From Toru Nishimura: _FORKBRAINDAMAGE is gone, user process entered through
proc_trampoline(). More merged MIPS1/MIPS3 support.
This commit is contained in:
parent
f42f8eb4e6
commit
ab0eff4a87
|
@ -1,4 +1,4 @@
|
|||
/* $NetBSD: vm_machdep.c,v 1.15 1997/05/25 10:16:17 jonathan Exp $ */
|
||||
/* $NetBSD: vm_machdep.c,v 1.16 1997/06/15 18:21:17 mhitch Exp $ */
|
||||
|
||||
/*
|
||||
* Copyright (c) 1988 University of Utah.
|
||||
|
@ -52,87 +52,68 @@
|
|||
#include <sys/core.h>
|
||||
#include <sys/exec.h>
|
||||
|
||||
#include <machine/locore.h>
|
||||
#include <machine/pte.h>
|
||||
#include <machine/cpu.h>
|
||||
|
||||
#include <vm/vm.h>
|
||||
#include <vm/vm_kern.h>
|
||||
#include <vm/vm_page.h>
|
||||
|
||||
#include <machine/pte.h>
|
||||
#include <machine/vmparam.h>
|
||||
#include <machine/locore.h>
|
||||
#include <machine/machConst.h>
|
||||
extern struct proc *fpcurproc; /* trap.c */
|
||||
|
||||
#include <machine/locore.h>
|
||||
|
||||
extern int copykstack __P((struct user *up));
|
||||
extern void MachSaveCurFPState __P((struct proc *p));
|
||||
extern int switch_exit __P((void)); /* XXX never returns? */
|
||||
extern void savefpregs __P((struct proc *));
|
||||
extern void switch_exit __P((struct proc *));
|
||||
#ifdef MIPS3
|
||||
extern void mips3_HitFlushDCache __P((vm_offset_t, int));
|
||||
extern void MachHitFlushDCache __P((caddr_t, int));
|
||||
#endif
|
||||
|
||||
extern vm_offset_t kvtophys __P((vm_offset_t kva)); /* XXX */
|
||||
|
||||
/*
|
||||
* Finish a fork operation, with process p2 nearly set up.
|
||||
* Copy and update the kernel stack and pcb, making the child
|
||||
* ready to run, and marking it so that it can return differently
|
||||
* than the parent. Returns 1 in the child process, 0 in the parent.
|
||||
* We currently double-map the user area so that the stack is at the same
|
||||
* address in each process; in the future we will probably relocate
|
||||
* the frame pointers on the stack after copying.
|
||||
* cpu_fork() now returns just once.
|
||||
*/
|
||||
int
|
||||
void
|
||||
cpu_fork(p1, p2)
|
||||
register struct proc *p1, *p2;
|
||||
struct proc *p1, *p2;
|
||||
{
|
||||
register struct user *up = p2->p_addr;
|
||||
register pt_entry_t *pte;
|
||||
register int i;
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
struct pcb *pcb;
|
||||
pt_entry_t *pte;
|
||||
struct frame *tf;
|
||||
int i;
|
||||
extern void child_return __P((void)); /* trap.c */
|
||||
|
||||
p2->p_md.md_regs = up->u_pcb.pcb_regs;
|
||||
tf = (struct frame *)(KERNELSTACK - 24);
|
||||
p2->p_md.md_regs = p2->p_addr->u_pcb.pcb_regs;
|
||||
p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED;
|
||||
|
||||
/*
|
||||
* Cache the PTEs for the user area in the machine dependent
|
||||
* part of the proc struct so cpu_switch() can quickly map in
|
||||
* the user struct and kernel stack. Note: if the virtual address
|
||||
* translation changes (e.g. swapout) we have to update this.
|
||||
*/
|
||||
pte = kvtopte(up);
|
||||
for (i = 0; i < UPAGES; i++) {
|
||||
p2->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
|
||||
pte++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy floating point state from the FP chip if this process
|
||||
* has state stored there.
|
||||
*/
|
||||
if (p1 == machFPCurProcPtr)
|
||||
MachSaveCurFPState(p1);
|
||||
|
||||
/*
|
||||
* Copy pcb and stack from proc p1 to p2.
|
||||
* We do this as cheaply as possible, copying only the active
|
||||
* part of the stack. The stack and pcb need to agree;
|
||||
*/
|
||||
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
|
||||
/* cache segtab for ULTBMiss() */
|
||||
p2->p_addr->u_pcb.pcb_segtab = (void *)p2->p_vmspace->vm_map.pmap->pm_segtab;
|
||||
|
||||
/*
|
||||
* Arrange for a non-local goto when the new process
|
||||
* is started, to resume here, returning nonzero from setjmp.
