Change indent. no code changes.

This commit is contained in:
uch 1999-09-22 12:49:48 +00:00
parent 99024b0423
commit 7a074afddc
6 changed files with 384 additions and 380 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: elf.c,v 1.1.1.1 1999/09/16 12:23:30 takemura Exp $ */
/* $NetBSD: elf.c,v 1.2 1999/09/22 12:49:48 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -260,7 +260,7 @@ scanfile(int fd, caddr_t *start, caddr_t *end, caddr_t *entry, int load)
memset(&dbg_eh, 0, sizeof(Elf_Ehdr));
memset(dbg_sh, 0, sizeof(Elf_Shdr) * 2);
memcpy(dbg_eh.e_ident, elf->e_ident,
memcpy(dbg_eh.e_ident, elf->e_ident,
sizeof(elf->e_ident));
dbg_eh.e_machine = elf->e_machine;
dbg_eh.e_version = elf->e_version;

View File

@ -1,4 +1,4 @@
/* $NetBSD: main.c,v 1.1.1.1 1999/09/16 12:23:30 takemura Exp $ */
/* $NetBSD: main.c,v 1.2 1999/09/22 12:49:49 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -619,7 +619,7 @@ BOOL SerialPort(BOOL on)
static HANDLE hPort = INVALID_HANDLE_VALUE;
BOOL res = (hPort != INVALID_HANDLE_VALUE);
if (on != res) {
if (on != res) {
if (on) {
hPort = CreateFile(TEXT("COM1:"),
GENERIC_READ | GENERIC_WRITE,
@ -631,13 +631,13 @@ BOOL SerialPort(BOOL on)
debug_printf(TEXT("open failed\n"));
} else {
DWORD Len;
BYTE x = 'X';
#if 0
BYTE x = 'X';
#if 0
WriteFile (hPort, &x, 1, &Len, 0);
WriteFile (hPort, &x, 1, &Len, 0);
WriteFile (hPort, &x, 1, &Len, 0);
WriteFile (hPort, &x, 1, &Len, 0);
#endif
#endif
}
} else {
debug_printf(TEXT("serial port OFF\n"));

View File

@ -1,4 +1,4 @@
/* $NetBSD: pbsdboot.h,v 1.1.1.1 1999/09/16 12:23:30 takemura Exp $ */
/* $NetBSD: pbsdboot.h,v 1.2 1999/09/22 12:49:49 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -59,16 +59,16 @@ BOOL VirtualCopy(LPVOID, LPVOID, DWORD, DWORD);
* structure declarations
*/
struct map_s {
caddr_t entry;
caddr_t base;
int pagesize;
int leafsize;
int nleaves;
caddr_t arg0;
caddr_t arg1;
caddr_t arg2;
caddr_t arg3;
caddr_t *leaf[32];
caddr_t entry;
caddr_t base;
int pagesize;
int leafsize;
int nleaves;
caddr_t arg0;
caddr_t arg1;
caddr_t arg2;
caddr_t arg3;
caddr_t *leaf[32];
};
struct preference_s {

View File

@ -1,4 +1,4 @@
/* $NetBSD: print.c,v 1.1.1.1 1999/09/16 12:23:31 takemura Exp $ */
/* $NetBSD: print.c,v 1.2 1999/09/22 12:49:49 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -40,28 +40,28 @@
int
debug_printf(LPWSTR lpszFmt, ...)
{
int count;
va_list ap;
wchar_t buffer[1024];
int count;
va_list ap;
wchar_t buffer[1024];
va_start(ap, lpszFmt);
count = wvsprintf(buffer, lpszFmt, ap);
va_end(ap);
if (count > 0) {
OutputDebugStringW(buffer);
}
return count;
va_start(ap, lpszFmt);
count = wvsprintf(buffer, lpszFmt, ap);
va_end(ap);
if (count > 0) {
OutputDebugStringW(buffer);
}
return count;
}
int
msg_printf(UINT type, LPWSTR caption, LPWSTR lpszFmt, ...)
{
int count;
va_list ap;
TCHAR buffer[1024];
int count;
va_list ap;
TCHAR buffer[1024];
va_start(ap, lpszFmt);
count = wvsprintf(buffer, lpszFmt, ap);
va_end(ap);
return MessageBox(hWndMain, buffer, caption, type);
va_start(ap, lpszFmt);
count = wvsprintf(buffer, lpszFmt, ap);
va_end(ap);
return MessageBox(hWndMain, buffer, caption, type);
}

