Regen man pages with modern pod2man to get more normalised version.

This commit is contained in:
joerg 2010-04-12 17:59:37 +00:00
parent 1e8d9fce59
commit 86c2d11e12
2 changed files with 165 additions and 176 deletions

View File

@ -1,26 +1,11 @@
.\" Automatically generated by Pod::Man version 1.02
.\" Wed Jul 23 14:41:57 2003
.\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.07)
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
@ -28,16 +13,15 @@
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
@ -46,8 +30,8 @@
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
@ -56,26 +40,28 @@
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.ie \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.el \{\
. de IX
..
.\}
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
@ -135,11 +121,14 @@
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\" ========================================================================
.\"
.IX Title "des 3"
.TH des 3 "0.9.6j" "2003-07-23" "libdes"
.UC
.TH des 3 "2009-07-20" "0.9.6j" "libdes"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
des_random_key, des_set_key, des_key_sched, des_set_key_checked,
des_set_key_unchecked, des_set_odd_parity, des_is_weak_key,
@ -150,39 +139,34 @@ des_ede2_cfb64_encrypt, des_ede2_ofb64_encrypt, des_ede3_cbc_encrypt,
des_ede3_cbcm_encrypt, des_ede3_cfb64_encrypt, des_ede3_ofb64_encrypt,
des_read_password, des_read_2passwords, des_read_pw_string,
des_cbc_cksum, des_quad_cksum, des_string_to_key, des_string_to_2keys,
des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
des_fcrypt, des_crypt, des_enc_read, des_enc_write \- DES encryption
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/des.h>
.Ve
.Vb 1
\&
\& void des_random_key(des_cblock *ret);
.Ve
.Vb 6
\&
\& int des_set_key(const_des_cblock *key, des_key_schedule schedule);
\& int des_key_sched(const_des_cblock *key, des_key_schedule schedule);
\& int des_set_key_checked(const_des_cblock *key,
\& des_key_schedule schedule);
\& void des_set_key_unchecked(const_des_cblock *key,
\& des_key_schedule schedule);
.Ve
.Vb 2
\&
\& void des_set_odd_parity(des_cblock *key);
\& int des_is_weak_key(const_des_cblock *key);
.Ve
.Vb 7
\& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
\&
\& void des_ecb_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks, int enc);
\& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
\& void des_ecb2_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks1, des_key_schedule ks2, int enc);
\& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks1, des_key_schedule ks2,
\& void des_ecb3_encrypt(const_des_cblock *input, des_cblock *output,
\& des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, int enc);
.Ve
.Vb 18
\& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\&
\& void des_ncbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int enc);
\& void des_cfb_encrypt(const unsigned char *in, unsigned char *out,
\& int numbits, long length, des_key_schedule schedule,
@ -190,8 +174,8 @@ des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
\& void des_ofb_encrypt(const unsigned char *in, unsigned char *out,
\& int numbits, long length, des_key_schedule schedule,
\& des_cblock *ivec);
\& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& void des_pcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int enc);
\& void des_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule schedule, des_cblock *ivec,
@ -199,13 +183,11 @@ des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
\& void des_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& int *num);
.Ve
.Vb 3
\& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\&
\& void des_xcbc_encrypt(const unsigned char *input, unsigned char *output,
\& long length, des_key_schedule schedule, des_cblock *ivec,
\& const_des_cblock *inw, const_des_cblock *outw, int enc);
.Ve
.Vb 9
\&
\& void des_ede2_cbc_encrypt(const unsigned char *input,
\& unsigned char *output, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_cblock *ivec, int enc);
@ -215,47 +197,42 @@ des_fcrypt, des_crypt, des_enc_read, des_enc_write \- \s-1DES\s0 encryption