|
||||
*/
|
||||
#ifdef DIAGNOSTIC
|
||||
if (p1 != curproc)
|
||||
panic("cpu_fork: curproc");
|
||||
#ifdef MIPS3
|
||||
mips3_HitFlushDCache((vm_offset_t)p2->p_addr, UPAGES * NBPG);
|
||||
#endif
|
||||
if (copykstack(up)) {
|
||||
/*
|
||||
* Return 1 in child.
|
||||
*/
|
||||
return (1);
|
||||
}
|
||||
return (0);
|
||||
for (i = 0, pte = kvtopte(p2->p_addr); i < UPAGES; i++, pte++)
|
||||
#ifdef MIPS3
|
||||
p2->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
|
||||
#else
|
||||
p2->p_md.md_upte[i] = pte->pt_entry &~ PG_G;
|
||||
#endif
|
||||
|
||||
pcb = &p2->p_addr->u_pcb;
|
||||
if (p1 == fpcurproc)
|
||||
savefpregs(p1);
|
||||
*pcb = p1->p_addr->u_pcb;
|
||||
pcb->pcb_segtab = (void *)p2->p_vmspace->vm_map.pmap->pm_segtab;
|
||||
pcb->pcb_context[10] = (int)proc_trampoline; /* RA */
|
||||
pcb->pcb_context[8] = (int)tf; /* SP */
|
||||
pcb->pcb_context[0] = (int)child_return; /* S0 */
|
||||
pcb->pcb_context[1] = (int)p2; /* S1 */
|
||||
}
|
||||
|
||||
void
|
||||
cpu_set_kpc(p, pc)
|
||||
struct proc *p;
|
||||
void (*pc) __P((struct proc *));
|
||||
{
|
||||
p->p_addr->u_pcb.pcb_context[0] = (int)pc; /* S0 */
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -155,32 +136,34 @@ cpu_swapin(p)
|
|||
*/
|
||||
pte = kvtopte(up);
|
||||
for (i = 0; i < UPAGES; i++) {
|
||||
#ifdef MIPS3
|
||||
p->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
|
||||
#else
|
||||
p->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
|
||||
#endif
|
||||
pte++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* cpu_exit is called as the last action during exit.
|
||||
* We release the address space and machine-dependent resources,
|
||||
* including the memory for the user structure and kernel stack.
|
||||
* Once finished, we call switch_exit, which switches to a temporary
|
||||
* pcb and stack and never returns. We block memory allocation
|
||||
* until switch_exit has made things safe again.
|
||||
* We release the address space of the process, block interrupts,
|
||||
* and call switch_exit. switch_exit switches to nullproc's PCB and stack,
|
||||
* then jumps into the middle of cpu_switch, as if it were switching
|
||||
* from nullproc.
|
||||
*/
|
||||
void cpu_exit(p)
|
||||
void
|
||||
cpu_exit(p)
|
||||
struct proc *p;
|
||||
{
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
|
||||
if (machFPCurProcPtr == p)
|
||||
machFPCurProcPtr = (struct proc *)0;
|
||||
if (fpcurproc == p)
|
||||
fpcurproc = (struct proc *)0;
|
||||
|
||||
vmspace_free(p->p_vmspace);
|
||||
|
||||
(void) splhigh();
|
||||
kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
|
||||
switch_exit();
|
||||
cnt.v_swtch++;
|
||||
(void)splhigh();
|
||||
switch_exit(p);
|
||||
/* NOTREACHED */
|
||||
}
|
||||
|
||||
|
@ -195,26 +178,29 @@ cpu_coredump(p, vp, cred, chdr)
|
|||
struct core *chdr;
|
||||
{
|
||||
int error;
|
||||
/*register struct user *up = p->p_addr;*/
|
||||
struct coreseg cseg;
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
struct cpustate {
|
||||
struct frame frame;
|
||||
struct fpreg fpregs;
|
||||
} cpustate;
|
||||
|
||||
CORE_SETMAGIC(*chdr, COREMAGIC, MID_MIPS, 0);
|
||||
chdr->c_hdrsize = ALIGN(sizeof(*chdr));
|
||||
chdr->c_seghdrsize = ALIGN(sizeof(cseg));
|
||||
chdr->c_cpusize = sizeof (p -> p_addr -> u_pcb.pcb_regs);
|
||||
chdr->c_hdrsize = ALIGN(sizeof(struct core));
|
||||
chdr->c_seghdrsize = ALIGN(sizeof(struct coreseg));
|
||||
chdr->c_cpusize = sizeof(struct cpustate);
|
||||
|
||||
/*
|
||||
* Copy floating point state from the FP chip if this process
|
||||
* has state stored there.
