MTRR support for x86_64. Will be shared with i386 later.

This commit is contained in:
fvdl 2002-06-18 08:30:33 +00:00
parent 3b9f70e1fb
commit 4622ad6f14

View File

@ -0,0 +1,702 @@
/* $NetBSD: mtrr.c,v 1.1 2002/06/18 08:30:33 fvdl Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Bill Sommerfeld.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mtrr.c,v 1.1 2002/06/18 08:30:33 fvdl Exp $");
#include "opt_multiprocessor.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/lock.h>
#include <sys/user.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <machine/specialreg.h>
#include <machine/cpufunc.h>
#include <machine/mtrr.h>
extern paddr_t avail_end;
static void i686_mtrr_reload(int);
static void i686_mtrr_init_cpu(struct cpu_info *);
static void i686_mtrr_reload_cpu(struct cpu_info *);
static void i686_mtrr_clean(struct proc *p);
static int i686_mtrr_set(struct mtrr *, int *n, struct proc *p, int flags);
static int i686_mtrr_get(struct mtrr *, int *n, struct proc *p, int flags);
static void i686_mtrr_dump(const char *tag);
static int i686_mtrr_validate(struct mtrr *, struct proc *p);
static void i686_soft2raw(void);
static void i686_raw2soft(void);
static void i686_mtrr_commit(void);
static int i686_mtrr_setone(struct mtrr *, struct proc *p);
static struct mtrr_state
mtrr_raw[] = {
{ MSR_MTRRphysBase0 },
{ MSR_MTRRphysMask0 },
{ MSR_MTRRphysBase1 },
{ MSR_MTRRphysMask1 },
{ MSR_MTRRphysBase2 },
{ MSR_MTRRphysMask2 },
{ MSR_MTRRphysBase3 },
{ MSR_MTRRphysMask3 },
{ MSR_MTRRphysBase4 },
{ MSR_MTRRphysMask4 },
{ MSR_MTRRphysBase5 },
{ MSR_MTRRphysMask5 },
{ MSR_MTRRphysBase6 },
{ MSR_MTRRphysMask6 },
{ MSR_MTRRphysBase7 },
{ MSR_MTRRphysMask7 },
{ MSR_MTRRfix64K_00000 },
{ MSR_MTRRfix16K_80000 },
{ MSR_MTRRfix16K_A0000 },
{ MSR_MTRRfix4K_C0000 },
{ MSR_MTRRfix4K_C8000 },
{ MSR_MTRRfix4K_D0000 },
{ MSR_MTRRfix4K_D8000 },
{ MSR_MTRRfix4K_E0000 },
{ MSR_MTRRfix4K_E8000 },
{ MSR_MTRRfix4K_F0000 },
{ MSR_MTRRfix4K_F8000 },
{ MSR_MTRRdefType }
};
static const int nmtrr_raw = sizeof(mtrr_raw)/sizeof(mtrr_raw[0]);
static struct mtrr_state *mtrr_var_raw;
static struct mtrr_state *mtrr_fixed_raw;
static struct mtrr *mtrr_fixed;
static struct mtrr *mtrr_var;
struct mtrr_funcs i686_mtrr_funcs = {
i686_mtrr_init_cpu,
i686_mtrr_reload_cpu,
i686_mtrr_clean,
i686_mtrr_set,
i686_mtrr_get,
i686_mtrr_commit,
i686_mtrr_dump
};
#ifdef MULTIPROCESSOR
static volatile uint32_t mtrr_waiting;
#endif
static uint64_t i686_mtrr_cap;
static void
i686_mtrr_dump(const char *tag)
{
int i;
for (i = 0; i < nmtrr_raw; i++)
printf("%s: %x: %016lx\n",
tag, mtrr_raw[i].msraddr, rdmsr(mtrr_raw[i].msraddr));
}
/*
* The Intel Archicture Software Developer's Manual volume 3 (systems
* programming) section 9.12.8 describes a simple 15-step process for
* updating the MTRR's on all processors on a multiprocessor system.