\& void des_ede2_ofb64_encrypt(const unsigned char *in,
\& unsigned char *out, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_cblock *ivec, int *num);
.Ve
.Vb 15
\&
\& void des_ede3_cbc_encrypt(const unsigned char *input,
\& unsigned char *output, long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_key_schedule ks3, des_cblock *ivec,
\& int enc);
\& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
\& void des_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, des_cblock *ivec1, des_cblock *ivec2,
\& int enc);
\& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& void des_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1, des_key_schedule ks2,
\& des_key_schedule ks3, des_cblock *ivec, int *num, int enc);
\& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_key_schedule ks3,
\& void des_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out,
\& long length, des_key_schedule ks1,
\& des_key_schedule ks2, des_key_schedule ks3,
\& des_cblock *ivec, int *num);
.Ve
.Vb 5
\&
\& int des_read_password(des_cblock *key, const char *prompt, int verify);
\& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
\& int des_read_2passwords(des_cblock *key1, des_cblock *key2,
\& const char *prompt, int verify);
\& int des_read_pw_string(char *buf, int length, const char *prompt,
\& int verify);
.Ve
.Vb 8
\& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
\& long length, des_key_schedule schedule,
\&
\& DES_LONG des_cbc_cksum(const unsigned char *input, des_cblock *output,
\& long length, des_key_schedule schedule,
\& const_des_cblock *ivec);
\& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
\& DES_LONG des_quad_cksum(const unsigned char *input, des_cblock output[],
\& long length, int out_count, des_cblock *seed);
\& void des_string_to_key(const char *str, des_cblock *key);
\& void des_string_to_2keys(const char *str, des_cblock *key1,
\& des_cblock *key2);
.Ve
.Vb 3
\&
\& char *des_fcrypt(const char *buf, const char *salt, char *ret);
\& char *des_crypt(const char *buf, const char *salt);
\& char *crypt(const char *buf, const char *salt);
.Ve
.Vb 4
\&
\& int des_enc_read(int fd, void *buf, int len, des_key_schedule sched,
\& des_cblock *iv);
\& int des_enc_write(int fd, const void *buf, int len,
@ -274,7 +251,7 @@ each byte is the parity bit. The key schedule is an expanded form of
the key; it is used to speed the encryption process.
.PP
\&\fIdes_random_key()\fR generates a random key. The \s-1PRNG\s0 must be seeded
prior to using this function (see rand(3); for backward
prior to using this function (see \fIrand\fR\|(3); for backward
compatibility the function \fIdes_random_seed()\fR is available as well).
If the \s-1PRNG\s0 could not generate a secure key, 0 is returned. In
earlier versions of the library, \fIdes_random_key()\fR did not generate
@ -350,6 +327,9 @@ The \fIdes_ede2_cbc_encrypt()\fR macro implements two-key Triple-DES by
reusing \fIks1\fR for the final encryption. \f(CW\*(C`C=E(ks1,D(ks2,E(ks1,M)))\*(C'\fR.
This form of Triple-DES is used by the \s-1RSAREF\s0 library.
.PP
\&\fIdes_pcbc_encrypt()\fR encrypt/decrypts using the propagating cipher block
chaining mode used by Kerberos v4. Its parameters are the same as
\&\fIdes_ncbc_encrypt()\fR.
.PP
\&\fIdes_cfb_encrypt()\fR encrypt/decrypts using cipher feedback mode. This
method takes an array of characters as input and outputs and array of
@ -384,6 +364,10 @@ Feed Back mode.
\&\fIdes_ede3_ofb64_encrypt()\fR and \fIdes_ede2_ofb64_encrypt()\fR is the same as
\&\fIdes_ofb64_encrypt()\fR, using Triple-DES.
.PP
The following functions are included in the \s-1DES\s0 library for
compatibility with the \s-1MIT\s0 Kerberos library. \fIdes_read_pw_string()\fR
is also available under the name \fIEVP_read_pw_string()\fR.
.PP
\&\fIdes_read_pw_string()\fR writes the string specified by \fIprompt\fR to
standard output, turns echo off and reads in input string from the
terminal. The string is returned in \fIbuf\fR, which must have space for
@ -400,6 +384,18 @@ available for backward compatibility with the \s-1MIT\s0 library. New
applications should use a cryptographic hash function. The same
applies for \fIdes_string_to_2key()\fR.