|
||||
*/
|
||||
if (p == machFPCurProcPtr)
|
||||
MachSaveCurFPState(p);
|
||||
cpustate.frame = *(struct frame *)p->p_md.md_regs;
|
||||
if (p->p_md.md_flags & MDP_FPUSED) {
|
||||
if (p == fpcurproc)
|
||||
savefpregs(p);
|
||||
cpustate.fpregs = p->p_addr->u_pcb.pcb_fpregs;
|
||||
}
|
||||
else
|
||||
bzero((caddr_t)&cpustate.fpregs, sizeof(struct fpreg));
|
||||
|
||||
CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MIPS, CORE_CPU);
|
||||
cseg.c_addr = 0;
|
||||
cseg.c_size = chdr->c_cpusize;
|
||||
|
||||
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
|
||||
(off_t)chdr->c_hdrsize, UIO_SYSSPACE,
|
||||
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
|
||||
|
@ -241,24 +227,32 @@ cpu_coredump(p, vp, cred, chdr)
|
|||
*/
|
||||
void
|
||||
pagemove(from, to, size)
|
||||
register caddr_t from, to;
|
||||
caddr_t from, to;
|
||||
size_t size;
|
||||
{
|
||||
register pt_entry_t *fpte, *tpte;
|
||||
pt_entry_t *fpte, *tpte;
|
||||
|
||||
if (size % CLBYTES)
|
||||
panic("pagemove");
|
||||
fpte = kvtopte(from);
|
||||
tpte = kvtopte(to);
|
||||
#ifdef MIPS3
|
||||
if(((int)from & machCacheAliasMask) != ((int)to & machCacheAliasMask)) {
|
||||
MachHitFlushDCache(from, size);
|
||||
}
|
||||
#endif
|
||||
while (size > 0) {
|
||||
MachTLBFlushAddr((vm_offset_t)from);
|
||||
MachTLBUpdate( (u_int)to,
|
||||
(u_int) (*fpte).pt_entry); /* XXX casts? */
|
||||
*tpte++ = *fpte;
|
||||
fpte->pt_entry = 0;
|
||||
fpte++;
|
||||
size -= NBPG;
|
||||
from += NBPG;
|
||||
MachTLBUpdate((vm_offset_t)to, fpte->pt_entry);
|
||||
*tpte = *fpte;
|
||||
#ifdef MIPS3
|
||||
fpte->pt_entry = PG_NV | PG_G;
|
||||
#else
|
||||
fpte->pt_entry = PG_NV;
|
||||
#endif
|
||||
fpte++; tpte++;
|
||||
size -= PAGE_SIZE;
|
||||
from += PAGE_SIZE;
|
||||
to += NBPG;
|
||||
}
|
||||
}
|
||||
|
@ -266,62 +260,52 @@ pagemove(from, to, size)
|
|||
extern vm_map_t phys_map;
|
||||
|
||||
/*
|
||||
* Map an IO request into kernel virtual address space. Requests fall into
|
||||
* one of five catagories:
|
||||
* Map an IO request into kernel virtual address space.
|
||||
*
|
||||
* B_PHYS|B_UAREA: User u-area swap.
|
||||
* Address is relative to start of u-area (p_addr).
|
||||
* B_PHYS|B_PAGET: User page table swap.
|
||||
* Address is a kernel VA in usrpt (Usrptmap).
|
||||
* B_PHYS|B_DIRTY: Dirty page push.
|
||||
* Address is a VA in proc2's address space.
|
||||
* B_PHYS|B_PGIN: Kernel pagein of user pages.
|
||||
* Address is VA in user's address space.
|
||||
* B_PHYS: User "raw" IO request.
|
||||
* Address is VA in user's address space.
|
||||
*
|
||||
* All requests are (re)mapped into kernel VA space via the phys_map
|
||||
* Called by physio() in kern/kern_physio.c for raw device I/O
|
||||
* between user address and device driver bypassing filesystem cache.
