Implement 4-way vectorization of ChaCha for armv7 NEON.

cgd performance is not as good as I was hoping (~4% improvement over
chacha_ref.c) but it should improve substantially more if we let the
cgd worker thread keep fpu state so we don't have to pay the cost of
isb and zero-the-fpu on every 512-byte cgd block.
This commit is contained in:
riastradh 2020-07-28 20:08:48 +00:00
parent 783ffb04d5
commit 7a8eb9a111
5 changed files with 701 additions and 12 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: chacha_neon.c,v 1.6 2020/07/28 20:05:33 riastradh Exp $ */
/* $NetBSD: chacha_neon.c,v 1.7 2020/07/28 20:08:48 riastradh Exp $ */
/*-
* Copyright (c) 2020 The NetBSD Foundation, Inc.
@ -221,10 +221,8 @@ chacha_stream_neon(uint8_t *restrict s, size_t n,
unsigned nr)
{
#ifdef __aarch64__
for (; n >= 256; s += 256, n -= 256, blkno += 4)
chacha_stream256_neon(s, blkno, nonce, k, chacha_const32, nr);
#endif
if (n) {
const uint32x4_t blkno_inc = {1,0,0,0};
@ -281,11 +279,9 @@ chacha_stream_xor_neon(uint8_t *s, const uint8_t *p, size_t n,
unsigned nr)
{
#ifdef __aarch64__
for (; n >= 256; s += 256, p += 256, n -= 256, blkno += 4)
chacha_stream_xor256_neon(s, p, blkno, nonce, k,
chacha_const32, nr);
#endif
if (n) {
const uint32x4_t blkno_inc = {1,0,0,0};

View File

@ -1,4 +1,4 @@
/* $NetBSD: chacha_neon.h,v 1.2 2020/07/27 20:51:29 riastradh Exp $ */
/* $NetBSD: chacha_neon.h,v 1.3 2020/07/28 20:08:48 riastradh Exp $ */
/*-
* Copyright (c) 2020 The NetBSD Foundation, Inc.
@ -64,8 +64,7 @@ void xchacha_stream_xor_neon(uint8_t *, const uint8_t *, size_t,
const uint8_t[static 32],
unsigned);
#ifdef __aarch64__
/* Assembly helpers -- aarch64 only for now */
/* Assembly helpers */
void chacha_stream256_neon(uint8_t[restrict static 256], uint32_t,
const uint8_t[static 12],
const uint8_t[static 32],
@ -78,7 +77,6 @@ void chacha_stream_xor256_neon(uint8_t[restrict static 256],
const uint8_t[static 32],
const uint8_t[static 16],
unsigned);
#endif /* __aarch64__ */
extern const struct chacha_impl chacha_neon_impl;

View File

@ -0,0 +1,692 @@
/* $NetBSD: chacha_neon_32.S,v 1.1 2020/07/28 20:08:48 riastradh Exp $ */
/*-
* Copyright (c) 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <machine/asm.h>
RCSID("$NetBSD: chacha_neon_32.S,v 1.1 2020/07/28 20:08:48 riastradh Exp $")
.fpu neon
/*
* ChaCha round, split up so we can interleave the quarterrounds on
* independent rows/diagonals to maximize pipeline efficiency, with
* spills to deal with the scarcity of registers. Reference:
*
* Daniel J. Bernstein, `ChaCha, a variant of Salsa20', Workshop
* Record of the State of the Art in Stream Ciphers -- SASC 2008.
