Remove NetBSD-1.3.2 module and add new NetBSD-1.3 module - this module

is based on the one in pkgsrc and will be included in the next version
of top - either 3.5beta10 or 3.5.
This commit is contained in:
simonb 1999-02-15 00:30:26 +00:00
parent 5f3bd0f103
commit 58d46c2e6a
2 changed files with 887 additions and 957 deletions

View File

@ -0,0 +1,887 @@
/*
* top - a top users display for Unix
*
* SYNOPSIS: For a NetBSD-1.3 (or later) system
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
* NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
* NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
* NetBSD-1.4/UVM port by matthew green.
* -
* This is the machine-dependent module for NetBSD-1.3 and later
* works for:
* NetBSD-1.3
* NetBSD-1.3.1
* NetBSD-1.3.2
* NetBSD-1.3.3
* NetBSD-1.3.4 (beta)
* and should work for:
* NetBSD-1.4 (when released)
*
* LIBS: -lkvm
*
* CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR `printf ".include <bsd.own.mk>\nxxx:\n.if defined(UVM)\n\techo -DUVM\n.endif\n" | make -s -f-`
*
* AUTHORS: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@cs.tu-berlin.de>
* Arne Helme <arne@acm.org>
* Luke Mewburn <lukem@netbsd.org>
* matthew green <mrg@eterna.com.au>
*
*
* $Id: m_netbsd13.c,v 1.1 1999/02/15 00:30:26 simonb Exp $
*/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <sys/dir.h>
#include <sys/dkstat.h>
#include <sys/file.h>
#include <sys/time.h>
#include <vm/vm_swap.h>
#if defined(UVM)
#include <uvm/uvm_extern.h>
#endif
#include "os.h"
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
static int check_nlist __P((struct nlist *));
static int getkval __P((unsigned long, int *, int, char *));
extern char* printable __P((char *));
#include "top.h"
#include "machine.h"
#include "utils.h"
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
#define PP(pp, field) ((pp)->kp_proc . field)
#define EP(pp, field) ((pp)->kp_eproc . field)
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) \
(VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
/* definitions for indices in the nlist array */
static struct nlist nlst[] = {
#define X_CCPU 0
{ "_ccpu" }, /* 0 */
#define X_CP_TIME 1
{ "_cp_time" }, /* 1 */
#define X_HZ 2
{ "_hz" }, /* 2 */
#define X_STATHZ 3
{ "_stathz" }, /* 3 */
#define X_AVENRUN 4
{ "_averunnable" }, /* 4 */
#if !defined(UVM)
#define X_CNT 5
{ "_cnt" },
#endif
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "start", "run\0\0\0", "sleep", "stop", "zomb"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static int hz;
static int ccpu;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long cp_time_offset;
static unsigned long avenrun_offset;
static unsigned long cnt_offset;
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[7];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " ABANDONED, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
char *memorynames[] = {
"K Act ", "K Inact ", "K Wired ", "K Free ",
"K Swap ", "K Swap free ",
NULL
};
/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
"cpu",
"pri",
"res",
"size",
"state",
"time",
NULL
};
/* forward definitions for comparison functions */
int compare_cpu();
int compare_prio();
int compare_res();
int compare_size();
int compare_state();
int compare_time();
int (*proc_compares[])() = {
compare_cpu,
compare_prio,
compare_res,
compare_size,
compare_state,
compare_time,
NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
long percentages();
int
machine_init(statics)
struct statics *statics;
{
int i = 0;
int pagesize;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
/* get the list of symbols we want to access in the kernel */
(void) kvm_nlist(kd, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
if (!hz) {
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_name);
}
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
/* stash away certain offsets for later use */
cp_time_offset = nlst[X_CP_TIME].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
#if !defined(UVM)
cnt_offset = nlst[X_CNT].n_value;
#endif
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->order_names = ordernames;
/* all done! */
return(0);
}
char *
format_header(uname_field)
char *uname_field;
{
char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
void
get_system_info(si)
struct system_info *si;