* If synch is nonzero, assume we're being called from an IPI handler,
* and synchronize with all running processors.
*/
/*
* 1. Broadcast to all processor to execute the following code sequence.
*/
static void
i686_mtrr_reload(int synch)
{
int i;
uint32_t cr0, cr3, cr4;
uint32_t origcr0, origcr4;
#ifdef MULTIPROCESSOR
uint32_t mymask = 1 << cpu_number();
#endif
/*
* 2. Disable interrupts
*/
disable_intr();
#ifdef MULTIPROCESSOR
if (synch) {
/*
* 3. Wait for all processors to reach this point.
*/
i386_atomic_setbits_l(&mtrr_waiting, mymask);
while (mtrr_waiting != cpus_running)
DELAY(10);
}
#endif
/*
* 4. Enter the no-fill cache mode (set the CD flag in CR0 to 1 and
* the NW flag to 0)
*/
origcr0 = cr0 = rcr0();
cr0 |= CR0_CD;
cr0 &= ~CR0_NW;
lcr0(cr0);
/*
* 5. Flush all caches using the WBINVD instruction.
*/
wbinvd();
/*
* 6. Clear the PGE flag in control register CR4 (if set).
*/
origcr4 = cr4 = rcr4();
cr4 &= ~CR4_PGE;
lcr4(cr4);
/*
* 7. Flush all TLBs (execute a MOV from control register CR3
* to another register and then a move from that register back
* to CR3)
*/
cr3 = rcr3();
lcr3(cr3);
/*
* 8. Disable all range registers (by clearing the E flag in
* register MTRRdefType. If only variable ranges are being
* modified, software may clear the valid bits for the
* affected register pairs instead.
*/
/* disable MTRRs (E = 0) */
wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) & ~MTRR_I686_ENABLE_MASK);
/*
* 9. Update the MTRR's
*/
for (i = 0; i < nmtrr_raw; i++) {
uint64_t val = mtrr_raw[i].msrval;
uint32_t addr = mtrr_raw[i].msraddr;
if (addr == MSR_MTRRdefType)
val &= ~MTRR_I686_ENABLE_MASK;
wrmsr(addr, val);
}
/*
* 10. Enable all range registers (by setting the E flag in
* register MTRRdefType). If only variable-range registers
* were modified and their individual valid bits were cleared,
* then set the valid bits for the affected ranges instead.
*/
wrmsr(MSR_MTRRdefType, rdmsr(MSR_MTRRdefType) | MTRR_I686_ENABLE_MASK);
/*
* 11. Flush all caches and all TLB's a second time. (repeat
* steps 5, 7)
*/
wbinvd();
lcr3(cr3);
/*
* 12. Enter the normal cache mode to reenable caching (set the CD and
* NW flags in CR0 to 0)
*/
lcr0(origcr0);
/*
* 13. Set the PGE flag in control register CR4, if previously
* cleared.
*/
lcr4(origcr4);
#ifdef MULTIPROCESSOR
if (synch) {
/*
* 14. Wait for all processors to reach this point.
*/
i386_atomic_clearbits_l(&mtrr_waiting, mymask);
while (mtrr_waiting != 0)
DELAY(10);
}
#endif
/*
* 15. Enable interrupts.