* https://cr.yp.to/papers.html#chacha
*
* a += b; d ^= a; d <<<= 16;
* c += d; b ^= c; b <<<= 12;
* a += b; d ^= a; d <<<= 8;
* c += d; b ^= c; b <<<= 7;
*
* The rotations are implemented with:
* <<< 16 VREV32.16 for 16,
* <<< 12 VSHL/VSRI/VORR (shift left, shift right and insert, OR)
* <<< 8 TBL (general permutation; rot8 below stored in r)
* <<< 7 VSHL/VSRI/VORR
*/
.macro ROUNDLD a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3, d0,d1,d2,d3
vld1.32 {\c2-\c3}, [fp, :256]
.endm
.macro ROUND a0,a1,a2,a3, b0,b1,b2,b3, c0,c1,c2,c3, d0,d1,d2,d3, c0l, d0l,d0h,d1l,d1h,d2l,d2h,d3l,d3h
/* a += b; d ^= a; d <<<= 16 */
vadd.u32 \a0, \a0, \b0
vadd.u32 \a1, \a1, \b1
vadd.u32 \a2, \a2, \b2
vadd.u32 \a3, \a3, \b3
veor \d0, \d0, \a0
veor \d1, \d1, \a1
veor \d2, \d2, \a2
veor \d3, \d3, \a3
vrev32.16 \d0, \d0
vrev32.16 \d1, \d1
vrev32.16 \d2, \d2
vrev32.16 \d3, \d3
/* c += d; b ^= c; b <<<= 12 */
vadd.u32 \c0, \c0, \d0
vadd.u32 \c1, \c1, \d1
vadd.u32 \c2, \c2, \d2
vadd.u32 \c3, \c3, \d3
vst1.32 {\c0-\c1}, [fp, :256] /* free c0 and c1 as temps */
veor \c0, \b0, \c0
veor \c1, \b1, \c1
vshl.u32 \b0, \c0, #12
vshl.u32 \b1, \c1, #12
vsri.u32 \b0, \c0, #(32 - 12)
vsri.u32 \b1, \c1, #(32 - 12)
veor \c0, \b2, \c2
veor \c1, \b3, \c3
vshl.u32 \b2, \c0, #12
vshl.u32 \b3, \c1, #12
vsri.u32 \b2, \c0, #(32 - 12)
vsri.u32 \b3, \c1, #(32 - 12)
vld1.8 {\c0l}, [r7, :64] /* load rot8 table */
/* a += b; d ^= a; d <<<= 8 */
vadd.u32 \a0, \a0, \b0
vadd.u32 \a1, \a1, \b1
vadd.u32 \a2, \a2, \b2
vadd.u32 \a3, \a3, \b3
veor \d0, \d0, \a0
veor \d1, \d1, \a1
veor \d2, \d2, \a2
veor \d3, \d3, \a3
vtbl.8 \d0l, {\d0l}, \c0l /* <<< 8 */
vtbl.8 \d0h, {\d0h}, \c0l
vtbl.8 \d1l, {\d1l}, \c0l
vtbl.8 \d1h, {\d1h}, \c0l
vtbl.8 \d2l, {\d2l}, \c0l
vtbl.8 \d2h, {\d2h}, \c0l
vtbl.8 \d3l, {\d3l}, \c0l
vtbl.8 \d3h, {\d3h}, \c0l
vld1.32 {\c0-\c1}, [fp, :256] /* restore c0 and c1 */
/* c += d; b ^= c; b <<<= 7 */
vadd.u32 \c2, \c2, \d2
vadd.u32 \c3, \c3, \d3
vadd.u32 \c0, \c0, \d0
vadd.u32 \c1, \c1, \d1
vst1.32 {\c2-\c3}, [fp, :256] /* free c2 and c3 as temps */
veor \c2, \b2, \c2
veor \c3, \b3, \c3
vshl.u32 \b2, \c2, #7
vshl.u32 \b3, \c3, #7
vsri.u32 \b2, \c2, #(32 - 7)
vsri.u32 \b3, \c3, #(32 - 7)
veor \c2, \b0, \c0
veor \c3, \b1, \c1
vshl.u32 \b0, \c2, #7
vshl.u32 \b1, \c3, #7
vsri.u32 \b0, \c2, #(32 - 7)
vsri.u32 \b1, \c3, #(32 - 7)
.endm
#if _BYTE_ORDER == _LITTLE_ENDIAN
#define HTOLE32(x)
#define LE32TOH(x)
#elif _BYTE_ORDER == _BIG_ENDIAN
#define HTOLE32(x) vrev32.8 x, x
#define LE32TOH(x) vrev32.8 x, x
#endif
.text
.p2align 2
.Lconstants_addr:
.long .Lconstants - .
