Definitions of various contants and types for arm32 IEEE float point.

This commit is contained in:
mark 1996-05-12 21:26:20 +00:00
parent 46d95534b3
commit 62b52adc0e
2 changed files with 175 additions and 0 deletions

View File

@ -0,0 +1,150 @@
/* $NetBSD: ieee.h,v 1.1 1996/05/12 21:26:20 mark Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ieee.h 8.1 (Berkeley) 6/11/93
*/
/*
* ieee.h defines the machine-dependent layout of the machine's IEEE
* floating point.
*/
/*
* Define the number of bits in each fraction and exponent.
*
* k k+1
* Note that 1.0 x 2 == 0.1 x 2 and that denorms are represented
*
* (-exp_bias+1)
* as fractions that look like 0.fffff x 2 . This means that
*
* -126
* the number 0.10000 x 2 , for instance, is the same as the normalized
*
* -127 -128
* float 1.0 x 2 . Thus, to represent 2 , we need one leading zero
*
* -129
* in the fraction; to represent 2 , we need two, and so on. This
*
* (-exp_bias-fracbits+1)
* implies that the smallest denormalized number is 2
*
* for whichever format we are talking about: for single precision, for
*
* -126 -149
* instance, we get .00000000000000000000001 x 2 , or 1.0 x 2 , and
*
* -149 == -127 - 23 + 1.
*/
#define SNG_EXPBITS 8
#define SNG_FRACBITS 23
#define DBL_EXPBITS 11
#define DBL_FRACBITS 52
#define E80_EXPBITS 15
#define E80_FRACBITS 64
#define EXT_EXPBITS 15
#define EXT_FRACBITS 112
struct ieee_single {
u_int sng_frac:23;
u_int sng_exponent:8;
u_int sng_sign:1;
};
struct ieee_double {
u_int dbl_frach:20;
u_int dbl_exp:11;
u_int dbl_sign:1;
u_int dbl_fracl;
};
struct ieee_e80 {
u_int e80_exp:15;
u_int e80_zero:16;
u_int e80_sign:1;
u_int e80_frach:31;
u_int e80_j:1;
u_int e80_fracl;
};
struct ieee_ext {
u_int ext_frach:16;
u_int ext_exp:15;
u_int ext_sign:1;
u_int ext_frachm;
u_int ext_fraclm;
u_int ext_fracl;
};
/*
* Floats whose exponent is in [1..INFNAN) (of whatever type) are
* `normal'. Floats whose exponent is INFNAN are either Inf or NaN.
* Floats whose exponent is zero are either zero (iff all fraction
* bits are zero) or subnormal values.
*
* A NaN is a `signalling NaN' if its QUIETNAN bit is clear in its
* high fraction; if the bit is set, it is a `quiet NaN'.
*/
#define SNG_EXP_INFNAN 255
#define DBL_EXP_INFNAN 2047
#define E80_EXP_INFNAN 32767
#define EXT_EXP_INFNAN 32767
#if 0
#define SNG_QUIETNAN (1 << 22)
#define DBL_QUIETNAN (1 << 19)
#define E80_QUIETNAN (1 << 15)
#define EXT_QUIETNAN (1 << 15)
#endif
/*
* Exponent biases.
*/
#define SNG_EXP_BIAS 127
#define DBL_EXP_BIAS 1023
#define E80_EXP_BIAS 16383
#define EXT_EXP_BIAS 16383

View File

@ -0,0 +1,25 @@
/* $NetBSD: ieeefp.h,v 1.1 1996/05/12 21:26:24 mark Exp $ */
/*
* Written by J.T. Conklin, Apr 28, 1995
* Public domain.
*/
#ifndef _ARM32_IEEEFP_H_
#define _ARM32_IEEEFP_H_
typedef int fp_except;
#define FP_X_INV 0x01 /* invalid operation exception */
#define FP_X_DZ 0x02 /* divide-by-zero exception */
#define FP_X_OFL 0x04 /* overflow exception */
#define FP_X_UFL 0x08 /* underflow exception */
#define FP_X_IMP 0x10 /* imprecise (loss of precision; "inexact") */
typedef enum {
FP_RN=0, /* round to nearest representable number */
FP_RP=1, /* round toward positive infinity */
FP_RM=2, /* round toward negative infinity */
FP_RZ=3 /* round to zero (truncate) */
} fp_rnd;
#endif /* _ARM32_IEEEFP_H_ */