*/
enable_intr();
}
static void
i686_mtrr_reload_cpu(struct cpu_info *ci)
{
i686_mtrr_reload(1);
}
void
i686_mtrr_init_first(void)
{
int i;
for (i = 0; i < nmtrr_raw; i++)
mtrr_raw[i].msrval = rdmsr(mtrr_raw[i].msraddr);
i686_mtrr_cap = rdmsr(MSR_MTRRcap);
#if 0
mtrr_dump("init mtrr");
#endif
mtrr_fixed = (struct mtrr *)
malloc(MTRR_I686_NFIXED_SOFT * sizeof (struct mtrr), M_TEMP,
M_NOWAIT);
if (mtrr_fixed == NULL)
panic("can't allocate fixed MTRR array");
mtrr_var = (struct mtrr *)
malloc(MTRR_I686_NVAR * sizeof (struct mtrr), M_TEMP, M_NOWAIT);
if (mtrr_var == NULL)
panic("can't allocate variable MTRR array");
mtrr_var_raw = &mtrr_raw[0];
mtrr_fixed_raw = &mtrr_raw[MTRR_I686_NVAR * 2];
i686_raw2soft();
}
static void
i686_raw2soft(void)
{
int i, j, idx;
struct mtrr *mtrrp;
uint64_t base, mask;
for (i = 0; i < MTRR_I686_NVAR; i++) {
mtrrp = &mtrr_var[i];
memset(mtrrp, 0, sizeof *mtrrp);
mask = mtrr_var_raw[i * 2 + 1].msrval;
if (!mtrr_valid(mask))
continue;
base = mtrr_var_raw[i * 2].msrval;
mtrrp->base = mtrr_base(base);
mtrrp->type = mtrr_type(base);
mtrrp->len = mtrr_len(mask);
mtrrp->flags |= MTRR_VALID;
}
idx = 0;
base = 0;
for (i = 0; i < MTRR_I686_NFIXED_64K; i++, idx++) {
mask = mtrr_fixed_raw[idx].msrval;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
mtrrp->owner = 0;
mtrrp->flags = MTRR_FIXED | MTRR_VALID;
mtrrp->base = base;
mtrrp->len = 65536;
mtrrp->type = mask & 0xff;
mask >>= 8;
base += 65536;
}
}
for (i = 0; i < MTRR_I686_NFIXED_16K; i++, idx++) {
mask = mtrr_fixed_raw[idx].msrval;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
mtrrp->owner = 0;
mtrrp->flags = MTRR_FIXED | MTRR_VALID;
mtrrp->base = base;
mtrrp->len = 16384;
mtrrp->type = mask & 0xff;
mask >>= 8;
base += 16384;
}
}
for (i = 0; i < MTRR_I686_NFIXED_4K; i++, idx++) {
mask = mtrr_fixed_raw[idx].msrval;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
mtrrp->owner = 0;
mtrrp->flags = MTRR_FIXED | MTRR_VALID;
mtrrp->base = base;
mtrrp->len = 4096;
mtrrp->type = mask & 0xff;
mask >>= 8;
base += 4096;
}
}
}
static void
i686_soft2raw(void)
{
int i, idx, j;
uint64_t val;
struct mtrr *mtrrp;
for (i = 0; i < MTRR_I686_NVAR; i++) {
mtrrp = &mtrr_var[i];
mtrr_var_raw[i * 2].msrval = mtrr_base_value(mtrrp);
mtrr_var_raw[i * 2 + 1].msrval = mtrr_mask_value(mtrrp);
if (mtrrp->flags & MTRR_VALID)
mtrr_var_raw[i * 2 + 1].msrval |= MTRR_I686_MASK_VALID;
}
idx = 0;
for (i = 0; i < MTRR_I686_NFIXED_64K; i++, idx++) {
val = 0;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
val |= ((uint64_t)mtrrp->type << (j << 3));
}
mtrr_fixed_raw[idx].msrval = val;
}
for (i = 0; i < MTRR_I686_NFIXED_16K; i++, idx++) {
val = 0;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
val |= ((uint64_t)mtrrp->type << (j << 3));
}
mtrr_fixed_raw[idx].msrval = val;
}
for (i = 0; i < MTRR_I686_NFIXED_4K; i++, idx++) {
val = 0;
for (j = 0; j < 8; j++) {
mtrrp = &mtrr_fixed[idx * 8 + j];
val |= ((uint64_t)mtrrp->type << (j << 3));
}
mtrr_fixed_raw[idx].msrval = val;
}
}
static void
i686_mtrr_init_cpu(struct cpu_info *ci)
{
i686_mtrr_reload(0);
#if 0
mtrr_dump(ci->ci_dev->dv_xname);
#endif
}
static int
i686_mtrr_validate(struct mtrr *mtrrp, struct proc *p)
{
uint64_t high;
/*
* Must be at least page-aligned.