{
long total;
#if defined(UVM)
size_t usize;
int mib[2];
struct uvmexp uvmexp;
#else
struct vmmeter sum;
#endif
struct swapent *sep, *seporig;
int totalsize, size, totalinuse, inuse, ncounted;
int rnswap, nswap;
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
nlst[X_CP_TIME].n_name);
if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
int i;
warn("can't getloadavg");
for (i = 0; i < NUM_AVERAGES; i++)
si->load_avg[i] = 0.0;
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
#if defined(UVM)
mib[0] = CTL_VM;
mib[1] = VM_UVMEXP;
usize = sizeof(uvmexp);
if (sysctl(mib, 2, &uvmexp, &usize, NULL, 0) < 0) {
fprintf(stderr, "top: sysctl vm.uvmexp failed: %s\n",
strerror(errno));
quit(23);
}
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(uvmexp.active);
memory_stats[1] = pagetok(uvmexp.inactive);
memory_stats[2] = pagetok(uvmexp.wired);
memory_stats[3] = pagetok(uvmexp.free);
#else
/* sum memory statistics */
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), "_cnt");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(sum.v_active_count);
memory_stats[1] = pagetok(sum.v_inactive_count);
memory_stats[2] = pagetok(sum.v_wire_count);
memory_stats[3] = pagetok(sum.v_free_count);
#endif
memory_stats[4] = memory_stats[5] = 0;
seporig = NULL;
do {
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap < 1)
break;
/* Use seporig to keep track of the malloc'd memory
* base, as sep will be incremented in the for loop
* below. */
seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep));
if (sep == NULL)
break;
rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
if (nswap != rnswap)
break;
totalsize = totalinuse = ncounted = 0;
for (; rnswap-- > 0; sep++) {
ncounted++;
size = sep->se_nblks;
inuse = sep->se_inuse;
totalsize += size;
totalinuse += inuse;
}
memory_stats[4] = dbtob(totalinuse) / 1024;
memory_stats[5] = dbtob(totalsize) / 1024 - memory_stats[4];
/* Free here, before we malloc again in the next
* iteration of this loop. */
if (seporig)
free(seporig);
} while (0);
/* Catch the case where we malloc'd, but then exited the
* loop due to nswap != rnswap. */
if (seporig)
free(seporig);
memory_stats[6] = -1;
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->last_pid = -1;
}
static struct handle handle;
caddr_t
get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare)();
{
int i;
int total_procs;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (PP(pp, p_stat) != 0 &&
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
{
total_procs++;
process_states[(unsigned char) PP(pp, p_stat)]++;
if ((PP(pp, p_stat) != SZOMB) &&
(show_idle || (PP(pp, p_pctcpu) != 0) ||
(PP(pp, p_stat) == SRUN)) &&
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[128]; /* static area where result is built */
char *
format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
struct kinfo_proc *pp;
long cputime;
double pct;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if ((PP(pp, p_flag) & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
char *comm = PP(pp, p_comm);
#define COMSIZ sizeof(PP(pp, p_comm))
char buf[COMSIZ];
(void) strncpy(buf, comm, COMSIZ);
comm[0] = '<';
(void) strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void) strncat(comm, ">", COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
#if 0
/* This does not produce the correct results */
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
#endif
cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */
/* calculate the base for cpu percentages */
pct = pctdouble(PP(pp, p_pctcpu));
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
/* format this entry */
sprintf(fmt,
Proc_format,
PP(pp, p_pid),
(*get_userid)(EP(pp, e_pcred.p_ruid)),
PP(pp, p_priority) - PZERO,
PP(pp, p_nice) - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(VP(pp, vm_rssize))),
state_abbrev[(unsigned char) PP(pp, p_stat)],
format_time(cputime),
100.0 * weighted_cpu(pct, pp),
100.0 * pct,
printable(PP(pp, p_comm)));
/* return the result */
return(fmt);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
static int
check_nlist(nlst)
struct nlist *nlst;
{
int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
static int
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (kvm_read(kd, offset, (char *) ptr, size) != size)
{
if (*refstr == '!')