|
||||
*/
|
||||
/*ARGSUSED*/
|
||||
void
|
||||
vmapbuf(bp, len)
|
||||
register struct buf *bp;
|
||||
struct buf *bp;
|
||||
vm_size_t len;
|
||||
{
|
||||
register vm_offset_t faddr, taddr, off, pa;
|
||||
struct proc *p;
|
||||
vm_offset_t faddr, taddr, off;
|
||||
pt_entry_t *fpte, *tpte;
|
||||
pt_entry_t *pmap_pte __P((pmap_t, vm_offset_t));
|
||||
|
||||
if ((bp->b_flags & B_PHYS) == 0)
|
||||
panic("vmapbuf");
|
||||
p = bp->b_proc;
|
||||
faddr = trunc_page(bp->b_saveaddr = bp->b_data);
|
||||
off = (vm_offset_t)bp->b_data - faddr;
|
||||
len = round_page(off + len);
|
||||
taddr = kmem_alloc_wait(phys_map, len);
|
||||
bp->b_data = (caddr_t) (taddr + off);
|
||||
len = atop(len);
|
||||
while (len--) {
|
||||
pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map), faddr);
|
||||
if (pa == 0)
|
||||
panic("vmapbuf: null page frame");
|
||||
pmap_enter(vm_map_pmap(phys_map), taddr, trunc_page(pa),
|
||||
VM_PROT_READ|VM_PROT_WRITE, TRUE);
|
||||
faddr += PAGE_SIZE;
|
||||
taddr += PAGE_SIZE;
|
||||
}
|
||||
bp->b_data = (caddr_t)(taddr + off);
|
||||
/*
|
||||
* The region is locked, so we expect that pmap_pte() will return
|
||||
* non-NULL.
|
||||
*/
|
||||
fpte = pmap_pte(vm_map_pmap(&bp->b_proc->p_vmspace->vm_map), faddr);
|
||||
tpte = pmap_pte(vm_map_pmap(phys_map), taddr);
|
||||
do {
|
||||
/* XXX should mark them PG_WIRED? */
|
||||
tpte->pt_entry = fpte->pt_entry | PG_V | PG_G | PG_M;
|
||||
MachTLBUpdate(taddr, tpte->pt_entry);
|
||||
tpte++, fpte++, taddr += PAGE_SIZE;
|
||||
len -= PAGE_SIZE;
|
||||
} while (len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the io map PTEs associated with this IO operation.
|
||||
* We also invalidate the TLB entries and restore the original b_addr.
|
||||
*/
|
||||
/*ARGSUSED*/
|
||||
void
|
||||
vunmapbuf(bp, len)
|
||||
register struct buf *bp;
|
||||
struct buf *bp;
|
||||
vm_size_t len;
|
||||
{
|
||||
register vm_offset_t addr, off;
|
||||
vm_offset_t addr, off;
|
||||
|
||||
if ((bp->b_flags & B_PHYS) == 0)
|
||||
panic("vunmapbuf");
|
||||
|
@ -368,8 +352,7 @@ kvtophys(vm_offset_t kva)
|
|||
int upage = (kva - UADDR) >> PGSHIFT;
|
||||
|
||||
pte = (pt_entry_t *)&curproc->p_md.md_upte[upage];
|
||||
phys = (pte->pt_entry & PG_FRAME) |
|
||||
(kva & PGOFSET);
|
||||
phys = pfn_to_vad(pte->pt_entry) | (kva & PGOFSET);
|
||||
}
|
||||
else if (kva >= MACH_KSEG2_ADDR /*&& kva < VM_MAX_KERNEL_ADDRESS*/) {
|
||||
pte = kvtopte(kva);
|
||||
|
@ -381,8 +364,7 @@ kvtophys(vm_offset_t kva)
|
|||
if ((pte->pt_entry & PG_V) == 0) {
|
||||
printf("kvtophys: pte not valid for %lx\n", kva);
|
||||
}
|
||||
phys = (pte->pt_entry & PG_FRAME) |
|
||||
(kva & PGOFSET);
|
||||
phys = pfn_to_vad(pte->pt_entry) | (kva & PGOFSET);
|
||||
#ifdef DEBUG_VIRTUAL_TO_PHYSICAL
|
||||
printf("kvtophys: kv %p, phys %x", kva, phys);
|
||||
#endif
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
/* $NetBSD: vm_machdep.c,v 1.15 1997/05/25 10:16:17 jonathan Exp $ */
|
||||
/* $NetBSD: vm_machdep.c,v 1.16 1997/06/15 18:21:17 mhitch Exp $ */
|
||||
|
||||
/*
|
||||
* Copyright (c) 1988 University of Utah.