/*
* chacha_stream256_neon(uint8_t s[256]@r0,
* uint32_t blkno@r1,
* const uint8_t nonce[12]@r2,
* const uint8_t key[32]@r3,
* const uint8_t const[16]@sp[0],
* unsigned nr@sp[4])
*/
ENTRY(chacha_stream256_neon)
/* save callee-saves registers */
push {r4, r5, r6, r7, r8, r10, fp, lr}
vpush {d8-d15}
/* r7 := .Lconstants - .Lconstants_addr, r6 := .Lconstants_addr */
ldr r7, .Lconstants_addr
adr r6, .Lconstants_addr
/* reserve space for two 128-bit/16-byte q registers */
sub fp, sp, #0x20
bic fp, fp, #0x1f /* align */
/* get parameters */
add ip, sp, #96
add r7, r7, r6 /* r7 := .Lconstants (= v0123) */
ldm ip, {r4, r5} /* r4 := const, r5 := nr */
ldm r2, {r6, r8, r10} /* (r6, r8, r10) := nonce[0:12) */
vld1.32 {q12}, [r4] /* q12 := constant */
vld1.32 {q13-q14}, [r3] /* q13-q14 := key */
vld1.32 {q15}, [r7, :128]! /* q15 := (0, 1, 2, 3) (128-bit aligned) */
vdup.32 q0, d24[0] /* q0-q3 := constant */
vdup.32 q1, d24[1]
vdup.32 q2, d25[0]
vdup.32 q3, d25[1]
vdup.32 q12, r1 /* q12 := (blkno, blkno, blkno, blkno) */
vdup.32 q4, d26[0] /* q4-q11 := (key, key, key, key) */
vdup.32 q5, d26[1]
vdup.32 q6, d27[0]
vdup.32 q7, d27[1]
vdup.32 q8, d28[0]
vdup.32 q9, d28[1]
vdup.32 q10, d29[0]
vdup.32 q11, d29[1]
vadd.u32 q12, q12, q15 /* q12 := (blkno,blkno+1,blkno+2,blkno+3) */
vdup.32 q13, r6 /* q13-q15 := nonce */
vdup.32 q14, r8
vdup.32 q15, r10
HTOLE32(q0)
HTOLE32(q1)
HTOLE32(q2)
HTOLE32(q3)
HTOLE32(q4)
HTOLE32(q5)
HTOLE32(q6)
HTOLE32(q7)
HTOLE32(q8)
HTOLE32(q9)
HTOLE32(q10)
HTOLE32(q11)
HTOLE32(q12)
HTOLE32(q13)
HTOLE32(q14)
HTOLE32(q15)
b 2f
_ALIGN_TEXT
1: ROUNDLD q0,q1,q2,q3, q5,q6,q7,q4, q10,q11,q8,q9, q15,q12,q13,q14
2: subs r5, r5, #2
ROUND q0,q1,q2,q3, q4,q5,q6,q7, q8,q9,q10,q11, q12,q13,q14,q15, \
d16, d24,d25, d26,d27, d28,d29, d30,d31
ROUNDLD q0,q1,q2,q3, q4,q5,q6,q7, q8,q9,q10,q11, q12,q13,q14,q15
ROUND q0,q1,q2,q3, q5,q6,q7,q4, q10,q11,q8,q9, q15,q12,q13,q14, \
d20, d30,d31, d24,d25, d26,d27, d28,d29
bne 1b
/*
* q8-q9 are free / saved on the stack. We have:
*
* q0 = (x0[0], x1[0]; x2[0], x3[0])
* q1 = (x0[1], x1[1]; x2[1], x3[1])
* q2 = (x0[2], x1[2]; x2[2], x3[2])
* q3 = (x0[3], x1[3]; x2[3], x3[3])
* ...