.PP
\&\fIdes_cbc_cksum()\fR produces an 8 byte checksum based on the input stream
(via \s-1CBC\s0 encryption). The last 4 bytes of the checksum are returned
and the complete 8 bytes are placed in \fIoutput\fR. This function is
used by Kerberos v4. Other applications should use
\&\fIEVP_DigestInit\fR\|(3) etc. instead.
.PP
\&\fIdes_quad_cksum()\fR is a Kerberos v4 function. It returns a 4 byte
checksum from the input bytes. The algorithm can be iterated over the
input, depending on \fIout_count\fR, 1, 2, 3 or 4 times. If \fIoutput\fR is
non-NULL, the 8 bytes generated by each pass are written into
\&\fIoutput\fR.
.PP
The following are DES-based transformations:
.PP
\&\fIdes_fcrypt()\fR is a fast version of the Unix \fIcrypt\fR\|(3) function. This
@ -443,9 +439,9 @@ des_cbc_encrypt is used.
.SH "NOTES"
.IX Header "NOTES"
Single-key \s-1DES\s0 is insecure due to its short key size. \s-1ECB\s0 mode is
not suitable for most applications; see des_modes(7).
not suitable for most applications; see \fIdes_modes\fR\|(7).
.PP
The evp(3) library provides higher-level encryption functions.
The \fIevp\fR\|(3) library provides higher-level encryption functions.
.SH "BUGS"
.IX Header "BUGS"
\&\fIdes_3cbc_encrypt()\fR is flawed and must not be used in applications.
@ -468,14 +464,18 @@ normally generates the most problems when porting this code.
.SH "CONFORMING TO"
.IX Header "CONFORMING TO"
\&\s-1ANSI\s0 X3.106
.PP
The \fBdes\fR library was written to be source code compatible with
the \s-1MIT\s0 Kerberos library.
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIcrypt\fR\|(3), des_modes(7), evp(3), rand(3)
\&\fIcrypt\fR\|(3), \fIdes_modes\fR\|(7), \fIevp\fR\|(3), \fIrand\fR\|(3)
.SH "HISTORY"
.IX Header "HISTORY"
\&\fIdes_cbc_cksum()\fR, \fIdes_cbc_encrypt()\fR, \fIdes_ecb_encrypt()\fR,
\&\fIdes_is_weak_key()\fR, \fIdes_key_sched()\fR, \fIdes_pcbc_encrypt()\fR,
\&\fIdes_quad_cksum()\fR, \fIdes_random_key()\fR, \fIdes_read_password()\fR and
\&\fIdes_string_to_key()\fR are available in the \s-1MIT\s0 Kerberos library;
\&\fIdes_check_key_parity()\fR, \fIdes_fixup_key_parity()\fR and \fIdes_is_weak_key()\fR
are available in newer versions of that library.
.PP

View File

@ -1,26 +1,11 @@
.\" Automatically generated by Pod::Man version 1.02
.\" Wed Jul 23 14:44:48 2003
.\" Automatically generated by Pod::Man 2.22 (Pod::Simple 3.07)
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
@ -28,16 +13,15 @@
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
@ -46,8 +30,8 @@
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
@ -56,26 +40,28 @@
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.ie \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
..
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.el \{\
. de IX
..
.\}
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
@ -135,13 +121,16 @@
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\" ========================================================================
.\"
.IX Title "des_modes 7"
.TH des_modes 7 "0.9.6j" "2003-07-23" "libdes"
.UC
.IX Title "DES_MODES 7"
.TH DES_MODES 7 "2009-07-20" "0.9.6j" "libdes"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
Modes of \s-1DES\s0 \- the variants of \s-1DES\s0 and other crypto algorithms of OpenSSL
Modes of DES \- the variants of DES and other crypto algorithms of OpenSSL
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
Several crypto algorithms for OpenSSL can be used in a number of modes. Those
@ -149,126 +138,126 @@ are used for using block ciphers in a way similar to stream ciphers, among
other things.
