gcc.h"
/*
-------------------------------------------------------------------------------
Symbolic Boolean literals.
-------------------------------------------------------------------------------
*/
enum {
FALSE = 0,
TRUE = 1
};

View File

@ -0,0 +1,253 @@
/* $NetBSD: qp.c,v 1.1 2002/02/05 07:53:05 jmc Exp $ */
#include <sys/cdefs.h>
#include <memory.h>
#include "milieu.h"
#include "softfloat.h"
void _Qp_add(float128 *c, float128 *a, float128 *b);
void _Qp_add(float128 *c, float128 *a, float128 *b)
{
*c = float128_add(*a, *b);
}
int _Qp_cmp(float128 *a, float128 *b);
int _Qp_cmp(float128 *a, float128 *b)
{
if (float128_eq(*a, *b))
return 0;
if (float128_le(*a, *b))
return 1;
return 2;
}
/*
* XXX
*/
int _Qp_cmpe(float128 *a, float128 *b);
int _Qp_cmpe(float128 *a, float128 *b)
{
return _Qp_cmp(a, b);
}
void _Qp_div(float128 *c, float128 *a, float128 *b);
void _Qp_div(float128 *c, float128 *a, float128 *b)
{
*c = float128_div(*a, *b);
}
void _Qp_dtoq(float128 *c, float64 *a);
void _Qp_dtoq(float128 *c, float64 *a)
{
*c = float64_to_float128(*a);
}
int _Qp_feq(float128 *a, float128 *b);
int _Qp_feq(float128 *a, float128 *b)
{
return float128_eq(*a, *b);
}
int _Qp_fge(float128 *a, float128 *b);
int _Qp_fge(float128 *a, float128 *b)
{
return float128_le(*b, *a);
}
int _Qp_fgt(float128 *a, float128 *b);
int _Qp_fgt(float128 *a, float128 *b)
{
return float128_lt(*b, *a);
}
int _Qp_fle(float128 *a, float128 *b);
int _Qp_fle(float128 *a, float128 *b)
{
return float128_le(*a, *b);
}
int _Qp_flt(float128 *a, float128 *b);
int _Qp_flt(float128 *a, float128 *b)
{
return float128_lt(*a, *b);
}
int _Qp_fne(float128 *a, float128 *b);
int _Qp_fne(float128 *a, float128 *b)
{
return !float128_eq(*a, *b);
}
void _Qp_itoq(float128 *c, int a);
void _Qp_itoq(float128 *c, int a)
{
*c = int32_to_float128(a);
}
void _Qp_mul(float128 *c, float128 *a, float128 *b);
void _Qp_mul(float128 *c, float128 *a, float128 *b)
{
*c = float128_mul(*a, *b);
}
/*
* XXX easy way to do this, softfloat function
*/
void _Qp_neg(float128 *c, float128 *a);
static float128 __zero = {0x4034000000000000, 0x00000000};
void _Qp_neg(float128 *c, float128 *a)
{
*c = float128_sub(__zero, *a);
}
double _Qp_qtod(float128 *a);
double _Qp_qtod(float128 *a)
{
float64 _c;
double c;
_c = float128_to_float64(*a);
memcpy(&c, &_c, sizeof(double));
return c;
}
int _Qp_qtoi(float128 *a);
int _Qp_qtoi(float128 *a)
{
return float128_to_int32(*a);
}
float _Qp_qtos(float128 *a);
float _Qp_qtos(float128 *a)
{
float c;
float32 _c;
_c = float128_to_float32(*a);
memcpy(&c, &_c, sizeof(_c));
return c;
}
unsigned int _Qp_qtoui(float128 *a);
unsigned int _Qp_qtoui(float128 *a)
{
return (unsigned int)float128_to_int32(*a);
}
unsigned long _Qp_qtoux(float128 *a);
unsigned long _Qp_qtoux(float128 *a)
{
return (unsigned long)float128_to_int64(*a);
}
long _Qp_qtox(float128 *a);
long _Qp_qtox(float128 *a)
{
return (long)float128_to_int64(*a);
}
void _Qp_sqrt(float128 *c, float128 *a);
void _Qp_sqrt(float128 *c, float128 *a)
{
*c = float128_sqrt(*a);
}
void _Qp_stoq(float128 *c, float a);
void _Qp_stoq(float128 *c, float a)
{
float32 _a;
memcpy(&_a, &a, sizeof(a));
*c = float32_to_float128(_a);
}
void _Qp_sub(float128 *c, float128 *a, float128 *b);
void _Qp_sub(float128 *c, float128 *a, float128 *b)
{
*c = float128_sub(*a, *b);
}
void _Qp_uitoq(float128 *c, unsigned int a);
void _Qp_uitoq(float128 *c, unsigned int a)
{
*c = int32_to_float128(a);
}
void _Qp_uxtoq(float128 *c, unsigned long a);
void _Qp_uxtoq(float128 *c, unsigned long a)
{
*c = int64_to_float128(a);
}
void _Qp_xtoq(float128 *c, long a);
void _Qp_xtoq(float128 *c, long a)
{
*c = int64_to_float128(a);
}

