Don't use ARM32_NEW_VM_LAYOUT or initarm_common() for now. It's not

quite ready for prime-time on evbarm.
This commit is contained in:
scw 2003-04-19 08:18:12 +00:00
parent fd46661ecf
commit 5c0b008779
5 changed files with 521 additions and 53 deletions

View File

@ -1,4 +1,4 @@
# $NetBSD: files.iq80321,v 1.4 2003/04/18 12:01:32 scw Exp $
# $NetBSD: files.iq80321,v 1.5 2003/04/19 08:18:12 scw Exp $
#
# Intel IQ80321 evaluation board configuration info
#
@ -6,8 +6,9 @@
# Use the generic ARM soft interrupt code.
file arch/arm/arm/softintr.c
# Use the shared initarm_common() code
file arch/evbarm/evbarm/initarm_common.c
# Use the shared initarm_common() code.
# XXX: Not yet ready for prime-time
#file arch/evbarm/evbarm/initarm_common.c
file arch/evbarm/iq80321/iq80321_7seg.c
file arch/evbarm/iq80321/iq80321_machdep.c

View File

@ -1,10 +1,10 @@
# $NetBSD: mk.iq80321,v 1.2 2003/04/18 12:01:32 scw Exp $
# $NetBSD: mk.iq80321,v 1.3 2003/04/19 08:18:12 scw Exp $
SYSTEM_FIRST_OBJ= iq80321_start.o
SYSTEM_FIRST_SFILE= ${THISARM}/iq80321/iq80321_start.S
KERNEL_BASE_PHYS=0x00020000
KERNEL_BASE_VIRT=0xc0020000
KERNEL_BASE_PHYS=0x00200000
KERNEL_BASE_VIRT=0xc0200000
SYSTEM_LD_TAIL_EXTRA+=; \
echo ${OBJCOPY} -S -O srec $@ $@.srec; \

View File

@ -1,4 +1,4 @@
# $NetBSD: std.iq80321,v 1.7 2003/04/18 12:01:32 scw Exp $
# $NetBSD: std.iq80321,v 1.8 2003/04/19 08:18:12 scw Exp $
#
# standard NetBSD/evbarm for IQ80321 options
@ -16,7 +16,7 @@ options ARM32
# New pmap options are standard on this board
options ARM32_PMAP_NEW
options ARM32_NEW_VM_LAYOUT
#options ARM32_NEW_VM_LAYOUT # Not yet ready for prime-time
makeoptions BOARDTYPE="iq80321"
makeoptions BOARDMKFRAG="${THISARM}/conf/mk.iq80321"