View File

@ -1,4 +1,4 @@
/* $NetBSD: startprog.c,v 1.1.1.1 1999/09/16 12:23:31 takemura Exp $ */
/* $NetBSD: startprog.c,v 1.2 1999/09/22 12:49:49 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -43,97 +43,97 @@ extern void asm_code_end();
#if 0
static void clear_screen()
{
unsigned char* mem;
unsigned char* mem;
/*
* clear screen
*/
mem = (unsigned char*)VirtualAlloc(
0,
0x4b00,
MEM_RESERVE,
PAGE_NOACCESS);
VirtualCopy(
(LPVOID)mem,
(LPVOID)(0xaa000000 >> 8),
0x4b00,
/*
* clear screen
*/
mem = (unsigned char*)VirtualAlloc(
0,
0x4b00,
MEM_RESERVE,
PAGE_NOACCESS);
VirtualCopy(
(LPVOID)mem,
(LPVOID)(0xaa000000 >> 8),
0x4b00,
// PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
PAGE_READWRITE | PAGE_PHYSICAL);
memset(mem, 0, 0x4b00);
VirtualFree(mem, 0, MEM_RELEASE);
PAGE_READWRITE | PAGE_PHYSICAL);
memset(mem, 0, 0x4b00);
VirtualFree(mem, 0, MEM_RELEASE);
}
static void flush_data()
{
unsigned char* mem;
mem = (unsigned char*)malloc(0x4000);
memset(mem, 0, 0x4000);
free(mem);
unsigned char* mem;
mem = (unsigned char*)malloc(0x4000);
memset(mem, 0, 0x4000);
free(mem);
}
#endif
int
startprog(caddr_t map)
{
int i;
unsigned char *mem;
unsigned long jump_instruction, phys_mem;
unsigned char *codep = (unsigned char*)asm_code;
int code_len = (unsigned char*)asm_code_end - codep;
int i;
unsigned char *mem;
unsigned long jump_instruction, phys_mem;
unsigned char *codep = (unsigned char*)asm_code;
int code_len = (unsigned char*)asm_code_end - codep;
#if 0
clear_screen();
//flush_data();
clear_screen();
//flush_data();
#endif
/*
* allocate physical memory
*/
if ((mem = (unsigned char*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate final page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
return (-1);
}
/*
* allocate physical memory
*/
if ((mem = (unsigned char*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate final page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
return (-1);
}
/*
* copy startup program code
*/
for (i = 0; i < code_len; i++) {
mem[i] = *codep++;
}
/*
* copy startup program code
*/
for (i = 0; i < code_len; i++) {
mem[i] = *codep++;
}
/*
* set map address
*/
*(unsigned short*)&mem[0] = (unsigned short)(((long)map) >> 16);
*(unsigned short*)&mem[4] = (unsigned short)map;
/*
* set map address
*/
*(unsigned short*)&mem[0] = (unsigned short)(((long)map) >> 16);
*(unsigned short*)&mem[4] = (unsigned short)map;
/*
* construct start instruction
*/
phys_mem = (unsigned long)vtophysaddr(mem);
jump_instruction = (0x08000000 | ((phys_mem >> 2) & 0x03ffffff));
/*
* construct start instruction
*/
phys_mem = (unsigned long)vtophysaddr(mem);
jump_instruction = (0x08000000 | ((phys_mem >> 2) & 0x03ffffff));
/*
* map interrupt vector
*/
mem = (unsigned char*)VirtualAlloc(
0,
0x400,
MEM_RESERVE,
PAGE_NOACCESS);
VirtualCopy(
(LPVOID)mem,
(LPVOID)(0x80000000 >> 8),
0x400,
PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
/*
* map interrupt vector
*/
mem = (unsigned char*)VirtualAlloc(
0,
0x400,
MEM_RESERVE,
PAGE_NOACCESS);
VirtualCopy(
(LPVOID)mem,
(LPVOID)(0x80000000 >> 8),
0x400,
PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
/*
* GO !
*/
*(unsigned long*)&mem[0x0] = jump_instruction;
/*
* GO !
*/
*(unsigned long*)&mem[0x0] = jump_instruction;
return (0); /* not reachable */
return (0); /* not reachable */
}
void
@ -171,10 +171,14 @@ asm_code_holder()
* int pagesize; +8
* int leafsize; +12
* int nleaves; +16
* caddr_t arg0; +20
* caddr_t arg1; +24
* caddr_t arg2; +28
* caddr_t arg3; +32
* caddr_t arg0; +20
* caddr_t arg1; +24
* caddr_t arg2; +28
* caddr_t arg3; +32
* caddr_t *leaf[32]; +36
*
*/