* q15 = (x0[15], x1[15]; x2[15], x3[15])
*
* where xi[j] is the jth word of the ith 16-word block. Zip
* consecutive pairs with vzip.32, and you get:
*
* q0 = (x0[0], x0[1]; x1[0], x1[1])
* q1 = (x2[0], x2[1]; x3[0], x3[1])
* q2 = (x0[2], x0[3]; x1[2], x1[3])
* q3 = (x2[2], x2[3]; x3[2], x3[3])
* ...
* q15 = (x2[14], x2[15]; x3[14], x3[15])
*
* As 64-bit d registers, this is:
*
* d0 = (x0[0], x0[1]) d1 = (x1[0], x1[1])
* d2 = (x2[0], x2[1]) d3 = (x3[0], x3[1])
* d4 = (x0[2], x0[3]) d5 = (x1[2], x1[3])
* d6 = (x2[2], x2[3]) d7 = (x3[2], x3[3])
* ...
* d30 = (x2[14], x2[15]) d31 = (x3[14], x3[15])
*
* Swap d1<->d4, d3<->d6, ..., and you get:
*
* q0 = (x0[0], x0[1]; x0[2], x0[3])
* q1 = (x2[0], x2[1]; x2[2], x2[3])
* q2 = (x1[0], x1[1]; x1[2], x1[3])
* q3 = (x3[0], x3[1]; x3[2], x3[3])
* ...
* q15 = (x15[0], x15[1]; x15[2], x15[3])
*/
sub r7, r7, #0x10
vdup.32 q8, r1 /* q8 := (blkno, blkno, blkno, blkno) */
vld1.32 {q9}, [r7, :128] /* q9 := (0, 1, 2, 3) */
vzip.32 q0, q1
vzip.32 q2, q3
vzip.32 q4, q5
vzip.32 q6, q7
vadd.u32 q8, q8, q9 /* q8 := (blkno,blkno+1,blkno+2,blkno+3) */
vld1.32 {q9}, [r4] /* q9 := constant */
vadd.u32 q12, q12, q8 /* q12 += (blkno,blkno+1,blkno+2,blkno+3) */
vld1.32 {q8}, [r3]! /* q8 := key[0:16) */
vswp d1, d4
vswp d9, d12
vswp d3, d6
vswp d11, d14
/*
* At this point, the blocks are:
*
* q0 = (x0[0], x0[1]; x0[2], x0[3])
* q1 = (x2[0], x2[1]; x2[2], x2[3])
* q2 = (x1[0], x1[1]; x1[2], x1[3])
* q3 = (x3[0], x3[1]; x3[2], x3[3])
* q4 = (x0[4], x0[5]; x0[6], x0[7])
* q5 = (x2[4], x2[5]; x2[6], x2[7])
* q6 = (x1[4], x1[5]; x1[6], x1[7])
* q7 = (x3[4], x3[5]; x3[6], x3[7])
*
* The first two rows to write out are q0 = x0[0:4) and q4 =
* x0[4:8). If we first swap q1 and q4, then once we've
* written them out we free up consecutive registers q0-q1 for
* store-multiple.
*/
vswp q1, q4
vadd.u32 q0, q0, q9
vadd.u32 q4, q4, q9
vadd.u32 q2, q2, q9
vadd.u32 q3, q3, q9
vadd.u32 q1, q1, q8
vadd.u32 q5, q5, q8
vadd.u32 q6, q6, q8
vadd.u32 q7, q7, q8
vld1.32 {q8-q9}, [fp, :256] /* restore q8-q9 */
LE32TOH(q0)
LE32TOH(q1)
LE32TOH(q2)
LE32TOH(q3)
LE32TOH(q4)
LE32TOH(q5)
LE32TOH(q6)
LE32TOH(q7)
vst1.32 {q0-q1}, [r0]!