.SH "OVERVIEW"
.IX Header "OVERVIEW"
.Sh "Electronic Codebook Mode (\s-1ECB\s0)"
.SS "Electronic Codebook Mode (\s-1ECB\s0)"
.IX Subsection "Electronic Codebook Mode (ECB)"
Normally, this is found as the function \fIalgorithm\fR\fI_ecb_encrypt()\fR.
.Ip "\(bu" 2
.IP "\(bu" 2
64 bits are enciphered at a time.
.Ip "\(bu" 2
.IP "\(bu" 2
The order of the blocks can be rearranged without detection.
.Ip "\(bu" 2
.IP "\(bu" 2
The same plaintext block always produces the same ciphertext block
(for the same key) making it vulnerable to a 'dictionary attack'.
.Ip "\(bu" 2
.IP "\(bu" 2
An error will only affect one ciphertext block.
.Sh "Cipher Block Chaining Mode (\s-1CBC\s0)"
.SS "Cipher Block Chaining Mode (\s-1CBC\s0)"
.IX Subsection "Cipher Block Chaining Mode (CBC)"
Normally, this is found as the function \fIalgorithm\fR\fI_cbc_encrypt()\fR.
Be aware that \fIdes_cbc_encrypt()\fR is not really \s-1DES\s0 \s-1CBC\s0 (it does
not update the \s-1IV\s0); use \fIdes_ncbc_encrypt()\fR instead.
.Ip "\(bu" 2
.IP "\(bu" 2
a multiple of 64 bits are enciphered at a time.
.Ip "\(bu" 2
.IP "\(bu" 2
The \s-1CBC\s0 mode produces the same ciphertext whenever the same
plaintext is encrypted using the same key and starting variable.
.Ip "\(bu" 2
.IP "\(bu" 2
The chaining operation makes the ciphertext blocks dependent on the
current and all preceding plaintext blocks and therefore blocks can not
be rearranged.
.Ip "\(bu" 2
.IP "\(bu" 2
The use of different starting variables prevents the same plaintext
enciphering to the same ciphertext.
.Ip "\(bu" 2
.IP "\(bu" 2
An error will affect the current and the following ciphertext blocks.
.Sh "Cipher Feedback Mode (\s-1CFB\s0)"
.SS "Cipher Feedback Mode (\s-1CFB\s0)"
.IX Subsection "Cipher Feedback Mode (CFB)"
Normally, this is found as the function \fIalgorithm\fR\fI_cfb_encrypt()\fR.
.Ip "\(bu" 2
.IP "\(bu" 2
a number of bits (j) <= 64 are enciphered at a time.
.Ip "\(bu" 2
.IP "\(bu" 2
The \s-1CFB\s0 mode produces the same ciphertext whenever the same
plaintext is encrypted using the same key and starting variable.
.Ip "\(bu" 2
.IP "\(bu" 2
The chaining operation makes the ciphertext variables dependent on the
current and all preceding variables and therefore j-bit variables are
current and all preceding variables and therefore j\-bit variables are
chained together and can not be rearranged.
.Ip "\(bu" 2
.IP "\(bu" 2
The use of different starting variables prevents the same plaintext
enciphering to the same ciphertext.
.Ip "\(bu" 2
.IP "\(bu" 2
The strength of the \s-1CFB\s0 mode depends on the size of k (maximal if
j == k). In my implementation this is always the case.
.Ip "\(bu" 2
.IP "\(bu" 2
Selection of a small value for j will require more cycles through
the encipherment algorithm per unit of plaintext and thus cause
greater processing overheads.
.Ip "\(bu" 2
.IP "\(bu" 2
Only multiples of j bits can be enciphered.
.Ip "\(bu" 2
.IP "\(bu" 2
An error will affect the current and the following ciphertext variables.
.Sh "Output Feedback Mode (\s-1OFB\s0)"
.SS "Output Feedback Mode (\s-1OFB\s0)"
.IX Subsection "Output Feedback Mode (OFB)"
Normally, this is found as the function \fIalgorithm\fR\fI_ofb_encrypt()\fR.
.Ip "\(bu" 2
.IP "\(bu" 2
a number of bits (j) <= 64 are enciphered at a time.