View File

@ -1,4 +1,4 @@
/* $NetBSD: vmem.c,v 1.1.1.1 1999/09/16 12:23:31 takemura Exp $ */
/* $NetBSD: vmem.c,v 1.2 1999/09/22 12:49:50 uch Exp $ */
/*-
* Copyright (c) 1999 Shin Takemura.
@ -42,14 +42,14 @@
#define MEM_BLOCK_SIZE (1024*1024*4)
struct addr_s {
caddr_t addr;
int in_use;
caddr_t addr;
int in_use;
};
struct page_header_s {
unsigned long magic0;
int pageno;
unsigned long magic1;
unsigned long magic0;
int pageno;
unsigned long magic1;
};
struct map_s *map = NULL;
@ -62,316 +62,316 @@ caddr_t kernel_end;
int
vmem_exec(caddr_t entry, int argc, char *argv[], struct bootinfo *bi)
{
int i;
caddr_t p;
int i;
caddr_t p;
if (map == NULL) {
debug_printf(TEXT("vmem is not initialized.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
return (-1);
}
if (map == NULL) {
debug_printf(TEXT("vmem is not initialized.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("vmem is not initialized.\n"));
return (-1);
}
debug_printf(TEXT("entry point=0x%x\n"), entry);
debug_printf(TEXT("entry point=0x%x\n"), entry);
map->entry = entry;
map->base = kernel_start;
map->entry = entry;
map->base = kernel_start;
for (i = 0; i < argc; i++) {
argv[i] = vtophysaddr(argv[i]);
}
map->arg0 = (caddr_t)argc;
map->arg1 = vtophysaddr((caddr_t)argv);
map->arg2 = vtophysaddr((caddr_t)bi);
map->arg3 = NULL;
for (i = 0; i < argc; i++) {
argv[i] = vtophysaddr(argv[i]);
}
map->arg0 = (caddr_t)argc;
map->arg1 = vtophysaddr((caddr_t)argv);
map->arg2 = vtophysaddr((caddr_t)bi);
map->arg3 = NULL;
if (map->arg1 == NULL || map->arg2 == NULL) {
debug_printf(TEXT("arg, vtophysaddr() failed\n"));
msg_printf(MSG_ERROR, whoami,
TEXT("arg, vtophysaddr() failed\n"));
return (-1);
}
if (map->arg1 == NULL || map->arg2 == NULL) {
debug_printf(TEXT("arg, vtophysaddr() failed\n"));
msg_printf(MSG_ERROR, whoami,
TEXT("arg, vtophysaddr() failed\n"));
return (-1);
}
for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++) {
if ((p = vtophysaddr(p)) == NULL) {
debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
msg_printf(MSG_ERROR, whoami,
TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
return (-1);
}
map->leaf[i / map->leafsize][i % map->leafsize] = p;
}
for (i = 0; p = map->leaf[i / map->leafsize][i % map->leafsize]; i++) {
if ((p = vtophysaddr(p)) == NULL) {
debug_printf(TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
msg_printf(MSG_ERROR, whoami,
TEXT("vtophysaddr() failed, page %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
return (-1);
}
map->leaf[i / map->leafsize][i % map->leafsize] = p;
}
for (i = 0; i < map->nleaves; i++) {
if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
msg_printf(MSG_ERROR, whoami,
TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
return (-1);
}
map->leaf[i] = (caddr_t*)p;
}
for (i = 0; i < map->nleaves; i++) {
if ((p = vtophysaddr((caddr_t)map->leaf[i])) == NULL) {
debug_printf(TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
msg_printf(MSG_ERROR, whoami,
TEXT("vtophysaddr() failed, leaf %d (addr=0x%x) \n"),
i, map->leaf[i / map->leafsize][i % map->leafsize]);
return (-1);
}
map->leaf[i] = (caddr_t*)p;
}
debug_printf(TEXT("execute startprog()\n"));
//return (-1);
return (startprog(vtophysaddr((caddr_t)map)));
debug_printf(TEXT("execute startprog()\n"));
//return (-1);
return (startprog(vtophysaddr((caddr_t)map)));
}
DWORD
getpagesize()
{
static int init = 0;
static SYSTEM_INFO info;
static int init = 0;
static SYSTEM_INFO info;
if (!init) {
GetSystemInfo(&info);
init = 1;
}
if (!init) {
GetSystemInfo(&info);
init = 1;
}
return (info.dwPageSize);
return (info.dwPageSize);
}
caddr_t
vmem_alloc()