{
return(0);
}
else
{
fprintf(stderr, "top: kvm_read for %s: %s\n",
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routines for qsort */
/*
* There are currently four possible comparison routines. main selects
* one of these by indexing in to the array proc_compares.
*
* Possible keys are defined as macros below. Currently these keys are
* defined: percent cpu, cpu ticks, process state, resident set size,
* total virtual memory usage. The process states are ordered as follows
* (from least to most important): WAIT, zombie, sleep, stop, start, run.
* The array declaration below maps a process state index into a number
* that reflects this ordering.
*/
/*
* First, the possible comparison keys. These are defined in such a way
* that they can be merely listed in the source code to define the actual
* desired ordering.
*/
#define ORDERKEY_PCTCPU \
if (lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu),\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS \
if (lresult = PP(p2, p_rtime).tv_sec - PP(p1, p_rtime).tv_sec,\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_STATE \
if ((result = sorted_state[(int)PP(p2, p_stat)] - \
sorted_state[(int)PP(p1, p_stat)] ) == 0)
#define ORDERKEY_PRIO \
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
#define ORDERKEY_RSSIZE \
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
#define ORDERKEY_MEM \
if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
/*
* Now the array that maps process state to a weight.
* The order of the elements should match those in state_abbrev[]
*/
static int sorted_state[] = {
0, /* (not used) ? */
4, /* "start" SIDL */
5, /* "run" SRUN */
2, /* "sleep" SSLEEP */
3, /* "stop" SSTOP */
1, /* "zomb" SZOMB */
};
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
compare_cpu(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_prio - the comparison function for sorting by process priority */
int
compare_prio(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PRIO
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_state - the comparison function for sorting by process state */
int
compare_state(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_STATE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_MEM
ORDERKEY_RSSIZE
;
return (result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(pid)
int pid;
{
int cnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
pp = *prefp++;
if (PP(pp, p_pid) == (pid_t)pid)
{
return((int)EP(pp, e_pcred.p_ruid));
}
}
return(-1);
}

View File

@ -1,957 +0,0 @@
/*
* top - a top users display for Unix
*
* SYNOPSIS: For a NetBSD-1.3.2 (4.4BSD) system
* Note process resident sizes could be wrong, but ps shows
* zero for them too..
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Based on the FreeBSD 2.0 version by Steven Wallace && Wolfram Schneider
* NetBSD-1.0 port by Arne Helme
* NetBSD-1.3.2(sparc) port by moto kawasaki
* .