.Ip "\(bu" 2
.IP "\(bu" 2
The \s-1OFB\s0 mode produces the same ciphertext whenever the same
plaintext enciphered using the same key and starting variable. More
over, in the \s-1OFB\s0 mode the same key stream is produced when the same
key and start variable are used. Consequently, for security reasons
a specific start variable should be used only once for a given key.
.Ip "\(bu" 2
.IP "\(bu" 2
The absence of chaining makes the \s-1OFB\s0 more vulnerable to specific attacks.
.Ip "\(bu" 2
.IP "\(bu" 2
The use of different start variables values prevents the same
plaintext enciphering to the same ciphertext, by producing different
key streams.
.Ip "\(bu" 2
.IP "\(bu" 2
Selection of a small value for j will require more cycles through
the encipherment algorithm per unit of plaintext and thus cause
greater processing overheads.
.Ip "\(bu" 2
.IP "\(bu" 2
Only multiples of j bits can be enciphered.
.Ip "\(bu" 2
.IP "\(bu" 2
\&\s-1OFB\s0 mode of operation does not extend ciphertext errors in the
resultant plaintext output. Every bit error in the ciphertext causes
only one bit to be in error in the deciphered plaintext.
.Ip "\(bu" 2
.IP "\(bu" 2
\&\s-1OFB\s0 mode is not self-synchronizing. If the two operation of
encipherment and decipherment get out of synchronism, the system needs
to be re-initialized.
.Ip "\(bu" 2
.IP "\(bu" 2
Each re-initialization should use a value of the start variable
different from the start variable values used before with the same
key. The reason for this is that an identical bit stream would be
produced each time from the same parameters. This would be
susceptible to a 'known plaintext' attack.
.Sh "Triple \s-1ECB\s0 Mode"
.SS "Triple \s-1ECB\s0 Mode"
.IX Subsection "Triple ECB Mode"
Normally, this is found as the function \fIalgorithm\fR\fI_ecb3_encrypt()\fR.
.Ip "\(bu" 2
.IP "\(bu" 2
Encrypt with key1, decrypt with key2 and encrypt with key3 again.
.Ip "\(bu" 2
.IP "\(bu" 2
As for \s-1ECB\s0 encryption but increases the key length to 168 bits.
There are theoretic attacks that can be used that make the effective
key length 112 bits, but this attack also requires 2^56 blocks of
memory, not very likely, even for the \s-1NSA\s0.
.Ip "\(bu" 2
.IP "\(bu" 2
If both keys are the same it is equivalent to encrypting once with
just one key.
.Ip "\(bu" 2
.IP "\(bu" 2
If the first and last key are the same, the key length is 112 bits.
There are attacks that could reduce the effective key strength
to only slightly more than 56 bits, but these require a lot of memory.
.Ip "\(bu" 2
.IP "\(bu" 2
If all 3 keys are the same, this is effectively the same as normal
ecb mode.
.Sh "Triple \s-1CBC\s0 Mode"
.SS "Triple \s-1CBC\s0 Mode"
.IX Subsection "Triple CBC Mode"
Normally, this is found as the function \fIalgorithm\fR\fI_ede3_cbc_encrypt()\fR.
.Ip "\(bu" 2
.IP "\(bu" 2
Encrypt with key1, decrypt with key2 and then encrypt with key3.
.Ip "\(bu" 2
.IP "\(bu" 2
As for \s-1CBC\s0 encryption but increases the key length to 168 bits with
the same restrictions as for triple ecb mode.
.SH "NOTES"
@ -280,11 +269,11 @@ it to:
.Vb 5
\& AS 2805.5.2
\& Australian Standard
\& Electronic funds transfer - Requirements for interfaces,
\& Part 5.2: Modes of operation for an n-bit block cipher algorithm
\& Electronic funds transfer \- Requirements for interfaces,
\& Part 5.2: Modes of operation for an n\-bit block cipher algorithm
\& Appendix A
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
blowfish(3), des(3), idea(3),
rc2(3)
\&\fIblowfish\fR\|(3), \fIdes\fR\|(3), \fIidea\fR\|(3),
\&\fIrc2\fR\|(3)