*/
if (mtrrp->base & 0xfff || mtrrp->len & 0xfff || mtrrp->len == 0)
return EINVAL;
/*
* Private mappings are bound to a process.
*/
if (p == NULL && (mtrrp->flags & MTRR_PRIVATE))
return EINVAL;
high = mtrrp->base + mtrrp->len;
/*
* Check for bad types.
*/
if ((mtrrp->type == MTRR_TYPE_UNDEF1 || mtrrp->type == MTRR_TYPE_UNDEF2
|| mtrrp->type > MTRR_TYPE_WB) && (mtrrp->flags & MTRR_VALID))
return EINVAL;
/*
* Only use fixed ranges < 1M.
*/
if ((mtrrp->flags & MTRR_FIXED) && high > 0x100000)
return EINVAL;
/*
* Check for the right alignment and size for fixed ranges.
* The requested range may span several actual MTRRs, but
* it must be properly aligned.
*/
if (mtrrp->flags & MTRR_FIXED) {
if (mtrrp->base < MTRR_I686_16K_START) {
if ((mtrrp->base & 0xffff) != 0)
return EINVAL;
} else if (mtrrp->base < MTRR_I686_4K_START) {
if ((mtrrp->base & 0x3fff) != 0)
return EINVAL;
} else {
if ((mtrrp->base & 0xfff) != 0)
return EINVAL;
}
if (high < MTRR_I686_16K_START) {
if ((high & 0xffff) != 0)
return EINVAL;
} else if (high < MTRR_I686_4K_START) {
if ((high & 0x3fff) != 0)
return EINVAL;
} else {
if ((high & 0xfff) != 0)
return EINVAL;
}
}
return 0;
}
/*
* Try to find a non-conflicting match on physical MTRRs for the
* requested range. For fixed ranges, more than one actual MTRR
* may be used.
*/
static int
i686_mtrr_setone(struct mtrr *mtrrp, struct proc *p)
{
int i, error;
struct mtrr *lowp, *highp, *mp, *freep;
uint64_t low, high, curlow, curhigh;
/*
* If explicitly requested, or if the range lies below 1M,
* try the fixed range MTRRs.
*/
if (mtrrp->flags & MTRR_FIXED ||
(mtrrp->base + mtrrp->len) <= 0x100000) {
lowp = highp = NULL;
for (i = 0; i < MTRR_I686_NFIXED_SOFT; i++) {
if (mtrr_fixed[i].base == mtrrp->base + mtrrp->len) {
highp = &mtrr_fixed[i];
break;
}
if (mtrr_fixed[i].base == mtrrp->base) {
lowp = &mtrr_fixed[i];
/*
* If the requested upper bound is the 1M
* limit, search no further.
*/
if ((mtrrp->base + mtrrp->len) == 0x100000) {
highp =
&mtrr_fixed[MTRR_I686_NFIXED_SOFT];
break;
} else {
highp = &mtrr_fixed[i + 1];
continue;
}
}
}
if (lowp == NULL || highp == NULL)
panic("mtrr: fixed register fuckup");
error = 0;
for (mp = lowp; mp < highp; mp++) {
if ((mp->flags & MTRR_PRIVATE) && p != NULL
&& p->p_pid != mp->owner) {
error = EBUSY;
break;
}
}
if (error != 0) {
if (mtrrp->flags & MTRR_FIXED)
return error;
} else {
for (mp = lowp; mp < highp; mp++) {
/*
* Can't invalidate fixed ranges, so
* just reset the 'private' flag,
* making the range available for
* changing again.
*/
if (!(mtrrp->flags & MTRR_VALID)) {
mp->flags &= ~MTRR_PRIVATE;
continue;
}
mp->type = mtrrp->type;
if (mtrrp->flags & MTRR_PRIVATE) {
mp->flags |= MTRR_PRIVATE;
mp->owner = p->p_pid;
}
}
return 0;
}
}
/*
* Try one of the variable range registers.
