Call arm32_*_init() and initarm_common().

OVERO work fine.  GUMSTIX build only now.
This commit is contained in:
kiyohara 2014-05-23 13:56:18 +00:00
parent bc43ee9904
commit b2818818a0
5 changed files with 61 additions and 520 deletions

View File

@ -1,5 +1,5 @@
#
# $NetBSD: OVERO,v 1.34 2014/04/05 23:45:11 khorben Exp $
# $NetBSD: OVERO,v 1.35 2014/05/23 13:56:18 kiyohara Exp $
#
# OVERO -- Gumstix. Inc. Overo COMS platforms kernel
#
@ -16,7 +16,10 @@ maxusers 32
options CPU_CORTEXA8
options OMAP_3530
options FPU_VFP
options PMAPCOUNTERS
options ARM_HAS_VBAR
options __HAVE_MM_MD_DIRECT_MAPPED_PHYS
makeoptions CPUFLAGS="-mcpu=cortex-a8 -mfpu=neon"
# Architecture options

View File

@ -1,8 +1,12 @@
# $NetBSD: files.gumstix,v 1.17 2010/09/23 07:08:57 kiyohara Exp $
# $NetBSD: files.gumstix,v 1.18 2014/05/23 13:56:18 kiyohara Exp $
#
# Gumstix. Inc. Gumstix boards configuration info
#
file arch/arm/arm32/arm32_boot.c
file arch/arm/arm32/arm32_kvminit.c
file arch/arm/arm32/arm32_reboot.c
file arch/evbarm/gumstix/gumstix_machdep.c
defflag opt_gumstix.h GUMSTIX
GUMSTIX_NETBSD_ARGS_BUSHEADER

View File

@ -1,8 +1,12 @@
# $NetBSD: files.overo,v 1.4 2011/03/06 02:22:27 jakllsch Exp $
# $NetBSD: files.overo,v 1.5 2014/05/23 13:56:18 kiyohara Exp $
#
# Gumstix. Inc. Overo boards configuration info
#
file arch/arm/arm32/arm32_boot.c
file arch/arm/arm32/arm32_kvminit.c
file arch/arm/arm32/arm32_reboot.c
file arch/evbarm/gumstix/gumstix_machdep.c
defflag opt_gumstix.h OVERO
GUMSTIX_NETBSD_ARGS_EXPANSION