vld1.32 {q0}, [r3] /* q0 := key[16:32) */
mov r3, #0 /* q1 = (0, nonce[0:4), ..., nonce[8:12)) */
vmov d2, r3, r6
vmov d3, r8, r10
vzip.32 q8, q9
vzip.32 q10, q11
vzip.32 q12, q13
vzip.32 q14, q15
vswp d17, d20
vswp d25, d28
vswp d19, d22
vswp d27, d30
vadd.u32 q8, q8, q0
vadd.u32 q9, q9, q0
vadd.u32 q10, q10, q0
vadd.u32 q11, q11, q0
vadd.u32 q12, q12, q1
vadd.u32 q13, q13, q1
vadd.u32 q14, q14, q1
vadd.u32 q15, q15, q1
LE32TOH(q8)
LE32TOH(q9)
LE32TOH(q10)
LE32TOH(q11)
LE32TOH(q12)
LE32TOH(q13)
LE32TOH(q14)
LE32TOH(q15)
/* prepare to zero temporary space on stack */
vmov.i32 q0, #0
vmov.i32 q1, #0
/* vst1.32 {q0}, [r0]! */
/* vst1.32 {q1}, [r0]! */ /* (was q4 before vswp) */
vst1.32 {q8}, [r0]!
vst1.32 {q12}, [r0]!
vst1.32 {q2}, [r0]!
vst1.32 {q6}, [r0]!
vst1.32 {q10}, [r0]!
vst1.32 {q14}, [r0]!
vst1.32 {q4}, [r0]! /* (was q1 before vswp) */
vst1.32 {q5}, [r0]!
vst1.32 {q9}, [r0]!
vst1.32 {q13}, [r0]!
vst1.32 {q3}, [r0]!
vst1.32 {q7}, [r0]!
vst1.32 {q11}, [r0]!
vst1.32 {q15}, [r0]
/* zero temporary space on the stack */
vst1.8 {q0-q1}, [fp, :256]
/* restore callee-saves registers and stack */
vpop {d8-d15}
pop {r4, r5, r6, r7, r8, r10, fp, lr}
bx lr
END(chacha_stream256_neon)
/*
* chacha_stream_xor256_neon(uint8_t s[256]@r0, const uint8_t p[256]@r1,
* uint32_t blkno@r2,
* const uint8_t nonce[12]@r3,
* const uint8_t key[32]@sp[0],
* const uint8_t const[16]@sp[4],
* unsigned nr@sp[8])
*/
ENTRY(chacha_stream_xor256_neon)
/* save callee-saves registers */
push {r4, r5, r6, r7, r8, r10, fp, lr}
vpush {d8-d15}
/* r7 := .Lconstants - .Lconstants_addr, r6 := .Lconstants_addr */
ldr r7, .Lconstants_addr
adr r6, .Lconstants_addr
/* reserve space for two 128-bit/16-byte q registers */
sub fp, sp, #0x20
bic fp, fp, #0x1f /* align */
/* get parameters */
add ip, sp, #96
add r7, r7, r6 /* r7 := .Lconstants (= v0123) */
ldm ip, {r4, r5, ip} /* r4 := key, r5 := const, ip := nr */
ldm r3, {r6, r8, r10} /* (r6, r8, r10) := nonce[0:12) */
vld1.32 {q12}, [r5] /* q12 := constant */
vld1.32 {q13-q14}, [r4] /* q13-q14 := key */
vld1.32 {q15}, [r7, :128]! /* q15 := (0, 1, 2, 3) (128-bit aligned) */
vdup.32 q0, d24[0] /* q0-q3 := constant */
vdup.32 q1, d24[1]
vdup.32 q2, d25[0]
vdup.32 q3, d25[1]
