explain a bit
This commit is contained in:
parent
aff8e6cfa5
commit
5dc461da23
@ -1,6 +1,6 @@
|
||||
/* $NetBSD: sched_4bsd.c,v 1.30 2014/06/24 10:08:45 maxv Exp $ */
|
||||
/* $NetBSD: sched_4bsd.c,v 1.31 2017/07/08 15:15:43 maxv Exp $ */
|
||||
|
||||
/*-
|
||||
/*
|
||||
* Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
@ -31,7 +31,7 @@
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*-
|
||||
/*
|
||||
* Copyright (c) 1982, 1986, 1990, 1991, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
* (c) UNIX System Laboratories, Inc.
|
||||
@ -68,7 +68,7 @@
|
||||
*/
|
||||
|
||||
#include <sys/cdefs.h>
|
||||
__KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.30 2014/06/24 10:08:45 maxv Exp $");
|
||||
__KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.31 2017/07/08 15:15:43 maxv Exp $");
|
||||
|
||||
#include "opt_ddb.h"
|
||||
#include "opt_lockdebug.h"
|
||||
@ -80,13 +80,10 @@ __KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.30 2014/06/24 10:08:45 maxv Exp $")
|
||||
#include <sys/cpu.h>
|
||||
#include <sys/proc.h>
|
||||
#include <sys/kernel.h>
|
||||
#include <sys/signalvar.h>
|
||||
#include <sys/resourcevar.h>
|
||||
#include <sys/sched.h>
|
||||
#include <sys/sysctl.h>
|
||||
#include <sys/kauth.h>
|
||||
#include <sys/lockdebug.h>
|
||||
#include <sys/kmem.h>
|
||||
#include <sys/intr.h>
|
||||
|
||||
static void updatepri(struct lwp *);
|
||||
@ -95,7 +92,7 @@ static void resetpriority(struct lwp *);
|
||||
extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
|
||||
|
||||
/* Number of hardclock ticks per sched_tick() */
|
||||
static int rrticks;
|
||||
static int rrticks __read_mostly;
|
||||
|
||||
/*
|
||||
* Force switch among equal priority processes every 100ms.
|
||||
@ -133,7 +130,7 @@ sched_tick(struct cpu_info *ci)
|
||||
if (spc->spc_flags & SPCF_SHOULDYIELD) {
|
||||
/*
|
||||
* Process is stuck in kernel somewhere, probably
|
||||
* due to buggy or inefficient code. Force a
|
||||
* due to buggy or inefficient code. Force a
|
||||
* kernel preemption.
|
||||
*/
|
||||
cpu_need_resched(ci, RESCHED_KPREEMPT);
|
||||
@ -170,71 +167,90 @@ sched_tick(struct cpu_info *ci)
|
||||
#define ESTCPULIM(e) min((e), ESTCPU_MAX)
|
||||
|
||||
/*
|
||||
* Constants for digital decay and forget:
|
||||
* 90% of (l_estcpu) usage in 5 * loadav time
|
||||
* 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
|
||||
* Note that, as ps(1) mentions, this can let percentages
|
||||
* total over 100% (I've seen 137.9% for 3 processes).
|
||||
* The main parameter used by this algorithm is 'l_estcpu'. It is an estimate
|
||||
* of the recent CPU utilization of the thread.
|
||||
*
|
||||
* l_estcpu is:
|
||||
* - increased each time the hardclock ticks and the thread is found to
|
||||
* be executing, in sched_schedclock() called from hardclock()
|
||||
* - decreased (filtered) on each sched tick, in sched_pstats_hook()
|
||||
* If the lwp is sleeping for more than a second, we don't touch l_estcpu: it
|
||||
* will be updated in sched_setrunnable() when the lwp wakes up, in burst mode
|
||||
* (ie, we decrease it n times).
|
||||
*
|
||||
* Note that hardclock updates l_estcpu and l_cpticks independently.