|
||||
|
@ -52,87 +52,68 @@
|
|||
#include <sys/core.h>
|
||||
#include <sys/exec.h>
|
||||
|
||||
#include <machine/locore.h>
|
||||
#include <machine/pte.h>
|
||||
#include <machine/cpu.h>
|
||||
|
||||
#include <vm/vm.h>
|
||||
#include <vm/vm_kern.h>
|
||||
#include <vm/vm_page.h>
|
||||
|
||||
#include <machine/pte.h>
|
||||
#include <machine/vmparam.h>
|
||||
#include <machine/locore.h>
|
||||
#include <machine/machConst.h>
|
||||
extern struct proc *fpcurproc; /* trap.c */
|
||||
|
||||
#include <machine/locore.h>
|
||||
|
||||
extern int copykstack __P((struct user *up));
|
||||
extern void MachSaveCurFPState __P((struct proc *p));
|
||||
extern int switch_exit __P((void)); /* XXX never returns? */
|
||||
extern void savefpregs __P((struct proc *));
|
||||
extern void switch_exit __P((struct proc *));
|
||||
#ifdef MIPS3
|
||||
extern void mips3_HitFlushDCache __P((vm_offset_t, int));
|
||||
extern void MachHitFlushDCache __P((caddr_t, int));
|
||||
#endif
|
||||
|
||||
extern vm_offset_t kvtophys __P((vm_offset_t kva)); /* XXX */
|
||||
|
||||
/*
|
||||
* Finish a fork operation, with process p2 nearly set up.
|
||||
* Copy and update the kernel stack and pcb, making the child
|
||||
* ready to run, and marking it so that it can return differently
|
||||
* than the parent. Returns 1 in the child process, 0 in the parent.
|
||||
* We currently double-map the user area so that the stack is at the same
|
||||
* address in each process; in the future we will probably relocate
|
||||
* the frame pointers on the stack after copying.
|
||||
* cpu_fork() now returns just once.
|
||||
*/
|
||||
int
|
||||
void
|
||||
cpu_fork(p1, p2)
|
||||
register struct proc *p1, *p2;
|
||||
struct proc *p1, *p2;
|
||||
{
|
||||
register struct user *up = p2->p_addr;
|
||||
register pt_entry_t *pte;
|
||||
register int i;
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
struct pcb *pcb;
|
||||
pt_entry_t *pte;
|
||||
struct frame *tf;
|
||||
int i;
|
||||
extern void child_return __P((void)); /* trap.c */
|
||||
|
||||
p2->p_md.md_regs = up->u_pcb.pcb_regs;
|
||||
tf = (struct frame *)(KERNELSTACK - 24);
|
||||
p2->p_md.md_regs = p2->p_addr->u_pcb.pcb_regs;
|
||||
p2->p_md.md_flags = p1->p_md.md_flags & MDP_FPUSED;
|
||||
|
||||
/*
|
||||
* Cache the PTEs for the user area in the machine dependent
|
||||
* part of the proc struct so cpu_switch() can quickly map in
|
||||
* the user struct and kernel stack. Note: if the virtual address
|
||||
* translation changes (e.g. swapout) we have to update this.
|
||||
*/
|
||||
pte = kvtopte(up);
|
||||
for (i = 0; i < UPAGES; i++) {
|
||||
p2->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
|
||||
pte++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy floating point state from the FP chip if this process
|
||||
* has state stored there.
|
||||
*/
|
||||
if (p1 == machFPCurProcPtr)
|
||||
MachSaveCurFPState(p1);
|
||||
|
||||
/*
|
||||
* Copy pcb and stack from proc p1 to p2.
|
||||
* We do this as cheaply as possible, copying only the active
|
||||
* part of the stack. The stack and pcb need to agree;
|
||||
*/
|
||||
p2->p_addr->u_pcb = p1->p_addr->u_pcb;
|
||||
/* cache segtab for ULTBMiss() */
|
||||
p2->p_addr->u_pcb.pcb_segtab = (void *)p2->p_vmspace->vm_map.pmap->pm_segtab;
|
||||
|
||||
/*
|
||||
* Arrange for a non-local goto when the new process
|
||||
* is started, to resume here, returning nonzero from setjmp.