vdup.32 q12, r2 /* q12 := (blkno, blkno, blkno, blkno) */
vdup.32 q4, d26[0] /* q4-q11 := (key, key, key, key) */
vdup.32 q5, d26[1]
vdup.32 q6, d27[0]
vdup.32 q7, d27[1]
vdup.32 q8, d28[0]
vdup.32 q9, d28[1]
vdup.32 q10, d29[0]
vdup.32 q11, d29[1]
vadd.u32 q12, q12, q15 /* q12 := (blkno,blkno+1,blkno+2,blkno+3) */
vdup.32 q13, r6 /* q13-q15 := nonce */
vdup.32 q14, r8
vdup.32 q15, r10
HTOLE32(q0)
HTOLE32(q1)
HTOLE32(q2)
HTOLE32(q3)
HTOLE32(q4)
HTOLE32(q5)
HTOLE32(q6)
HTOLE32(q7)
HTOLE32(q8)
HTOLE32(q9)
HTOLE32(q10)
HTOLE32(q11)
HTOLE32(q12)
HTOLE32(q13)
HTOLE32(q14)
HTOLE32(q15)
b 2f
_ALIGN_TEXT
1: ROUNDLD q0,q1,q2,q3, q5,q6,q7,q4, q10,q11,q8,q9, q15,q12,q13,q14
2: subs ip, ip, #2
ROUND q0,q1,q2,q3, q4,q5,q6,q7, q8,q9,q10,q11, q12,q13,q14,q15, \
d16, d24,d25, d26,d27, d28,d29, d30,d31
ROUNDLD q0,q1,q2,q3, q4,q5,q6,q7, q8,q9,q10,q11, q12,q13,q14,q15
ROUND q0,q1,q2,q3, q5,q6,q7,q4, q10,q11,q8,q9, q15,q12,q13,q14, \
d20, d30,d31, d24,d25, d26,d27, d28,d29
bne 1b
/*
* q8-q9 are free / saved on the stack. Now for the real fun:
* in only 16 registers, compute p[i] ^ (y[i] + x[i]) for i in
* {0,1,2,...,15}. The twist is that the p[i] and the y[i] are
* transposed from one another, and the x[i] are in general
* registers and memory. So we have:
*
* q0 = (x0[0], x1[0]; x2[0], x3[0])
* q1 = (x0[1], x1[1]; x2[1], x3[1])
* q2 = (x0[2], x1[2]; x2[2], x3[2])
* q3 = (x0[3], x1[3]; x2[3], x3[3])
* ...
* q15 = (x0[15], x1[15]; x2[15], x3[15])
*
* where xi[j] is the jth word of the ith 16-word block. Zip
* consecutive pairs with vzip.32, and you get:
*
* q0 = (x0[0], x0[1]; x1[0], x1[1])
* q1 = (x2[0], x2[1]; x3[0], x3[1])
* q2 = (x0[2], x0[3]; x1[2], x1[3])
* q3 = (x2[2], x2[3]; x3[2], x3[3])
* ...
* q15 = (x2[14], x2[15]; x3[14], x3[15])
*
* As 64-bit d registers, this is:
*
* d0 = (x0[0], x0[1]) d1 = (x1[0], x1[1])
* d2 = (x2[0], x2[1]) d3 = (x3[0], x3[1])
* d4 = (x0[2], x0[3]) d5 = (x1[2], x1[3])
* d6 = (x2[2], x2[3]) d7 = (x3[2], x3[3])
* ...
* d30 = (x2[14], x2[15]) d31 = (x3[14], x3[15])
*
* Swap d1<->d4, d3<->d6, ..., and you get:
*
* q0 = (x0[0], x0[1]; x0[2], x0[3])
* q1 = (x2[0], x2[1]; x2[2], x2[3])
* q2 = (x1[0], x1[1]; x1[2], x1[3])
* q3 = (x3[0], x3[1]; x3[2], x3[3])
* ...