|
||||
*
|
||||
* We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
|
||||
* That is, the system wants to compute a value of decay such
|
||||
* that the following for loop:
|
||||
* for (i = 0; i < (5 * loadavg); i++)
|
||||
* l_estcpu *= decay;
|
||||
* will compute
|
||||
* l_estcpu *= 0.1;
|
||||
* for all values of loadavg:
|
||||
* -----------------------------------------------------------------------------
|
||||
*
|
||||
* Here we describe how l_estcpu is decreased.
|
||||
*
|
||||
* Constants for digital decay (filter):
|
||||
* 90% of l_estcpu usage in (5 * loadavg) seconds
|
||||
*
|
||||
* We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds. That is, we
|
||||
* want to compute a value of decay such that the following loop:
|
||||
* for (i = 0; i < (5 * loadavg); i++)
|
||||
* l_estcpu *= decay;
|
||||
* will result in
|
||||
* l_estcpu *= 0.1;
|
||||
* for all values of loadavg.
|
||||
*
|
||||
* Mathematically this loop can be expressed by saying:
|
||||
* decay ** (5 * loadavg) ~= .1
|
||||
* decay ** (5 * loadavg) ~= .1
|
||||
*
|
||||
* The system computes decay as:
|
||||
* decay = (2 * loadavg) / (2 * loadavg + 1)
|
||||
* And finally, the corresponding value of decay we're using is:
|
||||
* decay = (2 * loadavg) / (2 * loadavg + 1)
|
||||
*
|
||||
* We wish to prove that the system's computation of decay
|
||||
* will always fulfill the equation:
|
||||
* decay ** (5 * loadavg) ~= .1
|
||||
* -----------------------------------------------------------------------------
|
||||
*
|
||||
* Now, let's prove that the value of decay stated above will always fulfill
|
||||
* the equation:
|
||||
* decay ** (5 * loadavg) ~= .1
|
||||
*
|
||||
* If we compute b as:
|
||||
* b = 2 * loadavg
|
||||
* b = 2 * loadavg
|
||||
* then
|
||||
* decay = b / (b + 1)
|
||||
* decay = b / (b + 1)
|
||||
*
|
||||
* We now need to prove two things:
|
||||
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
|
||||
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
|
||||
* 1) Given [factor ** (5 * loadavg) =~ .1], prove [factor == b/(b+1)].
|
||||
* 2) Given [b/(b+1) ** power =~ .1], prove [power == (5 * loadavg)].
|
||||
*
|
||||
* Facts:
|
||||
* For x close to zero, exp(x) =~ 1 + x, since
|
||||
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
|
||||
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
|
||||
* For x close to zero, ln(1+x) =~ x, since
|
||||
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
|
||||
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
|
||||
* ln(.1) =~ -2.30
|
||||
* * For x real: exp(x) = 0! + x**1/1! + x**2/2! + ...
|
||||
* Therefore, for x close to zero, exp(x) =~ 1 + x.
|
||||
* In turn, for b large enough, exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
|
||||
*
|
||||
* * For b large enough, (b-1)/b =~ b/(b+1).
|
||||
*
|
||||
* * For x belonging to [-1;1[, ln(1-x) = - x - x**2/2 - x**3/3 - ...