View File

@ -0,0 +1,473 @@
/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Underflow tininess-detection mode, statically initialized to default value.
(The declaration in `softfloat.h' must match the `int8' type here.)
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC) || defined(SOFTQUADFLOAT_FOR_GCC)
static
#endif
int8 float_detect_tininess = float_tininess_after_rounding;
/*
-------------------------------------------------------------------------------
Raises the exceptions specified by `flags'. Floating-point traps can be
defined here if desired. It is currently not possible for such a trap to
substitute a result value. If traps are not implemented, this routine
should be simply `float_exception_flags |= flags;'.
-------------------------------------------------------------------------------
*/
void float_raise( int8 flags )
{
float_exception_flags |= flags;
}
/*
-------------------------------------------------------------------------------
Internal canonical NaN format.
-------------------------------------------------------------------------------
*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*
-------------------------------------------------------------------------------
The pattern for a default generated single-precision NaN.
-------------------------------------------------------------------------------
*/
#define float32_default_nan 0xFFFFFFFF
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC) || defined(SOFTQUADFLOAT_FOR_GCC)
static
#endif
flag float32_is_nan( float32 a )
{
return ( 0xFF000000 < (bits32) ( a<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float32_is_signaling_nan( float32 a )
{
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31;
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the single-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
}
/*
-------------------------------------------------------------------------------
Takes two single-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000;
b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
/*
-------------------------------------------------------------------------------
The pattern for a default generated double-precision NaN.
-------------------------------------------------------------------------------
*/
#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
#if defined(SOFTFLOAT_FOR_GCC) || defined(SOFTQUADFLOAT_FOR_GCC)
static
#endif
flag float64_is_nan( float64 a )
{
return ( LIT64( 0xFFE0000000000000 ) <
(bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float64_is_signaling_nan( float64 a )
{
return
( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
&& ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = FLOAT64_DEMANGLE(a)>>63;
z.low = 0;
z.high = FLOAT64_DEMANGLE(a)<<12;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the double-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float64 commonNaNToFloat64( commonNaNT a )
{
return FLOAT64_MANGLE(
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 ) );
}
/*
-------------------------------------------------------------------------------
Takes two double-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
The pattern for a default generated extended double-precision NaN. The
`high' and `low' values hold the most- and least-significant bits,
respectively.
-------------------------------------------------------------------------------
*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_nan( floatx80 a )
{
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
invalid exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15;
z.low = 0;
z.high = a.low<<1;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the extended
double-precision floating-point format.
-------------------------------------------------------------------------------
*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*
-------------------------------------------------------------------------------
Takes two extended double-precision floating-point values `a' and `b', one
of which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
The pattern for a default generated quadruple-precision NaN. The `high' and
`low' values hold the most- and least-significant bits, respectively.
-------------------------------------------------------------------------------
*/
#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_nan( float128 a )
{
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_signaling_nan( float128 a )
{
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the quadruple-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*
-------------------------------------------------------------------------------
Takes two quadruple-precision floating-point values `a' and `b', one of
which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsNaN ) {
return ( aIsSignalingNaN & bIsNaN ) ? b : a;
}
else {
return b;
}
}
#endif