* This is the machine-dependent module for NetBSD-1.3.2
* Works for:
* NetBSD-1.3.2
*
* LIBS: -lkvm
*
* CFLAGS: -DHAVE_GETOPT -D__NetBSD132__
*
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@cs.tu-berlin.de>
* Arne Helme <arne@acm.org>
* moto kawasaki <kawasaki@sphere.ad.jp>
*
* $Id: m_netbsd132.c,v 1.1.1.1 1999/02/14 23:54:07 simonb Exp $
*/
#define LASTPID /**/ /* use last pid, compiler depended */
/* #define LASTPID_FIXED /**/
#define VM_REAL /**/ /* use the same values as vmstat -s */
#define USE_SWAP /**/ /* use swap usage (pstat -s),
need to much cpu time */
#ifdef __NetBSD132__
# undef USE_SWAP
#endif /* moto kawasaki */
/* #define DEBUG 1 /**/
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include "os.h"
#include <stdio.h>
#include <nlist.h>
#include <math.h>
#include <kvm.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <sys/dir.h>
#include <sys/dkstat.h>
#include <sys/file.h>
#include <sys/time.h>
#ifdef USE_SWAP
#include <stdlib.h>
#include <sys/map.h>
#include <sys/conf.h>
#endif
static int check_nlist __P((struct nlist *));
static int getkval __P((unsigned long, int *, int, char *));
extern char* printable __P((char *));
#include "top.h"
#include "machine.h"
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
#define PP(pp, field) ((pp)->kp_proc . field)
#define EP(pp, field) ((pp)->kp_eproc . field)
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) (VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp),
_ssize))
/* definitions for indices in the nlist array */
static struct nlist nlst[] = {
#define X_CCPU 0
{ "_ccpu" }, /* 0 */
#define X_CP_TIME 1
{ "_cp_time" }, /* 1 */
#define X_HZ 2
{ "_hz" }, /* 2 */
#define X_STATHZ 3
{ "_stathz" }, /* 3 */
#define X_AVENRUN 4
{ "_averunnable" }, /* 4 */
#ifdef USE_SWAP
#define VM_SWAPMAP 5
{ "_swapmap" }, /* list of free swap areas */
#define VM_NSWAPMAP 6
{ "_nswapmap" },/* size of the swap map */
#define VM_SWDEVT 7
{ "_swdevt" }, /* list of swap devices and sizes */
#define VM_NSWAP 8
{ "_nswap" }, /* size of largest swap device */
#define VM_NSWDEV 9
{ "_nswdev" }, /* number of swap devices */
#define VM_DMMAX 10
{ "_dmmax" }, /* maximum size of a swap block */
#define VM_NISWAP 11
{ "_niswap" },
#define VM_NISWDEV 12
{ "_niswdev" },
#endif /* USE_SWAP */
#ifdef VM_REAL
#ifdef USE_SWAP
#define X_CNT 13
#else
#define X_CNT 5
#endif
{ "_cnt" }, /* struct vmmeter cnt */
#endif
#ifdef LASTPID
#if (defined USE_SWAP && defined VM_REAL)
#define X_LASTPID 14
#elif (defined VM_REAL)
#define X_LASTPID 6
#else
#define X_LASTPID 5
#endif
#ifdef LASTPID_FIXED
{ "_nextpid" },
#else
{ "_nextpid.178" }, /* lastpid, compiler depended
* should be changed
* in /sys/kern/kern_fork.c */
#endif
#endif
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "start", "run\0\0\0", "sleep", "stop", "zomb", "WAIT"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static long hz;
static load_avg ccpu;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long cp_time_offset;
static unsigned long avenrun_offset;
#ifdef LASTPID
static unsigned long lastpid_offset;
static long lastpid;
#endif
#ifdef VM_REAL
static unsigned long cnt_offset;
static long cnt;
#endif
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[7];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " ABANDONED, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[8];
char *memorynames[] = {
#ifndef VM_REAL
"Real: ", "K/", "K ", "Virt: ", "K/",
"K ", "Free: ", "K", NULL
#else
#if 0
"K Act ", "K Inact ", "K Wired ", "K Free ", "% Swap, ",
"K/", "K SWIO",
#else
"K Act ", "K Inact ", "K Wired ", "K Free ", "% Swap, ",
"Kin ", "Kout",
#endif
NULL
#endif
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
/* useful externals */
long percentages();
int
machine_init(statics)
struct statics *statics;
{
register int i = 0;
register int pagesize;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
/* get the list of symbols we want to access in the kernel */
(void) kvm_nlist(kd, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
if (!hz) {
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_name);
}
#if (defined DEBUG)
fprintf(stderr, "Hertz: %d\n", hz);
#endif
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
/* stash away certain offsets for later use */
cp_time_offset = nlst[X_CP_TIME].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
#ifdef LASTPID
lastpid_offset = nlst[X_LASTPID].n_value;
#endif
#ifdef VM_REAL
cnt_offset = nlst[X_CNT].n_value;
#endif
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size with "getpagesize" and calculate pageshift from it
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
/* all done! */
return(0);
}
char *format_header(uname_field)
register char *uname_field;