|
||||
*/
|
||||
#ifdef DIAGNOSTIC
|
||||
if (p1 != curproc)
|
||||
panic("cpu_fork: curproc");
|
||||
#ifdef MIPS3
|
||||
mips3_HitFlushDCache((vm_offset_t)p2->p_addr, UPAGES * NBPG);
|
||||
#endif
|
||||
if (copykstack(up)) {
|
||||
/*
|
||||
* Return 1 in child.
|
||||
*/
|
||||
return (1);
|
||||
}
|
||||
return (0);
|
||||
for (i = 0, pte = kvtopte(p2->p_addr); i < UPAGES; i++, pte++)
|
||||
#ifdef MIPS3
|
||||
p2->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
|
||||
#else
|
||||
p2->p_md.md_upte[i] = pte->pt_entry &~ PG_G;
|
||||
#endif
|
||||
|
||||
pcb = &p2->p_addr->u_pcb;
|
||||
if (p1 == fpcurproc)
|
||||
savefpregs(p1);
|
||||
*pcb = p1->p_addr->u_pcb;
|
||||
pcb->pcb_segtab = (void *)p2->p_vmspace->vm_map.pmap->pm_segtab;
|
||||
pcb->pcb_context[10] = (int)proc_trampoline; /* RA */
|
||||
pcb->pcb_context[8] = (int)tf; /* SP */
|
||||
pcb->pcb_context[0] = (int)child_return; /* S0 */
|
||||
pcb->pcb_context[1] = (int)p2; /* S1 */
|
||||
}
|
||||
|
||||
void
|
||||
cpu_set_kpc(p, pc)
|
||||
struct proc *p;
|
||||
void (*pc) __P((struct proc *));
|
||||
{
|
||||
p->p_addr->u_pcb.pcb_context[0] = (int)pc; /* S0 */
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -155,32 +136,34 @@ cpu_swapin(p)
|
|||
*/
|
||||
pte = kvtopte(up);
|
||||
for (i = 0; i < UPAGES; i++) {
|
||||
#ifdef MIPS3
|
||||
p->p_md.md_upte[i] = pte->pt_entry & ~(PG_G | PG_RO | PG_WIRED);
|
||||
#else
|
||||
p->p_md.md_upte[i] = pte->pt_entry & ~PG_G;
|
||||
#endif
|
||||
pte++;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* cpu_exit is called as the last action during exit.
|
||||
* We release the address space and machine-dependent resources,
|
||||
* including the memory for the user structure and kernel stack.
|
||||
* Once finished, we call switch_exit, which switches to a temporary
|
||||
* pcb and stack and never returns. We block memory allocation
|
||||
* until switch_exit has made things safe again.
|
||||
* We release the address space of the process, block interrupts,
|
||||
* and call switch_exit. switch_exit switches to nullproc's PCB and stack,
|
||||
* then jumps into the middle of cpu_switch, as if it were switching
|
||||
* from nullproc.
|
||||
*/
|
||||
void cpu_exit(p)
|
||||
void
|
||||
cpu_exit(p)
|
||||
struct proc *p;
|
||||
{
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
|
||||
if (machFPCurProcPtr == p)
|
||||
machFPCurProcPtr = (struct proc *)0;
|
||||
if (fpcurproc == p)
|
||||
fpcurproc = (struct proc *)0;
|
||||
|
||||
vmspace_free(p->p_vmspace);
|
||||
|
||||
(void) splhigh();
|
||||
kmem_free(kernel_map, (vm_offset_t)p->p_addr, ctob(UPAGES));
|
||||
switch_exit();
|
||||
cnt.v_swtch++;
|
||||
(void)splhigh();
|
||||
switch_exit(p);
|
||||
/* NOTREACHED */
|
||||
}
|
||||
|
||||
|
@ -195,26 +178,29 @@ cpu_coredump(p, vp, cred, chdr)
|
|||
struct core *chdr;
|
||||
{
|
||||
int error;
|
||||
/*register struct user *up = p->p_addr;*/
|
||||
struct coreseg cseg;
|
||||
extern struct proc *machFPCurProcPtr;
|
||||
struct cpustate {
|
||||
struct frame frame;
|
||||
struct fpreg fpregs;
|
||||
} cpustate;
|
||||
|
||||
CORE_SETMAGIC(*chdr, COREMAGIC, MID_MIPS, 0);
|
||||
chdr->c_hdrsize = ALIGN(sizeof(*chdr));
|
||||
chdr->c_seghdrsize = ALIGN(sizeof(cseg));
|
||||
chdr->c_cpusize = sizeof (p -> p_addr -> u_pcb.pcb_regs);
|
||||
chdr->c_hdrsize = ALIGN(sizeof(struct core));
|
||||
chdr->c_seghdrsize = ALIGN(sizeof(struct coreseg));
|
||||
chdr->c_cpusize = sizeof(struct cpustate);
|
||||
|
||||
/*
|
||||
* Copy floating point state from the FP chip if this process
|
||||
* has state stored there.