View File

@ -0,0 +1 @@
#include <softfloat.c>

View File

@ -0,0 +1,294 @@
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
The macro `FLOATX80' must be defined to enable the extended double-precision
floating-point format `floatx80'. If this macro is not defined, the
`floatx80' type will not be defined, and none of the functions that either
input or output the `floatx80' type will be defined. The same applies to
the `FLOAT128' macro and the quadruple-precision format `float128'.
-------------------------------------------------------------------------------
*/
/* #define FLOATX80 */
#define FLOAT128
#include <machine/ieeefp.h>
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point types.
-------------------------------------------------------------------------------
*/
typedef unsigned int float32;
typedef unsigned long long float64;
#ifdef FLOATX80
typedef struct {
unsigned short high;
unsigned long long low;
} floatx80;
#endif
#ifdef FLOAT128
typedef struct {
unsigned long long high, low;
} float128;
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point underflow tininess-detection mode.
-------------------------------------------------------------------------------
*/
extern int8 float_detect_tininess;
enum {
float_tininess_after_rounding = 0,
float_tininess_before_rounding = 1
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point rounding mode.
-------------------------------------------------------------------------------
*/
extern int8 float_rounding_mode;
enum {
float_round_nearest_even = FP_RN,
float_round_to_zero = FP_RZ,
float_round_down = FP_RM,
float_round_up = FP_RP
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point exception flags.
-------------------------------------------------------------------------------
*/
extern int8 float_exception_flags;
enum {
float_flag_inexact = FP_X_IMP,
float_flag_underflow = FP_X_UFL,
float_flag_overflow = FP_X_OFL,
float_flag_divbyzero = FP_X_DZ,
float_flag_invalid = FP_X_INV
};
/*
-------------------------------------------------------------------------------
Routine to raise any or all of the software IEC/IEEE floating-point
exception flags.
-------------------------------------------------------------------------------
*/
void float_raise( int8 );
/*
-------------------------------------------------------------------------------
Software IEC/IEEE integer-to-floating-point conversion routines.
-------------------------------------------------------------------------------
*/
float32 int32_to_float32( int );
float64 int32_to_float64( int );
#ifdef FLOATX80
floatx80 int32_to_floatx80( int );
#endif
#ifdef FLOAT128
float128 int32_to_float128( int );
#endif
float32 int64_to_float32( long long );
float64 int64_to_float64( long long );
#ifdef FLOATX80
floatx80 int64_to_floatx80( long long );
#endif
#ifdef FLOAT128
float128 int64_to_float128( long long );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float32_to_int32( float32 );
int float32_to_int32_round_to_zero( float32 );
unsigned int float32_to_uint32_round_to_zero( float32 );
long long float32_to_int64( float32 );
long long float32_to_int64_round_to_zero( float32 );
float64 float32_to_float64( float32 );
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 );
#endif
#ifdef FLOAT128
float128 float32_to_float128( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision operations.
-------------------------------------------------------------------------------
*/
float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 );
float32 float32_mul( float32, float32 );
float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 );
flag float32_eq( float32, float32 );
flag float32_le( float32, float32 );
flag float32_lt( float32, float32 );
flag float32_eq_signaling( float32, float32 );
flag float32_le_quiet( float32, float32 );
flag float32_lt_quiet( float32, float32 );
flag float32_is_signaling_nan( float32 );
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float64_to_int32( float64 );
int float64_to_int32_round_to_zero( float64 );
unsigned int float64_to_uint32_round_to_zero( float64 );
long long float64_to_int64( float64 );
long long float64_to_int64_round_to_zero( float64 );
float32 float64_to_float32( float64 );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 );
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision operations.
-------------------------------------------------------------------------------
*/
float64 float64_round_to_int( float64 );
float64 float64_add( float64, float64 );
float64 float64_sub( float64, float64 );
float64 float64_mul( float64, float64 );
float64 float64_div( float64, float64 );
float64 float64_rem( float64, float64 );
float64 float64_sqrt( float64 );
flag float64_eq( float64, float64 );
flag float64_le( float64, float64 );
flag float64_lt( float64, float64 );
flag float64_eq_signaling( float64, float64 );
flag float64_le_quiet( float64, float64 );
flag float64_lt_quiet( float64, float64 );
flag float64_is_signaling_nan( float64 );
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int floatx80_to_int32( floatx80 );
int floatx80_to_int32_round_to_zero( floatx80 );
long long floatx80_to_int64( floatx80 );
long long floatx80_to_int64_round_to_zero( floatx80 );
float32 floatx80_to_float32( floatx80 );
float64 floatx80_to_float64( floatx80 );
#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision rounding precision. Valid
values are 32, 64, and 80.
-------------------------------------------------------------------------------
*/
extern int floatx80_rounding_precision;
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision operations.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 );
floatx80 floatx80_mul( floatx80, floatx80 );
floatx80 floatx80_div( floatx80, floatx80 );
floatx80 floatx80_rem( floatx80, floatx80 );
floatx80 floatx80_sqrt( floatx80 );
flag floatx80_eq( floatx80, floatx80 );
flag floatx80_le( floatx80, floatx80 );
flag floatx80_lt( floatx80, floatx80 );
flag floatx80_eq_signaling( floatx80, floatx80 );
flag floatx80_le_quiet( floatx80, floatx80 );
flag floatx80_lt_quiet( floatx80, floatx80 );
flag floatx80_is_signaling_nan( floatx80 );
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float128_to_int32( float128 );
int float128_to_int32_round_to_zero( float128 );
long long float128_to_int64( float128 );
long long float128_to_int64_round_to_zero( float128 );
float32 float128_to_float32( float128 );
float64 float128_to_float64( float128 );
#ifdef FLOATX80
floatx80 float128_to_floatx80( float128 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision operations.
-------------------------------------------------------------------------------
*/
float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 );
float128 float128_mul( float128, float128 );
float128 float128_div( float128, float128 );
float128 float128_rem( float128, float128 );
float128 float128_sqrt( float128 );
flag float128_eq( float128, float128 );
flag float128_le( float128, float128 );
flag float128_lt( float128, float128 );
flag float128_eq_signaling( float128, float128 );
flag float128_le_quiet( float128, float128 );
flag float128_lt_quiet( float128, float128 );
flag float128_is_signaling_nan( float128 );
flag float128_is_nan( float128 );
#endif