{
register char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;
void
get_system_info(si)
struct system_info *si;
{
long total;
load_avg avenrun[3];
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
nlst[X_CP_TIME].n_name);
(void) getkval(avenrun_offset, (int *)avenrun, sizeof(avenrun),
nlst[X_AVENRUN].n_name);
#ifdef LASTPID
(void) getkval(lastpid_offset, (int *)(&lastpid), sizeof(lastpid),
"!");
#endif
/* convert load averages to doubles */
{
register int i;
register double *infoloadp;
load_avg *avenrunp;
#ifdef notyet
struct loadavg sysload;
int size;
getkerninfo(KINFO_LOADAVG, &sysload, &size, 0);
#endif
infoloadp = si->load_avg;
avenrunp = avenrun;
for (i = 0; i < 3; i++)
{
#ifdef notyet
*infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale;
#endif
*infoloadp++ = loaddouble(*avenrunp++);
}
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
/* sum memory statistics */
{
#ifndef VM_REAL
struct vmtotal total;
int size = sizeof(total);
static int mib[] = { CTL_VM, VM_METER };
/* get total -- systemwide main memory usage structure */
if (sysctl(mib, 2, &total, &size, NULL, 0) < 0) {
(void) fprintf(stderr, "top: sysctl failed: %s\n",
rerror(errno));
bzero(&total, sizeof(total));
}
/* convert memory stats to Kbytes */
memory_stats[0] = -1;
memory_stats[1] = pagetok(total.t_arm);
memory_stats[2] = pagetok(total.t_rm);
memory_stats[3] = -1;
memory_stats[4] = pagetok(total.t_avm);
memory_stats[5] = pagetok(total.t_vm);
memory_stats[6] = -1;
memory_stats[7] = pagetok(total.t_free);
}
#else
struct vmmeter sum;
static unsigned int swap_delay = 0;
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum),
"_cnt");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(sum.v_active_count);
memory_stats[1] = pagetok(sum.v_inactive_count);
memory_stats[2] = pagetok(sum.v_wire_count);
memory_stats[3] = pagetok(sum.v_free_count);
if (swappgsin < 0) {
memory_stats[5] = 0;
memory_stats[6] = 0;
} else {
memory_stats[5] = pagetok(((sum.v_pswpin - swappgsin)));
memory_stats[6] = pagetok(((sum.v_pswpout - swappgsout)));
}
swappgsin = sum.v_pswpin;
swappgsout = sum.v_pswpout;
#ifdef USE_SWAP
if ((memory_stats[5] > 0 || memory_stats[6]) > 0 || swap_delay == 0)
memory_stats[4] = swapmode();
}
/* swap_delay++; XXX Arne */
#else
memory_stats[4] = 0;
#endif
memory_stats[7] = -1;
}
#endif
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
#ifdef LASTPID
if(lastpid > 0) {
si->last_pid = lastpid;
} else {
si->last_pid = -1;
}
#else
si->last_pid = -1;
#endif
}
static struct handle handle;
caddr_t get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare)();
{
register int i;
register int total_procs;
register int active_procs;
register struct kinfo_proc **prefp;
register struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (PP(pp, p_stat) != 0 &&
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
{
total_procs++;
process_states[(unsigned char) PP(pp, p_stat)]++;
if ((PP(pp, p_stat) != SZOMB) &&
(show_idle || (PP(pp, p_pctcpu) != 0) ||
(PP(pp, p_stat) == SRUN)) &&
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
mpare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[128]; /* static area where result is built */
char *format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid)();
{
register struct kinfo_proc *pp;
register long cputime;
register double pct;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if ((PP(pp, p_flag) & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
char *comm = PP(pp, p_comm);
#define COMSIZ sizeof(PP(pp, p_comm))
char buf[COMSIZ];
(void) strncpy(buf, comm, COMSIZ);
comm[0] = '<';
(void) strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void) strncat(comm, ">", COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
#if 0
/* This does not produce the correct results */
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
#endif
cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */
/* calculate the base for cpu percentages */
pct = pctdouble(PP(pp, p_pctcpu));
/* format this entry */
sprintf(fmt,
Proc_format,
PP(pp, p_pid),
(*get_userid)(EP(pp, e_pcred.p_ruid)),
PP(pp, p_priority) - PZERO,
PP(pp, p_nice) - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(VP(pp, vm_rssize))),
state_abbrev[(unsigned char) PP(pp, p_stat)],
format_time(cputime),
10000.0 * weighted_cpu(pct, pp) / hz,
10000.0 * pct / hz,
printable(PP(pp, p_comm)));
/* return the result */
return(fmt);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
static int check_nlist(nlst)
register struct nlist *nlst;
{
register int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
static int getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (kvm_read(kd, offset, (char *) ptr, size) != size)
{
if (*refstr == '!')