View File

@ -1,10 +1,10 @@
/* $NetBSD: iq80321_machdep.c,v 1.14 2003/04/18 12:01:32 scw Exp $ */
/* $NetBSD: iq80321_machdep.c,v 1.15 2003/04/19 08:18:13 scw Exp $ */
/*
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe and Steve C. Woodford for Wasabi Systems, Inc.
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -81,9 +81,12 @@
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
@ -94,18 +97,19 @@
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/xscale/i80321reg.h>
#include <arm/xscale/i80321var.h>
#include <dev/pci/ppbreg.h>
#include <evbarm/iq80321/iq80321reg.h>
#include <evbarm/iq80321/iq80321var.h>
#include <evbarm/iq80321/obiovar.h>
#include <evbarm/evbarm/initarmvar.h>
#include "opt_ipkdb.h"
/*
@ -119,10 +123,67 @@
u_int cpu_reset_address = 0x00000000;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
vm_offset_t pagetables_start;
int physmem = 0;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
pv_addr_t minidataclean;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */
#define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 2
/* L2 table for mapping i80321 */
#define KERNEL_PT_IOPXS (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)
/* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA (KERNEL_PT_IOPXS + 1)
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
/* Prototypes */
void consinit(void);
@ -230,44 +291,37 @@ cpu_reboot(int howto, char *bootstr)
}
/*
* Mapping table for core on-board devices.
* Mapping table for core kernel memory. This memory is mapped at init
* time with section mappings.
*/
static const struct initarm_iospace iq80321_ioconf[] = {
{
IQ80321_OBIO_BASE,
IQ80321_OBIO_BASE,
IQ80321_OBIO_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE
},
{
IQ80321_IOW_VBASE,
VERDE_OUT_XLATE_IO_WIN0_BASE,
VERDE_OUT_XLATE_IO_WIN_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE
},
{
IQ80321_80321_VBASE,
VERDE_PMMR_BASE,
VERDE_PMMR_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE
}
};
#define IQ80321_NIO (sizeof(iq80321_ioconf)/sizeof(struct initarm_iospace))
struct l1_sec_map {
vaddr_t va;
vaddr_t pa;
vsize_t size;
vm_prot_t prot;
int cache;
} l1_sec_table[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
IQ80321_OBIO_BASE,
IQ80321_OBIO_BASE,
IQ80321_OBIO_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
static struct initarm_config iq80321_bootconf = {
&bootconfig,
0, /* PA which maps to KERNEL_BASE (see initarm()) */
ARM_VECTORS_HIGH, /* Where we'd like the vector page */
IQ80321_IOPXS_VBASE, /* KVA of fixed onboard devices */
IQ80321_IOPXS_VSIZE, /* Size of the above mapping (5MB) */
IQ80321_NIO, /* # of fixed I/O mappings */
iq80321_ioconf /* List of fixed I/O mappings */
{
0,
0,
0,
0,
0,
}
};
static void
iq80321_hardclock_hook(void)
{
@ -294,9 +348,16 @@ u_int
initarm(void *arg)
{
extern vaddr_t xscale_cache_clean_addr;
#ifdef DIAGNOSTIC
extern vsize_t xscale_minidata_clean_size;
#endif
int loop;
int loop1;
u_int l1pagetable;
pv_addr_t kernel_l1pt;
pv_addr_t kernel_ptpt;
paddr_t memstart;
psize_t memsize;
vaddr_t kstack;
/*
* Clear out the 7-segment display. Whee, the first visual
@ -345,7 +406,314 @@ initarm(void *arg)
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
iq80321_bootconf.ic_kernel_base_pa = memstart;
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the L1 table that we set up, we
* will panic. We will update physical_freestart and
* physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
physical_freestart = 0xa0009000UL;
physical_freeend = 0xa0200000UL;
physmem = (physical_end - physical_start) / PAGE_SIZE;
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K bounaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * PAGE_SIZE); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
#ifdef ARM32_PMAP_NEW
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
#else
alloc_pages(kernel_pt_table[loop1].pv_pa,
L2_TABLE_SIZE / PAGE_SIZE);
kernel_pt_table[loop1].pv_va =
kernel_pt_table[loop1].pv_pa;
#endif
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate a page for the page table to map kernel page tables. */
valloc_pages(kernel_ptpt, L2_TABLE_SIZE / PAGE_SIZE);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
valloc_pages(minidataclean, 1);
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
/*
* XXX Defer this to later so that we can reclaim the memory
* XXX used by the RedBoot page tables.
*/
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
pmap_link_l2pt(l1pagetable, IQ80321_IOPXS_VBASE,
&kernel_pt_table[KERNEL_PT_IOPXS]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
pmap_link_l2pt(l1pagetable, PTE_BASE, &kernel_ptpt);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#ifndef ARM32_PMAP_NEW
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
#endif
/* Map the Mini-Data cache clean area. */
xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
minidataclean.pv_pa);
/* Map the page table that maps the kernel pages */
pmap_map_entry(l1pagetable, kernel_ptpt.pv_va, kernel_ptpt.pv_pa,
#ifndef ARM32_PMAP_NEW
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
#endif
/*
* Map entries in the page table used to map PTE's
* Basically every kernel page table gets mapped here
*/
/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) {
pmap_map_entry(l1pagetable,
PTE_BASE + ((KERNEL_BASE +
(loop * 0x00400000)) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_KERNEL + loop].pv_pa,
#ifndef ARM32_PMAP_NEW
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
#endif
}
pmap_map_entry(l1pagetable,
PTE_BASE + (PTE_BASE >> (PGSHIFT-2)),
#ifndef ARM32_PMAP_NEW
kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
kernel_ptpt.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
#endif
pmap_map_entry(l1pagetable,
PTE_BASE + (0x00000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_SYS].pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_map_entry(l1pagetable,
PTE_BASE + ((KERNEL_VM_BASE +
(loop * 0x00400000)) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA + loop].pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the vector page. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/*
* Map devices we can map w/ section mappings.
*/
loop = 0;
while (l1_sec_table[loop].size) {
vm_size_t sz;
#ifdef VERBOSE_INIT_ARM
printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
l1_sec_table[loop].va);
#endif
for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE)
pmap_map_section(l1pagetable,
l1_sec_table[loop].va + sz,
l1_sec_table[loop].pa + sz,
l1_sec_table[loop].prot,
l1_sec_table[loop].cache);
++loop;
}
/*
* Map the PCI I/O spaces and i80321 registers. These are too
* small to be mapped w/ section mappings.
*/
#ifdef VERBOSE_INIT_ARM
printf("Mapping IOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
VERDE_OUT_XLATE_IO_WIN0_BASE,
VERDE_OUT_XLATE_IO_WIN0_BASE + VERDE_OUT_XLATE_IO_WIN_SIZE - 1,
IQ80321_IOW_VBASE);
#endif
pmap_map_chunk(l1pagetable, IQ80321_IOW_VBASE,
VERDE_OUT_XLATE_IO_WIN0_BASE, VERDE_OUT_XLATE_IO_WIN_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#ifdef VERBOSE_INIT_ARM
printf("Mapping 80321 0x%08lx -> 0x%08lx @ 0x%08lx\n",
VERDE_PMMR_BASE,
VERDE_PMMR_BASE + VERDE_PMMR_SIZE - 1,
IQ80321_80321_VBASE);
#endif
pmap_map_chunk(l1pagetable, IQ80321_80321_VBASE,
VERDE_PMMR_BASE, VERDE_PMMR_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
/*
* Give the XScale global cache clean code an appropriately
@ -355,12 +723,112 @@ initarm(void *arg)
xscale_cache_clean_addr = 0xff000000U;
/*
* Now bootstrap the VM system
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
kstack = initarm_common(&iq80321_bootconf);
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = physical_start +
(((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
KERNEL_BASE);
physical_freeend = physical_end;
free_pages =
(physical_freeend - physical_freestart) / PAGE_SIZE;
}
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
#ifdef ARM32_PMAP_NEW
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
#endif
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
#ifdef ARM32_PMAP_NEW
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init
*/
proc0paddr = (struct user *)kernelstack.pv_va;
lwp0.l_addr = proc0paddr;
#endif
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
printf("init subsystems: stacks ");
set_stackptr(PSR_IRQ32_MODE,
irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE,
abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE,
undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();
/* Load memory into UVM. */
printf("page ");
uvm_setpagesize(); /* initialize PAGE_SIZE-dependent variables */
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
printf("pmap ");
#ifdef ARM32_PMAP_NEW
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va);
#else
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
#endif
/* Setup the IRQ system */
printf("irq ");
i80321_intr_init();
printf("done.\n");
#ifdef IPKDB
/* Initialise ipkdb */
@ -380,7 +848,7 @@ initarm(void *arg)
#endif
/* We return the new stack pointer address */
return (kstack);
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void

View File

@ -1,4 +1,4 @@
/* $NetBSD: iq80321reg.h,v 1.2 2003/04/18 12:01:33 scw Exp $ */
/* $NetBSD: iq80321reg.h,v 1.3 2003/04/19 08:18:13 scw Exp $ */
/*
* Copyright (c) 2002 Wasabi Systems, Inc.
@ -81,7 +81,6 @@
#define IQ80321_IOW_VBASE IQ80321_IOPXS_VBASE
#define IQ80321_80321_VBASE (IQ80321_IOW_VBASE + \
VERDE_OUT_XLATE_IO_WIN_SIZE)
#define IQ80321_IOPXS_VSIZE 0x00500000 /* 5MB total size */
/*
* The IQ80321 on-board devices are mapped VA==PA during bootstrap.