* q15 = (x15[0], x15[1]; x15[2], x15[3])
*/
sub r7, r7, #0x10
vdup.32 q8, r2 /* q8 := (blkno, blkno, blkno, blkno) */
vld1.32 {q9}, [r7, :128] /* q9 := (0, 1, 2, 3) */
vzip.32 q0, q1
vzip.32 q2, q3
vzip.32 q4, q5
vzip.32 q6, q7
vadd.u32 q8, q8, q9 /* q8 := (blkno,blkno+1,blkno+2,blkno+3) */
vld1.32 {q9}, [r5] /* q9 := constant */
vadd.u32 q12, q12, q8 /* q12 += (blkno,blkno+1,blkno+2,blkno+3) */
vld1.32 {q8}, [r4]! /* q8 := key[0:16) */
vswp d1, d4
vswp d9, d12
vswp d3, d6
vswp d11, d14
/*
* At this point, the blocks are:
*
* q0 = (x0[0], x0[1]; x0[2], x0[3])
* q1 = (x2[0], x2[1]; x2[2], x2[3])
* q2 = (x1[0], x1[1]; x1[2], x1[3])
* q3 = (x3[0], x3[1]; x3[2], x3[3])
* q4 = (x0[4], x0[5]; x0[6], x0[7])
* q5 = (x2[4], x2[5]; x2[6], x2[7])
* q6 = (x1[4], x1[5]; x1[6], x1[7])
* q7 = (x3[4], x3[5]; x3[6], x3[7])
*
* The first two rows to write out are q0 = x0[0:4) and q4 =
* x0[4:8). If we first swap q1 and q4, then once we've
* written them out we free up consecutive registers q0-q1 for
* store-multiple.
*/
vswp q1, q4
vadd.u32 q0, q0, q9
vadd.u32 q4, q4, q9
vadd.u32 q2, q2, q9
vadd.u32 q3, q3, q9
vadd.u32 q1, q1, q8
vadd.u32 q5, q5, q8
vadd.u32 q6, q6, q8
vadd.u32 q7, q7, q8
vld1.32 {q8-q9}, [r1]! /* load plaintext bytes [0:32) */
LE32TOH(q0)
LE32TOH(q1)
LE32TOH(q2)
LE32TOH(q6)
LE32TOH(q4)
LE32TOH(q5)
LE32TOH(q3)
LE32TOH(q7)
veor q0, q0, q8 /* compute ciphertext bytes [0:32) */
veor q1, q1, q9
vld1.32 {q8-q9}, [fp, :256] /* restore q8-q9 */
vst1.32 {q0-q1}, [r0]! /* store ciphertext bytes [0:32) */
vld1.32 {q0}, [r4] /* q0 := key[16:32) */
mov r3, #0 /* q1 = (0, nonce[0:4), ..., nonce[8:12)) */
vmov d2, r3, r6
vmov d3, r8, r10
vzip.32 q8, q9
vzip.32 q10, q11
vzip.32 q12, q13
vzip.32 q14, q15
vswp d17, d20
vswp d25, d28
vswp d19, d22
vswp d27, d30
vswp q9, q12 /* free up q9 earlier for consecutive q8-q9 */
vadd.u32 q8, q8, q0
vadd.u32 q12, q12, q0
vadd.u32 q10, q10, q0
vadd.u32 q11, q11, q0
vadd.u32 q9, q9, q1
vadd.u32 q13, q13, q1
vadd.u32 q14, q14, q1
vadd.u32 q15, q15, q1
vld1.32 {q0-q1}, [r1]! /* load plaintext bytes [32:64) */
LE32TOH(q8)
LE32TOH(q9)
LE32TOH(q10)
LE32TOH(q14)
LE32TOH(q12)
LE32TOH(q13)
LE32TOH(q11)
LE32TOH(q15)
veor q0, q0, q8 /* compute ciphertext bytes [32:64) */
veor q1, q1, q9
vld1.32 {q8-q9}, [r1]! /* load plaintext bytes [64:96) */
vst1.32 {q0-q1}, [r0]! /* store ciphertext bytes [32:64) */
vld1.32 {q0-q1}, [r1]! /* load plaintext bytes [96:128) */
veor q2, q2, q8 /* compute ciphertext bytes [64:96) */
veor q6, q6, q9
vld1.32 {q8-q9}, [r1]! /* load plaintext bytes [128:160) */