|
||||
*/
|
||||
if (p == machFPCurProcPtr)
|
||||
MachSaveCurFPState(p);
|
||||
cpustate.frame = *(struct frame *)p->p_md.md_regs;
|
||||
if (p->p_md.md_flags & MDP_FPUSED) {
|
||||
if (p == fpcurproc)
|
||||
savefpregs(p);
|
||||
cpustate.fpregs = p->p_addr->u_pcb.pcb_fpregs;
|
||||
}
|
||||
else
|
||||
bzero((caddr_t)&cpustate.fpregs, sizeof(struct fpreg));
|
||||
|
||||
CORE_SETMAGIC(cseg, CORESEGMAGIC, MID_MIPS, CORE_CPU);
|
||||
cseg.c_addr = 0;
|
||||
cseg.c_size = chdr->c_cpusize;
|
||||
|
||||
error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&cseg, chdr->c_seghdrsize,
|
||||
(off_t)chdr->c_hdrsize, UIO_SYSSPACE,
|
||||
IO_NODELOCKED|IO_UNIT, cred, (int *)NULL, p);
|
||||
|
@ -241,24 +227,32 @@ cpu_coredump(p, vp, cred, chdr)
|
|||
*/
|
||||
void
|
||||
pagemove(from, to, size)
|
||||
register caddr_t from, to;
|
||||
caddr_t from, to;
|
||||
size_t size;
|
||||
{
|
||||
register pt_entry_t *fpte, *tpte;
|
||||
pt_entry_t *fpte, *tpte;
|
||||
|
||||
if (size % CLBYTES)
|
||||
panic("pagemove");
|
||||
fpte = kvtopte(from);
|
||||
tpte = kvtopte(to);
|
||||
#ifdef MIPS3
|
||||
if(((int)from & machCacheAliasMask) != ((int)to & machCacheAliasMask)) {
|
||||
MachHitFlushDCache(from, size);
|
||||
}
|
||||
#endif
|
||||
while (size > 0) {
|
||||
MachTLBFlushAddr((vm_offset_t)from);
|
||||
MachTLBUpdate( (u_int)to,
|
||||
(u_int) (*fpte).pt_entry); /* XXX casts? */
|
||||
*tpte++ = *fpte;
|
||||
fpte->pt_entry = 0;
|
||||
fpte++;
|
||||
size -= NBPG;
|
||||
from += NBPG;
|
||||
MachTLBUpdate((vm_offset_t)to, fpte->pt_entry);
|
||||
*tpte = *fpte;
|
||||
#ifdef MIPS3
|
||||
fpte->pt_entry = PG_NV | PG_G;
|
||||
#else
|
||||
fpte->pt_entry = PG_NV;
|
||||
#endif
|
||||
fpte++; tpte++;
|
||||
size -= PAGE_SIZE;
|
||||
from += PAGE_SIZE;
|
||||
to += NBPG;
|
||||
}
|
||||
}
|
||||
|
@ -266,62 +260,52 @@ pagemove(from, to, size)
|
|||
extern vm_map_t phys_map;
|
||||
|
||||
/*
|
||||
* Map an IO request into kernel virtual address space. Requests fall into
|
||||
* one of five catagories:
|
||||
* Map an IO request into kernel virtual address space.
|
||||
*
|
||||
* B_PHYS|B_UAREA: User u-area swap.
|
||||
* Address is relative to start of u-area (p_addr).
|
||||
* B_PHYS|B_PAGET: User page table swap.
|
||||
* Address is a kernel VA in usrpt (Usrptmap).
|
||||
* B_PHYS|B_DIRTY: Dirty page push.
|
||||
* Address is a VA in proc2's address space.
|
||||
* B_PHYS|B_PGIN: Kernel pagein of user pages.
|
||||
* Address is VA in user's address space.
|
||||
* B_PHYS: User "raw" IO request.
|
||||
* Address is VA in user's address space.
|
||||
*
|
||||
* All requests are (re)mapped into kernel VA space via the phys_map
|
||||
* Called by physio() in kern/kern_physio.c for raw device I/O
|
||||
* between user address and device driver bypassing filesystem cache.