View File

@ -0,0 +1,89 @@
/* $NetBSD: sparc64-gcc.h,v 1.1 2002/02/05 07:53:07 jmc Exp $ */
/*
-------------------------------------------------------------------------------
One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
-------------------------------------------------------------------------------
*/
#include <machine/endian.h>
#if _BYTE_ORDER == _BIG_ENDIAN
#define BIGENDIAN
#endif
#if _BYTE_ORDER == _LITTLE_ENDIAN
#define LITTLEENDIAN
#endif
/*
-------------------------------------------------------------------------------
The macro `BITS64' can be defined to indicate that 64-bit integer types are
supported by the compiler.
-------------------------------------------------------------------------------
*/
#define BITS64
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines the most convenient type that holds
integers of at least as many bits as specified. For example, `uint8' should
be the most convenient type that can hold unsigned integers of as many as
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
to the same as `int'.
-------------------------------------------------------------------------------
*/
typedef int flag;
typedef int uint8;
typedef int int8;
typedef int uint16;
typedef int int16;
typedef unsigned int uint32;
typedef signed int int32;
#ifdef BITS64
typedef unsigned long long int uint64;
typedef signed long long int int64;
#endif
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines a type that holds integers
of _exactly_ the number of bits specified. For instance, for most
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
`unsigned short int' and `signed short int' (or `short int'), respectively.
-------------------------------------------------------------------------------
*/
typedef unsigned char bits8;
typedef signed char sbits8;
typedef unsigned short int bits16;
typedef signed short int sbits16;
typedef unsigned int bits32;
typedef signed int sbits32;
#ifdef BITS64
typedef unsigned long long int bits64;
typedef signed long long int sbits64;
#endif
#ifdef BITS64
/*
-------------------------------------------------------------------------------
The `LIT64' macro takes as its argument a textual integer literal and
if necessary ``marks'' the literal as having a 64-bit integer type.
For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
appended with the letters `LL' standing for `long long', which is `gcc's
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
defined as the identity macro: `#define LIT64( a ) a'.
-------------------------------------------------------------------------------
*/
#define LIT64( a ) a##LL
#endif
/*
-------------------------------------------------------------------------------
The macro `INLINE' can be used before functions that should be inlined. If
a compiler does not support explicit inlining, this macro should be defined
to be `static'.
-------------------------------------------------------------------------------
*/
#define INLINE static __inline
#define FLOAT64_DEMANGLE(a) (a)
#define FLOAT64_MANGLE(a) (a)