* XXX could be more sophisticated here by merging ranges.
*/
low = mtrrp->base;
high = low + mtrrp->len;
freep = NULL;
for (i = 0; i < MTRR_I686_NVAR; i++) {
if (!(mtrr_var[i].flags & MTRR_VALID)) {
freep = &mtrr_var[i];
continue;
}
curlow = mtrr_var[i].base;
curhigh = curlow + mtrr_var[i].len;
if (low == curlow && high == curhigh &&
(!(mtrr_var[i].flags & MTRR_PRIVATE) ||
mtrr_var[i].owner == p->p_pid)) {
freep = &mtrr_var[i];
break;
}
if (((high >= curlow && high < curhigh) ||
(low >= curlow && low < curhigh)) &&
((mtrr_var[i].type != mtrrp->type) ||
((mtrr_var[i].flags & MTRR_PRIVATE) &&
mtrr_var[i].owner != p->p_pid))) {
return EBUSY;
}
}
if (freep == NULL)
return EBUSY;
mtrrp->flags &= ~MTRR_CANTSET;
*freep = *mtrrp;
freep->owner = mtrrp->flags & MTRR_PRIVATE ? p->p_pid : 0;
return 0;
}
static void
i686_mtrr_clean(struct proc *p)
{
int i;
for (i = 0; i < MTRR_I686_NFIXED_SOFT; i++) {
if ((mtrr_fixed[i].flags & MTRR_PRIVATE) &&
(mtrr_fixed[i].owner == p->p_pid))
mtrr_fixed[i].flags &= ~MTRR_PRIVATE;
}
for (i = 0; i < MTRR_I686_NVAR; i++) {
if ((mtrr_var[i].flags & MTRR_PRIVATE) &&
(mtrr_var[i].owner == p->p_pid))
mtrr_var[i].flags &= ~(MTRR_PRIVATE | MTRR_VALID);
}
i686_mtrr_commit();
}
static int
i686_mtrr_set(struct mtrr *mtrrp, int *n, struct proc *p, int flags)
{
int i, error;
struct mtrr mtrr;
error = 0;
for (i = 0; i < *n; i++) {
if (flags & MTRR_GETSET_USER) {
error = copyin(&mtrrp[i], &mtrr, sizeof mtrr);
if (error != 0)
break;
} else
mtrr = mtrrp[i];
error = i686_mtrr_validate(&mtrr, p);
if (error != 0)
break;
error = i686_mtrr_setone(&mtrr, p);
if (error != 0)
break;
if (mtrr.flags & MTRR_PRIVATE)
p->p_md.md_flags |= MDP_USEDMTRR;
}
*n = i;
return error;
}
static int
i686_mtrr_get(struct mtrr *mtrrp, int *n, struct proc *p, int flags)
{
int idx, i, error;
if (mtrrp == NULL) {
*n = MTRR_I686_NFIXED_SOFT + MTRR_I686_NVAR;
return 0;
}
for (idx = i = 0; i < MTRR_I686_NFIXED_SOFT && idx < *n; idx++, i++) {
if (flags & MTRR_GETSET_USER) {
error = copyout(&mtrr_fixed[i], &mtrrp[idx],
sizeof *mtrrp);
if (error != 0)
break;
} else
memcpy(&mtrrp[idx], &mtrr_fixed[i], sizeof *mtrrp);
}
if (error != 0) {
*n = idx;
return error;
}
for (i = 0; i < MTRR_I686_NVAR && idx < *n; idx++, i++) {
if (flags & MTRR_GETSET_USER) {
error = copyout(&mtrr_var[i], &mtrrp[idx],
sizeof *mtrrp);
if (error != 0)
break;
} else
memcpy(&mtrrp[idx], &mtrr_var[i], sizeof *mtrrp);
}
*n = idx;
return error;
}
static void
i686_mtrr_commit(void)
{
i686_soft2raw();
i686_mtrr_reload(1);
}