{
int i;
struct page_header_s *page;
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
if (!phys_addrs[i].in_use &&
!(kernel_start <= phys_addrs[i].addr &&
phys_addrs[i].addr < kernel_end)) {
phys_addrs[i].in_use = 1;
return ((caddr_t)page);
}
}
return (NULL);
int i;
struct page_header_s *page;
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
if (!phys_addrs[i].in_use &&
!(kernel_start <= phys_addrs[i].addr &&
phys_addrs[i].addr < kernel_end)) {
phys_addrs[i].in_use = 1;
return ((caddr_t)page);
}
}
return (NULL);
}
static caddr_t
alloc_kpage(caddr_t phys_addr)
{
int i;
struct page_header_s *page;
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
if (phys_addrs[i].addr == phys_addr) {
if (phys_addrs[i].in_use) {
debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
i, phys_addr);
msg_printf(MSG_ERROR, whoami,
TEXT("page %d (phys addr=0x%x) is already in use\n"),
i, phys_addr);
return (NULL);
}
phys_addrs[i].in_use = 1;
return ((caddr_t)page);
}
}
return (vmem_alloc());
int i;
struct page_header_s *page;
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
if (phys_addrs[i].addr == phys_addr) {
if (phys_addrs[i].in_use) {
debug_printf(TEXT("page %d (phys addr=0x%x) is already in use\n"),
i, phys_addr);
msg_printf(MSG_ERROR, whoami,
TEXT("page %d (phys addr=0x%x) is already in use\n"),
i, phys_addr);
return (NULL);
}
phys_addrs[i].in_use = 1;
return ((caddr_t)page);
}
}
return (vmem_alloc());
}
caddr_t
vmem_get(caddr_t phys_addr, int *length)
{
int pageno = (phys_addr - kernel_start) / getpagesize();
int offset = (phys_addr - kernel_start) % getpagesize();
int pageno = (phys_addr - kernel_start) / getpagesize();
int offset = (phys_addr - kernel_start) % getpagesize();
if (map == NULL || pageno < 0 || npages <= pageno) {
return (NULL);
}
if (length) {
*length = getpagesize() - offset;
}
return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
if (map == NULL || pageno < 0 || npages <= pageno) {
return (NULL);
}
if (length) {
*length = getpagesize() - offset;
}
return (map->leaf[pageno / map->leafsize][pageno % map->leafsize] + offset);
}
caddr_t
vtophysaddr(caddr_t page)
{
int pageno = (page - heap) / getpagesize();
int offset = (page - heap) % getpagesize();
int pageno = (page - heap) / getpagesize();
int offset = (page - heap) % getpagesize();
if (map == NULL || pageno < 0 || npages <= pageno) {
return (NULL);
}
return (phys_addrs[pageno].addr + offset);
if (map == NULL || pageno < 0 || npages <= pageno) {
return (NULL);
}
return (phys_addrs[pageno].addr + offset);
}
int
vmem_init(caddr_t start, caddr_t end)
{
int i, N, pageno;
unsigned long magic0;
unsigned long magic1;
int nfounds;
struct page_header_s *page;
long size;
int nleaves;
int i, N, pageno;
unsigned long magic0;
unsigned long magic1;
int nfounds;
struct page_header_s *page;
long size;
int nleaves;
/* align with page size */
start = (caddr_t)(((long)start / getpagesize()) * getpagesize());
end = (caddr_t)((((long)end + getpagesize() - 1) / getpagesize()) * getpagesize());
/* align with page size */
start = (caddr_t)(((long)start / getpagesize()) * getpagesize());
end = (caddr_t)((((long)end + getpagesize() - 1) / getpagesize()) * getpagesize());
kernel_start = start;
kernel_end = end;
size = end - start;
kernel_start = start;
kernel_end = end;
size = end - start;
/*
* program image pages.
*/
npages = (size + getpagesize() - 1) / getpagesize();
/*
* program image pages.
*/
npages = (size + getpagesize() - 1) / getpagesize();
/*
* map leaf pages.
* npages plus one for end mark.
*/
npages += (nleaves = ((npages * sizeof(caddr_t) + getpagesize()) / getpagesize()));