{
return(0);
}
else
{
fprintf(stderr, "top: kvm_read for %s: %s\n",
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routine for qsort */
/*
* proc_compare - comparison function for "qsort"
* Compares the resource consumption of two processes using five
* distinct keys. The keys (in descending order of importance) are:
* percent cpu, cpu ticks, state, resident set size, total virtual
* memory usage. The process states are ordered as follows (from least
* to most important): WAIT, zombie, sleep, stop, start, run. The
* array declaration below maps a process state index into a number
* that reflects this ordering.
*/
static unsigned char sorted_state[] =
{
0, /* not used */
3, /* sleep */
1, /* ABANDONED (WAIT) */
6, /* run */
5, /* start */
2, /* zombie */
4 /* stop */
};
int
proc_compare(pp1, pp2)
struct proc **pp1;
struct proc **pp2;
{
register struct kinfo_proc *p1;
register struct kinfo_proc *p2;
register int result;
register pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
/* compare percent cpu (pctcpu) */
if ((lresult = PP(p2, p_pctcpu) - PP(p1, p_pctcpu)) == 0)
{
/* use cpticks to break the tie */
if ((result = PP(p2, p_cpticks) - PP(p1, p_cpticks)) == 0)
{
/* use process state to break the tie */
if ((result = sorted_state[(unsigned char) PP(p2, p_stat)] -
sorted_state[(unsigned char) PP(p1, p_stat)]) == 0)
{
/* use priority to break the tie */
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
{
/* use resident set size (rssize) to break the tie */
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
{
/* use total memory to break the tie */
result = PROCSIZE(p2) - PROCSIZE(p1);
}
}
}
}
}
else
{
result = lresult < 0 ? -1 : 1;
}
return(result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int proc_owner(pid)
int pid;
{
register int cnt;
register struct kinfo_proc **prefp;
register struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
pp = *prefp++;
if (PP(pp, p_pid) == (pid_t)pid)
{
return((int)EP(pp, e_pcred.p_ruid));
}
}
return(-1);
}
#ifdef USE_SWAP
/*
* swapmode is based on a program called swapinfo written
* by Kevin Lahey <kml@rokkaku.atl.ga.us>.