View File

@ -1,4 +1,4 @@
/* $NetBSD: gumstix_machdep.c,v 1.48 2013/09/26 16:14:34 kiyohara Exp $ */
/* $NetBSD: gumstix_machdep.c,v 1.49 2014/05/23 13:56:18 kiyohara Exp $ */
/*
* Copyright (C) 2005, 2006, 2007 WIDE Project and SOUM Corporation.
* All rights reserved.
@ -144,11 +144,8 @@
#include "opt_omap.h"
#include "prcm.h"
#endif
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_pmap_debug.h"
#include "opt_md.h"
#include "opt_modular.h"
#include "opt_com.h"
#include <sys/param.h>
@ -156,8 +153,6 @@
#include <sys/device.h>
#include <sys/exec.h>
#include <sys/kernel.h>
#include <sys/ksyms.h>
#include <sys/msgbuf.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/systm.h>
@ -165,11 +160,11 @@
#include <sys/bus.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <machine/autoconf.h>
#include <machine/bootconfig.h>
#include <machine/db_machdep.h>
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#ifdef OVERO
@ -185,28 +180,20 @@
#include <evbarm/gumstix/gumstixreg.h>
#include <evbarm/gumstix/gumstixvar.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#ifndef KERNEL_VM_BASE
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
#endif
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* The range 0xc1000000 - 0xcfffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
#ifndef KERNEL_VM_BASE
#define KERNEL_VM_BASE 0xc1000000
#endif
#define KERNEL_VM_SIZE 0x0f000000
BootConfig bootconfig; /* Boot config storage */
static char bootargs[MAX_BOOT_STRING];
@ -216,39 +203,11 @@ char *boot_args = NULL;
uint32_t system_serial_high;
uint32_t system_serial_low;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
pv_addr_t minidataclean;
vm_offset_t msgbufphys;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM ((KERNEL_VM_BASE - KERNEL_BASE) >> 22)
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
/* Prototypes */
#if defined(GUMSTIX)
static void read_system_serial(void);
#elif defined(OVERO)
static void overo_reset(void);
static void find_cpu_clock(void);
#endif
static void process_kernel_args(int, char *[]);
@ -287,77 +246,6 @@ static char console[16];
extern void gxio_config_pin(void);
extern void gxio_config_expansion(char *);
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
#if defined(OMAP_3530) && NPRCM > 0
prcm_cold_reset();
#endif
cpu_reset();
/*NOTREACHED*/
}
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
#if defined(OMAP_3530) && NPRCM > 0
prcm_cold_reset();
#endif
cpu_reset();
/*NOTREACHED*/
}
static inline pd_entry_t *
read_ttb(void)
@ -484,20 +372,10 @@ static const struct pmap_devmap gumstix_devmap[] = {
u_int
initarm(void *arg)
{
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
#ifdef DIAGNOSTIC
extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */
#endif
extern vaddr_t xscale_cache_clean_addr;
#endif
extern char KERNEL_BASE_phys[];
extern uint32_t *u_boot_args[];
extern uint32_t ram_size;
enum { r0 = 0, r1 = 1, r2 = 2, r3 = 3 }; /* args from u-boot */
int loop;
int loop1;
u_int l1pagetable;
paddr_t memstart;
psize_t memsize;
/*
* We mapped PA == VA in gumstix_start.S.
@ -514,11 +392,15 @@ initarm(void *arg)
* Overo:
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x80000000 - 0x8fffffff SDRAM Bank 0 (256MB, 512MB or 1024MB)
* 0x80000000 - 0x8fffffff SDRAM Bank 0 (256MB or 512MB)
* 0x80000000 - 0x83ffffff KERNEL_BASE
*/
#if defined(OVERO)
#if defined(GUMSTIX)
cpu_reset_address = NULL;
#elif defined(OVERO)
cpu_reset_address = overo_reset;
find_cpu_clock(); // find our CPU speed.
#endif
@ -592,9 +474,6 @@ initarm(void *arg)
read_system_serial();
#endif
memstart = SDRAM_START;
memsize = ram_size;
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
@ -602,392 +481,24 @@ initarm(void *arg)
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
bootconfig.dram[0].address = SDRAM_START;
bootconfig.dram[0].pages = ram_size / PAGE_SIZE;
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the L1 table that we set up, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + memsize;
KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE);
#if defined(GUMSTIX)
physical_freestart = 0xa0009000UL;
physical_freeend = 0xa0200000UL;
#elif defined(OVERO)
physical_freestart = 0x80009000UL;
physical_freeend = 0x80200000UL;
#endif
physmem = (physical_end - physical_start) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K bounaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freeend & (L1_TABLE_SIZE - 1)) == 0 &&
kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
#if defined(CPU_CORTEXA8)
systempage.pv_va = ARM_VECTORS_HIGH;
#endif
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
arm32_bootmem_init(bootconfig.dram[0].address, ram_size,
(uintptr_t) KERNEL_BASE_phys);
arm32_kernel_vm_init(KERNEL_VM_BASE,
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
#endif
valloc_pages(minidataclean, 1);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
/*
* XXX Defer this to later so that we can reclaim the memory
* XXX used by the RedBoot page tables.
*/
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
ARM_VECTORS_LOW,
#elif defined(CPU_CORTEXA8)
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
ARM_VECTORS_HIGH,
#endif
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
0, gumstix_devmap, true);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the Mini-Data cache clean area. */
#if defined(GUMSTIX)
xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
minidataclean.pv_pa);
#endif
/* Map the vector page. */
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
#if 1
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif
#elif defined(CPU_CORTEXA8)
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, gumstix_devmap);
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
#endif
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
cpu_setttb(kernel_l1pt.pv_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
#if defined(CPU_XSCALE_PXA250) || defined(CPU_XSCALE_PXA270)
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
#elif defined(CPU_CORTEXA8)
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
#endif
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
#ifdef __HAVE_MEMORY_DISK__
md_root_setconf(memory_disk, sizeof memory_disk);
#endif
#ifdef BOOTHOWTO
boothowto |= BOOTHOWTO;
#endif
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#if NKSYMS || defined(DDB) || defined(MODULAR)
/* Firmware doesn't load symbols. */
ddb_init(0, NULL, NULL);
#endif
#ifdef DDB
db_machine_init();
if (boothowto & RB_KDB)
Debugger();
#endif
/* We have our own device_register() */
evbarm_device_register = gumstix_device_register;
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0);
}
#if defined(GUMSTIX)
@ -1034,7 +545,18 @@ read_system_serial(void)
printf("%02x", system_serial[i]);
printf("\n");
}
#elif defined(OVERO)
static void
overo_reset(void)
{
#if NPRCM > 0
prcm_cold_reset();
#endif
}
static void
find_cpu_clock(void)
{

View File

@ -1,4 +1,4 @@
/* $NetBSD: gumstix_start.S,v 1.12 2013/08/18 15:58:20 matt Exp $ */
/* $NetBSD: gumstix_start.S,v 1.13 2014/05/23 13:56:18 kiyohara Exp $ */
/*
* Copyright (C) 2005, 2006 WIDE Project and SOUM Corporation.
* All rights reserved.
@ -66,7 +66,7 @@
#include <arm/armreg.h>
#include "assym.h"
RCSID("$NetBSD: gumstix_start.S,v 1.12 2013/08/18 15:58:20 matt Exp $")
RCSID("$NetBSD: gumstix_start.S,v 1.13 2014/05/23 13:56:18 kiyohara Exp $")
/*
* CPWAIT -- Canonical method to wait for CP15 update.
@ -182,6 +182,14 @@ _C_LABEL(gumstix_start):
mcr p15, 0, r0, c2, c0, 0 /* Set TTB */
mcr p15, 0, r0, c8, c7, 0 /* Flush TLB */
#if defined(CPU_CORTEXA8)
mcr p15, 0, r0, c2, c0, 1 /* Set TTB1 */
mov r0, #TTBCR_S_N_1
mcr p15, 0, r0, c2, c0, 2 /* Set TTBCR */
mov r0, #0
mcr p15, 0, r0, c8, c7, 0 /* Flush TLB */
#endif
/*
* Set the Domain Access register. Very important!
* startup_pagetable puts to domain 0 now.