|
||||
* Therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
|
||||
*
|
||||
* * ln(0.1) =~ -2.30
|
||||
*
|
||||
* Proof of (1):
|
||||
* Solve (factor)**(power) =~ .1 given power (5*loadav):
|
||||
* solving for factor,
|
||||
* ln(factor) =~ (-2.30/5*loadav), or
|
||||
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
|
||||
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
|
||||
* factor ** (5 * loadavg) =~ 0.1
|
||||
* => ln(factor) =~ -2.30 / (5 * loadavg)
|
||||
* => factor =~ exp(-1 / ((5 / 2.30) * loadavg))
|
||||
* =~ exp(-1 / (2 * loadavg))
|
||||
* =~ exp(-1 / b)
|
||||
* =~ (b - 1) / b
|
||||
* =~ b / (b + 1)
|
||||
* =~ (2 * loadavg) / ((2 * loadavg) + 1)
|
||||
*
|
||||
* Proof of (2):
|
||||
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
|
||||
* solving for power,
|
||||
* power*ln(b/(b+1)) =~ -2.30, or
|
||||
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
|
||||
* (b / (b + 1)) ** power =~ .1
|
||||
* => power * ln(b / (b + 1)) =~ -2.30
|
||||
* => power * (-1 / (b + 1)) =~ -2.30
|
||||
* => power =~ 2.30 * (b + 1)
|
||||
* => power =~ 4.60 * loadavg + 2.30
|
||||
* => power =~ 5 * loadavg
|
||||
*
|
||||
* Actual power values for the implemented algorithm are as follows:
|
||||
* loadav: 1 2 3 4
|
||||
* power: 5.68 10.32 14.94 19.55
|
||||
* Conclusion: decay = (2 * loadavg) / (2 * loadavg + 1)
|
||||
*/
|
||||
|
||||
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
|
||||
#define loadfactor(loadav) (2 * (loadav) / ncpu)
|
||||
/* See calculations above */
|
||||
#define loadfactor(loadavg) (2 * (loadavg) / ncpu)
|
||||
|
||||
static fixpt_t
|
||||
decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
|
||||
@ -250,22 +266,24 @@ decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
|
||||
if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
|
||||
return estcpu * loadfac / (loadfac + FSCALE);
|
||||
}
|
||||
#endif /* !defined(_LP64) */
|
||||
#endif
|
||||
|
||||
return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
|
||||
}
|
||||
|
||||
/*
|
||||
* For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
|
||||
* sleeping for at least seven times the loadfactor will decay l_estcpu to
|
||||
* less than (1 << ESTCPU_SHIFT).
|
||||
*
|
||||
* note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
|
||||
*/
|
||||
static fixpt_t
|
||||
decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
|
||||
{
|
||||
|
||||
/*
|
||||
* For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
|
||||
* if we slept for at least seven times the loadfactor, we will decay
|
||||
* l_estcpu to less than (1 << ESTCPU_SHIFT), and therefore we can
|
||||
* return zero directly.
|
||||
*
|
||||
* Note that our ESTCPU_MAX is actually much smaller than
|
||||
* (255 << ESTCPU_SHIFT).
|
||||
*/
|
||||
if ((n << FSHIFT) >= 7 * loadfac) {
|
||||
return 0;
|
||||
}
|
||||
@ -299,13 +317,13 @@ sched_pstats_hook(struct lwp *l, int batch)
|
||||
return;
|
||||
}
|
||||
}
|
||||
loadfac = 2 * (averunnable.ldavg[0]);
|
||||
loadfac = 2 * (averunnable.ldavg[0]); /* XXX: should be loadfactor? */
|
||||
l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
|
||||
resetpriority(l);
|
||||
}
|
||||
|
||||
/*
|
||||
* Recalculate the priority of a process after it has slept for a while.
|
||||
* Recalculate the priority of an LWP after it has slept for a while.
|
||||
*/
|
||||
static void
|
||||
updatepri(struct lwp *l)
|
||||
@ -383,10 +401,9 @@ resetpriority(struct lwp *l)
|
||||
* is running (linearly), and decays away exponentially, at a rate which is
|
||||
* proportionally slower when the system is busy. The basic principle is
|
||||
* that the system will 90% forget that the process used a lot of CPU time
|
||||
* in 5 * loadav seconds. This causes the system to favor processes which
|
||||
* in (5 * loadavg) seconds. This causes the system to favor processes which
|
||||
* haven't run much recently, and to round-robin among other processes.
|
||||
*/
|
||||
|
||||
void
|
||||
sched_schedclock(struct lwp *l)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user