/*
* map leaf pages.
* npages plus one for end mark.
*/
npages += (nleaves = ((npages * sizeof(caddr_t) + getpagesize()) / getpagesize()));
/*
* map root page, startprg code page, argument page and bootinfo page.
*/
npages += 4;
/*
* map root page, startprg code page, argument page and bootinfo page.
*/
npages += 4;
/*
* allocate pages
*/
debug_printf(TEXT("allocate %d pages\n"), npages);
heap = (unsigned char*)
VirtualAlloc(0,
npages * getpagesize(),
MEM_COMMIT,
PAGE_READWRITE | PAGE_NOCACHE);
if (heap == NULL) {
debug_printf(TEXT("can't allocate heap\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
goto error_cleanup;
}
/*
* allocate address table.
*/
phys_addrs = (struct addr_s *)
VirtualAlloc(0,
npages * sizeof(struct addr_s),
MEM_COMMIT,
PAGE_READWRITE);
if (phys_addrs == NULL) {
debug_printf(TEXT("can't allocate address table\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
goto error_cleanup;
}
/*
* set magic number for each page in buffer.
*/
magic0 = Random();
magic1 = Random();
debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
page->magic0 = magic0;
page->pageno = i;
page->magic1 = magic1;
phys_addrs[i].addr = 0;
phys_addrs[i].in_use = 0;
}
/*
* Scan whole physical memory.
*/
nfounds = 0;
for (N = 0; N < MEM_BLOCKS && nfounds < npages; N++) {
unsigned char* mem;
int res;
mem = (unsigned char*)
VirtualAlloc(0,
MEM_BLOCK_SIZE,
MEM_RESERVE,
PAGE_NOACCESS);
res = VirtualCopy((LPVOID)mem,
//(LPVOID)((0xa0000000 + MEM_BLOCK_SIZE * N) >> 8),
(LPVOID)((0x80000000 + MEM_BLOCK_SIZE * N) >> 8),
MEM_BLOCK_SIZE,
PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
for (i = 0; i < (int)(MEM_BLOCK_SIZE/getpagesize()); i++) {
page = (struct page_header_s*)&mem[getpagesize() * i];
if (page->magic0 == magic0 &&
page->magic1 == magic1) {
pageno = page->pageno;
if (0 <= pageno && pageno < npages &&
phys_addrs[pageno].addr == 0) {
phys_addrs[pageno].addr =
(unsigned char*)(0x80000000 + MEM_BLOCK_SIZE * N +
getpagesize() * i);
page->magic0 = 0;
page->magic1 = 0;
if (npages <= ++nfounds) {
break;
}
} else {
debug_printf(TEXT("invalid page header\n"));
msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
goto error_cleanup;
/*
* allocate pages
*/
debug_printf(TEXT("allocate %d pages\n"), npages);
heap = (unsigned char*)
VirtualAlloc(0,
npages * getpagesize(),
MEM_COMMIT,
PAGE_READWRITE | PAGE_NOCACHE);
if (heap == NULL) {
debug_printf(TEXT("can't allocate heap\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate heap\n"));
goto error_cleanup;
}
}
}
VirtualFree(mem, 0, MEM_RELEASE);
}
if (nfounds < npages) {
debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
msg_printf(MSG_ERROR, whoami, TEXT("lost %d pages\n"), npages - nfounds);
goto error_cleanup;
}
/*
* allocate address table.
*/
phys_addrs = (struct addr_s *)
VirtualAlloc(0,
npages * sizeof(struct addr_s),
MEM_COMMIT,
PAGE_READWRITE);
if (phys_addrs == NULL) {
debug_printf(TEXT("can't allocate address table\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate address table\n"));
goto error_cleanup;
}
/*
* allocate root page
*/
if ((map = (struct map_s*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate root page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
goto error_cleanup;
}
map->nleaves = nleaves;
map->leafsize = getpagesize() / sizeof(caddr_t);
map->pagesize = getpagesize();
/*
* set magic number for each page in buffer.
*/
magic0 = Random();
magic1 = Random();
debug_printf(TEXT("magic=%08x%08x\n"), magic0, magic1);
/*
* allocate leaf pages
*/
for (i = 0; i < nleaves; i++) {