vst1.32 {q2}, [r0]! /* store ciphertext bytes [64:80) */
veor q10, q10, q0 /* compute ciphertext bytes [96:128) */
veor q14, q14, q1
vld1.32 {q0-q1}, [r1]! /* load plaintext bytes [160:192) */
vst1.32 {q6}, [r0]! /* store ciphertext bytes [80:96) */
veor q4, q4, q8 /* compute ciphertext bytes [128:160) */
veor q5, q5, q9
vld1.32 {q8-q9}, [r1]! /* load plaintext bytes [192:224) */
vst1.32 {q10}, [r0]! /* store ciphertext bytes [96:112) */
veor q12, q12, q0 /* compute ciphertext bytes [160:192) */
veor q13, q13, q1
vld1.32 {q0-q1}, [r1] /* load plaintext bytes [224:256) */
vst1.32 {q14}, [r0]! /* store ciphertext bytes [112:128) */
veor q8, q3, q8 /* compute ciphertext bytes [192:224) */
veor q9, q7, q9
vst1.32 {q4-q5}, [r0]! /* store ciphertext bytes [128:160) */
vst1.32 {q12-q13}, [r0]! /* store ciphertext bytes [160:192) */
veor q0, q11, q0 /* compute ciphertext bytes [224:256) */
veor q1, q15, q1
vst1.32 {q8-q9}, [r0]! /* store ciphertext bytes [192:224) */
vst1.32 {q0-q1}, [r0] /* store ciphertext bytes [224:256) */
/* zero temporary space on the stack */
vmov.i32 q0, #0
vmov.i32 q1, #0
vst1.8 {q0-q1}, [fp, :256]
/* restore callee-saves registers and stack */
vpop {d8-d15}
pop {r4, r5, r6, r7, r8, r10, fp, lr}
bx lr
END(chacha_stream_xor256_neon)
.section .rodata
.p2align 4
.Lconstants:
.type v0123,%object
v0123:
.long 0, 1, 2, 3
END(v0123)
.type rot8,%object
rot8:
.long 0x02010003, 0x06050407
END(rot8)

View File

@ -1,4 +1,4 @@
# $NetBSD: files.chacha_arm,v 1.2 2020/07/27 20:51:29 riastradh Exp $
# $NetBSD: files.chacha_arm,v 1.3 2020/07/28 20:08:48 riastradh Exp $
ifdef aarch64
makeoptions chacha "COPTS.chacha_neon.c"+="-march=armv8-a"
@ -7,5 +7,6 @@ makeoptions aes "COPTS.chacha_neon.c"+="-mfloat-abi=softfp -mfpu=neon"
endif
file crypto/chacha/arch/arm/chacha_neon.c chacha & (cpu_cortex | aarch64)
file crypto/chacha/arch/arm/chacha_neon_32.S chacha & cpu_cortex & !aarch64
file crypto/chacha/arch/arm/chacha_neon_64.S chacha & aarch64
file crypto/chacha/arch/arm/chacha_neon_impl.c chacha & (cpu_cortex | aarch64)

View File

@ -1,4 +1,4 @@
# $NetBSD: Makefile,v 1.2 2020/07/27 20:51:29 riastradh Exp $
# $NetBSD: Makefile,v 1.3 2020/07/28 20:08:48 riastradh Exp $
.include <bsd.own.mk>
@ -22,7 +22,9 @@ SRCS.t_chacha+= chacha_selftest.c
CPPFLAGS+= -I${NETBSDSRCDIR}/sys/crypto/chacha/arch/arm
SRCS.t_chacha+= chacha_neon.c
.if !empty(MACHINE_ARCH:Maarch64*)
.if !empty(MACHINE_ARCH:Mearmv7*)
SRCS.t_chacha+= chacha_neon_32.S
.elif !empty(MACHINE_ARCH:Maarch64*)
SRCS.t_chacha+= chacha_neon_64.S
.endif
SRCS.t_chacha+= chacha_neon_impl.c