*/
#define SVAR(var) __STRING(var) /* to force expansion */
#define KGET(idx,
r) \
KGET1(idx, &var, sizeof(var), SVAR(var))
#define KGET1(idx, p, s,
g) \
KGET2(nlst[idx].n_value, p, s, msg)
#define KGET2(addr, p, s,
g) \
if (kvm_read(kd, (u_long)(addr), p, s) != s) \
warnx("cannot read %s: %s", msg, kvm_geterr(kd))
#define KGETRET(addr, p, s,
g) \
if (kvm_read(kd, (u_long)(addr), p, s) != s) { \
warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \
return (0); \
}
int
swapmode()
{
char *header;
int hlen, nswap, nswdev, dmmax, nswapmap, niswap, niswdev;
int s, e, div, i, l, avail, nfree, npfree, used;
struct swdevt *sw;
long blocksize, *perdev;
struct map *swapmap, *kswapmap;
struct mapent *mp, *freemp;
KGET(VM_NSWAP, nswap);
KGET(VM_NSWDEV, nswdev);
KGET(VM_DMMAX, dmmax);
KGET(VM_NSWAPMAP, nswapmap);
KGET(VM_SWAPMAP, kswapmap); /* kernel `swapmap' is a pointer */
if ((sw = malloc(nswdev * sizeof(*sw))) == NULL ||
(perdev = malloc(nswdev * sizeof(*perdev))) == NULL ||
(freemp = mp = malloc(nswapmap * sizeof(*mp))) == NULL)
err(1, "malloc");
KGET1(VM_SWDEVT, sw, nswdev * sizeof(*sw), "swdevt");
KGET2((long)kswapmap, mp, nswapmap * sizeof(*mp), "swapmap");
/* Supports sequential swap */
if (nlst[VM_NISWAP].n_value != 0) {
KGET(VM_NISWAP, niswap);
KGET(VM_NISWDEV, niswdev);
} else {
niswap = nswap;
niswdev = nswdev;
}
/* First entry in map is `struct map'; rest are mapent's. */
swapmap = (struct map *)mp;
if (nswapmap != swapmap->m_limit - (struct mapent *)kswapmap)
errx(1, "panic: nswapmap goof");
/* Count up swap space. */
nfree = 0;
memset(perdev, 0, nswdev * sizeof(*perdev));
for (mp++; mp->m_addr != 0; mp++) {
s = mp->m_addr; /* start of swap region */
e = mp->m_addr + mp->m_size; /* end of region */
nfree += mp->m_size;
/*
* Swap space is split up among the configured disks.
*
* For interleaved swap devices, the first dmmax blocks
* of swap space some from the first disk, the next dmmax
* blocks from the next, and so on up to niswap blocks.
*
* Sequential swap devices follow the interleaved devices
* (i.e. blocks starting at niswap) in the order in which
* they appear in the swdev table. The size of each device
* will be a multiple of dmmax.
*
* The list of free space joins adjacent free blocks,
* ignoring device boundries. If we want to keep track
* of this information per device, we'll just have to
* extract it ourselves. We know that dmmax-sized chunks
* cannot span device boundaries (interleaved or sequential)
* so we loop over such chunks assigning them to devices.
*/
i = -1;
while (s < e) { /* XXX this is inefficient */
int bound = roundup(s+1, dmmax);
if (bound > e)
bound = e;
if (bound <= niswap) {
/* Interleaved swap chunk. */
if (i == -1)
i = (s / dmmax) % niswdev;
perdev[i] += bound - s;
if (++i >= niswdev)
i = 0;
} else {
/* Sequential swap chunk. */
if (i < niswdev) {
i = niswdev;
l = niswap + sw[i].sw_nblks;
}
while (s >= l) {
/* XXX don't die on bogus blocks */
if (i == nswdev-1)
break;
l += sw[++i].sw_nblks;
}
perdev[i] += bound - s;
}
s = bound;
}
}
header = getbsize(&hlen, &blocksize);
div = blocksize / 512;
avail = npfree = 0;
for (i = 0; i < nswdev; i++) {
int xsize, xfree;
xsize = sw[i].sw_nblks;
xfree = perdev[i];
used = xsize - xfree;
npfree++;
avail += xsize;
}
/*
* If only one partition has been set up via swapon(8), we don't
* need to bother with totals.
*/
used = avail - nfree;
free (sw); free (freemp); free (perdev);
return (int)(((double)used / (double)avail * 100.0) + 0.5);
}
#endif