if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate leaf page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
goto error_cleanup;
}
}
for (i = 0; i < npages; i++) {
page = (struct page_header_s*)&heap[getpagesize() * i];
page->magic0 = magic0;
page->pageno = i;
page->magic1 = magic1;
phys_addrs[i].addr = 0;
phys_addrs[i].in_use = 0;
}
/*
* allocate kernel pages
*/
for (i = 0; start < kernel_end; start += getpagesize(), i++) {
caddr_t *leaf = map->leaf[i / map->leafsize];
if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
goto error_cleanup;
}
}
map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
/*
* Scan whole physical memory.
*/
nfounds = 0;
for (N = 0; N < MEM_BLOCKS && nfounds < npages; N++) {
unsigned char* mem;
int res;
mem = (unsigned char*)
VirtualAlloc(0,
MEM_BLOCK_SIZE,
MEM_RESERVE,
PAGE_NOACCESS);
res = VirtualCopy((LPVOID)mem,
//(LPVOID)((0xa0000000 + MEM_BLOCK_SIZE * N) >> 8),
(LPVOID)((0x80000000 + MEM_BLOCK_SIZE * N) >> 8),
MEM_BLOCK_SIZE,
PAGE_READWRITE | PAGE_NOCACHE | PAGE_PHYSICAL);
return (0);
for (i = 0; i < (int)(MEM_BLOCK_SIZE/getpagesize()); i++) {
page = (struct page_header_s*)&mem[getpagesize() * i];
if (page->magic0 == magic0 &&
page->magic1 == magic1) {
pageno = page->pageno;
if (0 <= pageno && pageno < npages &&
phys_addrs[pageno].addr == 0) {
phys_addrs[pageno].addr =
(unsigned char*)(0x80000000 + MEM_BLOCK_SIZE * N +
getpagesize() * i);
page->magic0 = 0;
page->magic1 = 0;
if (npages <= ++nfounds) {
break;
}
} else {
debug_printf(TEXT("invalid page header\n"));
msg_printf(MSG_ERROR, whoami, TEXT("invalid page header\n"));
goto error_cleanup;
}
}
}
VirtualFree(mem, 0, MEM_RELEASE);
}
if (nfounds < npages) {
debug_printf(TEXT("lost %d pages\n"), npages - nfounds);
msg_printf(MSG_ERROR, whoami, TEXT("lost %d pages\n"), npages - nfounds);
goto error_cleanup;
}
/*
* allocate root page
*/
if ((map = (struct map_s*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate root page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate root page.\n"));
goto error_cleanup;
}
map->nleaves = nleaves;
map->leafsize = getpagesize() / sizeof(caddr_t);
map->pagesize = getpagesize();
/*
* allocate leaf pages
*/
for (i = 0; i < nleaves; i++) {
if ((map->leaf[i] = (caddr_t*)vmem_alloc()) == NULL) {
debug_printf(TEXT("can't allocate leaf page.\n"));
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate leaf page.\n"));
goto error_cleanup;
}
}
/*
* allocate kernel pages
*/
for (i = 0; start < kernel_end; start += getpagesize(), i++) {
caddr_t *leaf = map->leaf[i / map->leafsize];
if ((leaf[i % map->leafsize] = alloc_kpage(start)) == NULL) {
debug_printf(TEXT("can't allocate page 0x%x.\n"), start);
msg_printf(MSG_ERROR, whoami, TEXT("can't allocate page 0x%x.\n"), start);
goto error_cleanup;
}
}
map->leaf[i / map->leafsize][i % map->leafsize] = NULL; /* END MARK */
return (0);
error_cleanup:
vmem_free();
vmem_free();
return (-1);
return (-1);
}
void
@ -391,18 +391,18 @@ vmem_free()
void
vmem_dump_map()
{
caddr_t addr, page, paddr;
caddr_t addr, page, paddr;
if (map == NULL) {
debug_printf(TEXT("no page map\n"));
return;
}
if (map == NULL) {
debug_printf(TEXT("no page map\n"));
return;
}
for (addr = kernel_start; addr < kernel_end; addr += getpagesize()) {
page = vmem_get(addr, NULL);
paddr = vtophysaddr(page);
debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
for (addr = kernel_start; addr < kernel_end; addr += getpagesize()) {
page = vmem_get(addr, NULL);
paddr = vtophysaddr(page);
debug_printf(TEXT("%08X: vaddr=%08X paddr=%08X %s\n"),
addr, page, paddr, addr == paddr ? TEXT("*") : TEXT("reloc"));
}
}
}