|
||||
*/
|
||||
/*ARGSUSED*/
|
||||
void
|
||||
vmapbuf(bp, len)
|
||||
register struct buf *bp;
|
||||
struct buf *bp;
|
||||
vm_size_t len;
|
||||
{
|
||||
register vm_offset_t faddr, taddr, off, pa;
|
||||
struct proc *p;
|
||||
vm_offset_t faddr, taddr, off;
|
||||
pt_entry_t *fpte, *tpte;
|
||||
pt_entry_t *pmap_pte __P((pmap_t, vm_offset_t));
|
||||
|
||||
if ((bp->b_flags & B_PHYS) == 0)
|
||||
panic("vmapbuf");
|
||||
p = bp->b_proc;
|
||||
faddr = trunc_page(bp->b_saveaddr = bp->b_data);
|
||||
off = (vm_offset_t)bp->b_data - faddr;
|
||||
len = round_page(off + len);
|
||||
taddr = kmem_alloc_wait(phys_map, len);
|
||||
bp->b_data = (caddr_t) (taddr + off);
|
||||
len = atop(len);
|
||||
while (len--) {
|
||||
pa = pmap_extract(vm_map_pmap(&p->p_vmspace->vm_map), faddr);
|
||||
if (pa == 0)
|
||||
panic("vmapbuf: null page frame");
|
||||
pmap_enter(vm_map_pmap(phys_map), taddr, trunc_page(pa),
|
||||
VM_PROT_READ|VM_PROT_WRITE, TRUE);
|
||||
faddr += PAGE_SIZE;
|
||||
taddr += PAGE_SIZE;
|
||||
}
|
||||
bp->b_data = (caddr_t)(taddr + off);
|
||||
/*
|
||||
* The region is locked, so we expect that pmap_pte() will return
|
||||
* non-NULL.
|
||||
*/
|
||||
fpte = pmap_pte(vm_map_pmap(&bp->b_proc->p_vmspace->vm_map), faddr);
|
||||
tpte = pmap_pte(vm_map_pmap(phys_map), taddr);
|
||||
do {
|
||||
/* XXX should mark them PG_WIRED? */
|
||||
tpte->pt_entry = fpte->pt_entry | PG_V | PG_G | PG_M;
|
||||
MachTLBUpdate(taddr, tpte->pt_entry);
|
||||
tpte++, fpte++, taddr += PAGE_SIZE;
|
||||
len -= PAGE_SIZE;
|
||||
} while (len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the io map PTEs associated with this IO operation.
|
||||
* We also invalidate the TLB entries and restore the original b_addr.
|
||||
*/
|
||||
/*ARGSUSED*/
|
||||
void
|
||||
vunmapbuf(bp, len)
|
||||
register struct buf *bp;
|
||||
struct buf *bp;
|
||||
vm_size_t len;
|
||||
{
|
||||
register vm_offset_t addr, off;
|
||||
vm_offset_t addr, off;
|
||||
|
||||
if ((bp->b_flags & B_PHYS) == 0)
|
||||
panic("vunmapbuf");
|
||||
|
@ -368,8 +352,7 @@ kvtophys(vm_offset_t kva)
|
|||
int upage = (kva - UADDR) >> PGSHIFT;
|
||||
|
||||
pte = (pt_entry_t *)&curproc->p_md.md_upte[upage];
|
||||
phys = (pte->pt_entry & PG_FRAME) |
|
||||
(kva & PGOFSET);
|
||||
phys = pfn_to_vad(pte->pt_entry) | (kva & PGOFSET);
|
||||
}
|
||||
else if (kva >= MACH_KSEG2_ADDR /*&& kva < VM_MAX_KERNEL_ADDRESS*/) {
|
||||
pte = kvtopte(kva);
|
||||
|
@ -381,8 +364,7 @@ kvtophys(vm_offset_t kva)
|
|||
if ((pte->pt_entry & PG_V) == 0) {
|
||||
printf("kvtophys: pte not valid for %lx\n", kva);
|
||||
}
|
||||
phys = (pte->pt_entry & PG_FRAME) |
|
||||
(kva & PGOFSET);
|
||||
phys = pfn_to_vad(pte->pt_entry) | (kva & PGOFSET);
|
||||
#ifdef DEBUG_VIRTUAL_TO_PHYSICAL
|
||||
printf("kvtophys: kv %p, phys %x", kva, phys);
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue