Import NetBSD/hpcmips source files from hpcmips repository.

file list:
        sys/arch/hpcmips/
        distrib/hpcmips/
        etc/etc.hpcmips/
        lib/libc/arch/mips/fplib/
        lib/libc/arch/mips/fplib/Makefile.inc
        lib/libc/arch/mips/fplib/environment.h
        lib/libc/arch/mips/fplib/fplib_glue.c
        lib/libc/arch/mips/fplib/fplib_libc.c
        lib/libc/arch/mips/fplib/hpcmips-gcc.h
        lib/libc/arch/mips/fplib/softfloat-macros.h
        lib/libc/arch/mips/fplib/softfloat-specialize.h
        lib/libc/arch/mips/fplib/softfloat.c
        lib/libc/arch/mips/fplib/softfloat.h
        lib/libc/arch/mips/gen/ieee.h
        lib/libc/arch/mips/gen/sf_fabs.c
        lib/libc/arch/mips/gen/sf_flt_rounds.c
        lib/libc/arch/mips/gen/sf_fpgetmask.c
        lib/libc/arch/mips/gen/sf_fpgetround.c
        lib/libc/arch/mips/gen/sf_fpgetsticky.c
        lib/libc/arch/mips/gen/sf_fpsetmask.c
        lib/libc/arch/mips/gen/sf_fpsetround.c
        lib/libc/arch/mips/gen/sf_fpsetsticky.c
        lib/libc/arch/mips/gen/sf_isinf.c
        lib/libc/arch/mips/gen/sf_ldexp.c
        lib/libc/arch/mips/gen/sf_modf.c
This commit is contained in:
takemura 1999-09-16 12:13:17 +00:00
parent f7fd8ced64
commit 2f85eb6142
29 changed files with 8741 additions and 0 deletions

5
distrib/hpcmips/Makefile Normal file
View File

@ -0,0 +1,5 @@
# $NetBSD: Makefile,v 1.1.1.1 1999/09/16 12:13:17 takemura Exp $
SUBDIR=
.include <bsd.subdir.mk>

View File

@ -0,0 +1,4 @@
# $NetBSD: Makefile.inc,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $
REV!=sh ${.CURDIR}/../../../sys/conf/osrelease.sh -s
VER!=sh ${.CURDIR}/../../../sys/conf/osrelease.sh

View File

@ -0,0 +1,20 @@
# $NetBSD: dot.profile,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
PATH=/sbin:/bin:/usr/bin:/usr/sbin:/
export PATH
# get the terminal type
_loop=""
while [ "X${_loop}" = X"" ]; do
echo "" >& 2
echo "Setting terminal type. Options:" >& 2
echo " rcons for graphics console" >& 2
echo " vt100 for dumb serial terminal" >& 2
echo " xterm for xterm." >& 2
echo "" >& 2
eval `tset -s -m ":?$TERM"`
if [ "X${TERM}" != X"unknown" ]; then
_loop="done"
fi
done
sysinst

View File

@ -0,0 +1,94 @@
# $NetBSD: list,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
# hpcmips extra's: mountpoint for kernfs
SPECIAL mkdir kern
# extras in bin
LINK instbin bin/csh
LINK instbin bin/date
LINK instbin bin/rcp
LINK instbin bin/rcmd
# extras in sbin
LINK instbin sbin/disklabel
LINK instbin sbin/mount_ext2fs
LINK instbin sbin/fsck_ext2fs
LINK instbin sbin/mount_kernfs
# extras in /usr.bin
SYMLINK ../../instbin usr/bin/netstat
SYMLINK ../../instbin usr/bin/rsh
SYMLINK ../../instbin usr/bin/tset usr/bin/reset
SYMLINK ../../instbin usr/bin/vi
# OK, now do everything in /usr all over all again in usr.install,
# in case we try and install directly into the miniroot (mounting over /usr).
# local usr.bin
SPECIAL mkdir usr.install
SPECIAL mkdir usr.install/bin
SPECIAL mkdir usr.install/sbin
SPECIAL ln -s ../../instbin usr.install/bin/chflags
SPECIAL ln -s ../../instbin usr.install/bin/chgrp
SPECIAL ln -s ../../instbin usr.install/bin/ftp
SPECIAL ln -s ../../instbin usr.install/bin/gunzip
SPECIAL ln -s ../../instbin usr.install/bin/gzcat
SPECIAL ln -s ../../instbin usr.install/bin/gzip
SPECIAL ln -s ../../instbin usr.install/bin/netstat
SPECIAL ln -s ../../instbin usr.install/bin/sort
SPECIAL ln -s ../../instbin usr.install/bin/tar
SPECIAL ln -s ../../instbin usr.install/bin/tip
SPECIAL ln -s ../../instbin usr.install/bin/vi
# local usr.sbin
SPECIAL ln -s ../../instbin usr.install/sbin/chroot
SPECIAL ln -s ../../instbin usr.install/sbin/chown
SPECIAL ln -s ../../instbin usr.install/sbin/update
# crunchgen source directory specials: progs built in nonstandard places
CRUNCHSPECIAL vi srcdir usr.bin/vi/build
# Minimize use of MFS
SYMLINK /tmp var/tmp
# copy the MAKEDEV script and make some devices
COPY ${DESTDIR}/dev/MAKEDEV dev/MAKEDEV
COPY ${DESTDIR}/dev/MAKEDEV.local dev/MAKEDEV.local
SPECIAL cd dev; sh MAKEDEV all
SPECIAL /bin/rm dev/MAKEDEV dev/MAKEDEV.local
# we need the contents of /usr/mdec
COPYDIR ${DESTDIR}/usr/mdec /usr/mdec
# the zoneinfo (dont use)
#COPYDIR ${DESTDIR}/usr/share/zoneinfo usr/share/zoneinfo
# a subset termcap file
COPY ${ARCHDIR}/termcap.rcons usr/share/misc/termcap
# copy the kernel(s)
COPY ${CURDIR}/../../sys/arch/hpcmips/compile/GENERIC/netbsd netbsd
# various files that we need in /etc for the install
#COPY ${DESTDIR}/etc/disktab etc/disktab.shadow
#SYMLINK /tmp/disktab.shadow etc/disktab
#SYMLINK /tmp/fstab.shadow etc/fstab
#SYMLINK /tmp/resolv.conf.shadow etc/resolv.conf
#SYMLINK /tmp/hosts etc/hosts
# sysinst needs disktab template
COPY ${DESTDIR}/etc/disktab etc/disktab.preinstall
# and the installation tools
COPY ${ARCHDIR}/dot.profile .profile
#LINK instbin sbin/sysinst
# and a spare .profile
COPY ${DESTDIR}/.profile tmp/.hdprofile

450
etc/etc.hpcmips/MAKEDEV Normal file
View File

@ -0,0 +1,450 @@
#!/bin/sh -
#
# $NetBSD: MAKEDEV,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
#
# Copyright (c) 1990 The Regents of the University of California.
# All rights reserved.
#
# Redistribution and use in source and binary forms are permitted provided
# that: (1) source distributions retain this entire copyright notice and
# comment, and (2) distributions including binaries display the following
# acknowledgement: ``This product includes software developed by the
# University of California, Berkeley and its contributors'' in the
# documentation or other materials provided with the distribution and in
# all advertising materials mentioning features or use of this software.
# Neither the name of the University nor the names of its contributors may
# be used to endorse or promote products derived from this software without
# specific prior written permission.
# THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
#
# @(#)MAKEDEV 5.2 (Berkeley) 6/22/90
#
# Device "make" file. Valid arguments:
# all makes all known devices, including local devices.
# Tries to make the 'standard' number of each type.
# floppy devices to be put on install floppies
# std standard devices
# local configuration specific devices
# usbs make USB devices
#
# Tapes:
# st* SCSI tapes
#
# Disks:
# wd* "winchester" disk drives (ST506,IDE,ESDI,RLL,...)
# fd* "floppy" disk drives (3 1/2", 5 1/4")
# sd* SCSI disks
# cd* SCSI CD-ROM
# vnd* "file" pseudo-disks
# md* memory pseudo-disks
# ccd* contatenated disk devices
# raid* RAIDframe disk devices
#
# Console ports:
# ttyE* wscons
#
# Pointing devices:
# wsmouse* wscons mouse events
#
# Keyboard devices:
# wskbd* wscons keyboard events
#
# Terminal ports:
# com* standard PC COM ports (XXX)
# tty* alias for PC COM ports, this is what the system really wants
#
# Pseudo terminals:
# pty* set of 16 master and slave pseudo terminals
#
# Printers:
# lpt* stock lp
# lpa* interruptless lp
#
# USB devices:
# usb* Bus control devices used by usbd for attach/detach
# uhid* Generic HID devices
# ulpt* Printer devices
# ugen* Generic device
#
# Call units:
#
# Special purpose devices:
# fd file descriptors
# bpf* packet filter
# ipl ip filter
# random Random number generator
# tun* network tunnel driver
# scsibus* SCSI busses
# ss* SCSI scanner
# uk* SCSI unknown
# ch* SCSI changer
#
dialin=0
dialout=524288 # high bit of the minor number
PATH=/sbin:/usr/sbin:/bin:/usr/bin
umask 77
for i
do
case $i in
all)
sh $0 std fd fd0 fd1 wd0 wd1 wd2 wd3 sd0 sd1 sd2 sd3 sd4
sh $0 tty0 tty1 tty2 pty0 pty1 raid0 raid1 raid2 raid3
sh $0 st0 st1 ch0 cd0 cd1 vnd0 vnd1
sh $0 bpf0 bpf1 bpf2 bpf3 bpf4 bpf5 bpf6 bpf7
sh $0 lpt0 lpt1 lpt2 tun0 tun1 ipl
sh $0 ccd0 ccd1 ccd2 ccd3 md0 ss0 ch0 uk0 uk1 random
sh $0 usbs
sh $0 scsibus0 scsibus1 scsibus2 scsibus3
sh $0 wscons
# sh $0 local
;;
floppy)
sh $0 std fd0 fd1 wd0 wd1 sd0 sd1 sd2 tty0 tty1 tty2
sh $0 st0 st1 cd0 cd1
;;
ramdisk)
sh $0 floppy md0
;;
usbs)
sh $0 usb0 usb1
sh $0 uhid0 uhid1 uhid2 uhid3
sh $0 ulpt0 ulpt1
;;
std)
rm -f console drum mem kmem null zero io tty klog stdin stdout stderr
mknod console c 2 0
mknod drum c 1 0 ; chmod 640 drum ; chgrp kmem drum
mknod kmem c 0 1 ; chmod 640 kmem ; chgrp kmem kmem
mknod mem c 0 0 ; chmod 640 mem ; chgrp kmem mem
mknod null c 0 2 ; chmod 666 null
mknod zero c 0 12 ; chmod 666 zero
mknod io c 0 14 ; chmod 640 io ; chgrp kmem io
mknod tty c 3 0 ; chmod 666 tty
mknod klog c 5 0 ; chmod 600 klog
mknod stdin c 4 0 ; chmod 666 stdin
mknod stdout c 4 1 ; chmod 666 stdout
mknod stderr c 4 2 ; chmod 666 stderr
;;
usb*)
unit=${i#usb}
usb=usb$unit
major=23
rm -f $usb
mknod $usb c $major $unit
chown root.wheel $usb
chmod 600 $usb
;;
uhid*)
unit=${i#uhid}
uhid=uhid$unit
major=24
rm -f $uhid
mknod $uhid c $major $unit
chown root.wheel $uhid
chmod 666 $uhid
;;
ulpt*)
unit=${i#ulpt}
ulpt=ulpt$unit
major=25
rm -f $ulpt
mknod $ulpt c $major $unit
chown root.wheel $ulpt
chmod 600 $ulpt
;;
ugen*)
unit=${i#ugen}
ugen=ugen$unit
major=26
for j in 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
do
ugenj=$ugen.$j
rm -f $ugenj
mknod $ugenj c $major $(($unit * 16 + $j))
chown root.wheel $ugenj
chmod 600 $ugenj
done
;;
wscons)
sh $0 ttyE0 ttyE1 ttyE2 ttyE3 ttyE4 ttyE5 ttyE6 ttyE7
sh $0 wsmouse0 wsmouse1 wsmouse2 wsmouse3
sh $0 wskbd0 wskbd1 wskbd2 wskbd3
sh $0 ttyEcfg
;;
ttyEcfg)
chr=30
rm -f ttyEcfg
mknod ttyEcfg c $chr 255
chown root.wheel ttyEcfg
chmod 600 ttyEcfg
;;
ttyE*)
chr=30; unit=${i#ttyE}
rm -f ttyE$unit
mknod ttyE$unit c $chr $unit
chown root.wheel ttyE$unit
;;
wsmouse*)
unit=${i#wsmouse}
wsmouse=wsmouse$unit
major=32
rm -f $wsmouse
mknod $wsmouse c $major $unit
chown root.wheel $wsmouse
chmod 600 $wsmouse
;;
wskbd*)
unit=${i#wskbd}
wskbd=wskbd$unit
major=31
rm -f $wskbd
mknod $wskbd c $major $unit
chown root.wheel $wskbd
chmod 600 $wskbd
;;
fd)
rm -f fd/*
mkdir fd > /dev/null 2>&1
n=0
while [ $n -lt 64 ]; do
mknod fd/$n c 22 $n
n=$(($n + 1))
done
chown -R root.wheel fd
chmod 755 fd
chmod 666 fd/*
;;
md*)
case $i in
md*) name=md; unit=${i#md}; chr=12; blk=6;;
esac
rm -f $name$unit? r$name$unit?
mknod ${name}${unit}a b $blk $(($unit * 8 + 0))
mknod ${name}${unit}b b $blk $(($unit * 8 + 1))
mknod ${name}${unit}c b $blk $(($unit * 8 + 2))
mknod r${name}${unit}a c $chr $(($unit * 8 + 0))
mknod r${name}${unit}b c $chr $(($unit * 8 + 1))
mknod r${name}${unit}c c $chr $(($unit * 8 + 2))
chgrp operator $name$unit? r$name$unit?
chmod 640 $name$unit? r$name$unit?
;;
ss*)
case $i in
ss*) name=ss; unit=${i#ss}; chr=22;;
esac
rm -f $name$unit n$name$unit en$name$unit
mknod $name$unit c $chr $(($unit * 16 + 0))
mknod n$name$unit c $chr $(($unit * 16 + 1))
mknod en$name$unit c $chr $(($unit * 16 + 3))
chgrp operator $name$unit n$name$unit en$name$unit
chmod 640 $name$unit n$name$unit en$name$unit
;;
ccd*|fd*|sd*|vnd*|wd*|raid*)
case $i in
ccd*) name=ccd; unit=${i#ccd}; blk=7; chr=13;;
fd*) name=fd; unit=${i#fd}; blk=2; chr=11;;
raid*) name=raid; unit=${i#raid}; blk=9; chr=15;;
sd*) name=sd; unit=${i#sd}; blk=3; chr=17;;
vnd*) name=vnd; unit=${i#vnd}; blk=8; chr=14;;
wd*) name=wd; unit=${i#wd}; blk=1; chr=10;;
esac
rm -f $name$unit? r$name$unit?
mknod ${name}${unit}a b $blk $(($unit * 8 + 0))
mknod ${name}${unit}b b $blk $(($unit * 8 + 1))
mknod ${name}${unit}c b $blk $(($unit * 8 + 2))
mknod ${name}${unit}d b $blk $(($unit * 8 + 3))
mknod ${name}${unit}e b $blk $(($unit * 8 + 4))
mknod ${name}${unit}f b $blk $(($unit * 8 + 5))
mknod ${name}${unit}g b $blk $(($unit * 8 + 6))
mknod ${name}${unit}h b $blk $(($unit * 8 + 7))
mknod r${name}${unit}a c $chr $(($unit * 8 + 0))
mknod r${name}${unit}b c $chr $(($unit * 8 + 1))
mknod r${name}${unit}c c $chr $(($unit * 8 + 2))
mknod r${name}${unit}d c $chr $(($unit * 8 + 3))
mknod r${name}${unit}e c $chr $(($unit * 8 + 4))
mknod r${name}${unit}f c $chr $(($unit * 8 + 5))
mknod r${name}${unit}g c $chr $(($unit * 8 + 6))
mknod r${name}${unit}h c $chr $(($unit * 8 + 7))
chgrp operator $name$unit? r$name$unit?
chmod 640 $name$unit? r$name$unit?
;;
com*|tty*) # (XXX -- com should die)
unit=${i#???}
rm -f com$unit tty0$unit dty0$unit
mknod tty0$unit c 8 $(($unit + $dialin ))
mknod dty0$unit c 8 $(($unit + $dialout))
chown uucp.wheel tty0$unit dty0$unit
;;
pty*)
class=${i#pty}
case $class in
0) name=p;;
1) name=q;;
2) name=r;;
3) name=s;;
4) name=t;;
5) name=u;;
6) name=v
echo "$0: $i: pty unit conflicts with console ttyv* devices."
continue;;
7) name=w;;
8) name=x;;
9) name=y;;
10) name=z;;
11) name=P;;
12) name=Q;;
13) name=R;;
14) name=S;;
15) name=T;;
*) echo "$0: $i: pty unit must be between 0 and 15"
continue ;;
esac
rm -f tty$name[0-9a-f] pty$name[0-9a-f]
for j in 0 1 2 3 4 5 6 7 8 9 a b c d e f
do
case $j in
[0-9]) jn=$j ;;
a) jn=10 ;;
b) jn=11 ;;
c) jn=12 ;;
d) jn=13 ;;
e) jn=14 ;;
f) jn=15 ;;
esac
unit=$(($class * 16 + $jn))
mknod tty$name$j c 7 $unit
mknod pty$name$j c 6 $unit
done
chgrp wheel tty$name? pty$name?
chmod 666 tty$name? pty$name?
;;
st*)
case $i in
st*) name=st; unit=${i#st}; chr=18; blk=4;;
esac
rm -f $name$unit n$name$unit e$name$unit en$name$unit \
r$name$unit nr$name$unit er$name$unit enr$name$unit
mknod $name$unit b $blk $(($unit * 16 + 0))
mknod n$name$unit b $blk $(($unit * 16 + 1))
mknod e$name$unit b $blk $(($unit * 16 + 2))
mknod en$name$unit b $blk $(($unit * 16 + 3))
mknod r$name$unit c $chr $(($unit * 16 + 0))
mknod nr$name$unit c $chr $(($unit * 16 + 1))
mknod er$name$unit c $chr $(($unit * 16 + 2))
mknod enr$name$unit c $chr $(($unit * 16 + 3))
chgrp operator $name$unit n$name$unit e$name$unit en$name$unit \
r$name$unit nr$name$unit er$name$unit enr$name$unit
chmod 660 $name$unit n$name$unit e$name$unit en$name$unit \
r$name$unit nr$name$unit er$name$unit enr$name$unit
;;
ch*|uk*)
case $i in
ch*) name=ch; unit=${i#ch}; chr=20;;
uk*) name=uk; unit=${i#uk}; chr=21;;
esac
rm -f $name$unit
mknod $name$unit c $chr $unit
chgrp operator $name$unit
chmod 640 $name$unit
;;
cd*)
case $i in
cd*) name=cd; unit=${i#cd}; chr=19; blk=5;;
esac
rm -f $name$unit? r$name$unit?
mknod ${name}${unit}a b $blk $(($unit * 8 + 0))
mknod ${name}${unit}d b $blk $(($unit * 8 + 3))
mknod r${name}${unit}a c $chr $(($unit * 8 + 0))
mknod r${name}${unit}d c $chr $(($unit * 8 + 3))
chgrp operator $name$unit? r$name$unit?
chmod 640 $name$unit? r$name$unit?
;;
lpt*)
case $i in
lpt*) name=lpt; unit=${i#lpt}; chr=9; flags=0;;
esac
rm -f $name$unit
mknod $name$unit c $chr $(($unit + $flags))
chown root.wheel $name$unit
;;
bpf*|tun*)
case $i in
bpf*) name=bpf; unit=${i#bpf}; chr=29;;
tun*) name=tun; unit=${i#tun}; chr=28;;
esac
rm -f $name$unit
mknod $name$unit c $chr $unit
chown root.wheel $name$unit
;;
ipl)
rm -f ipl ipnat ipstate ipauth
mknod ipl c 27 0
mknod ipnat c 27 1
mknod ipstate c 27 2
mknod ipauth c 27 3
chown root.wheel ipl ipnat ipstate ipauth
chmod 600 ipl ipnat ipstate ipauth
;;
random)
rm -f random urandom
mknod random c 33 0
mknod urandom c 33 1
chown root.wheel random urandom
chmod 444 random
chmod 644 urandom
;;
scsibus*)
unit=${i#scsibus};
rm -f scsibus$unit
mknod scsibus$unit c 16 $unit
chown root:wheel scsibus$unit
chmod 644 scsibus$unit
;;
local)
umask 0
sh $0.local all
umask 77
;;
*)
echo $i: unknown device
;;
esac
done

39
etc/etc.hpcmips/disktab Normal file
View File

@ -0,0 +1,39 @@
# $NetBSD: disktab,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
#
# from: @(#)disktab 8.1 (Berkeley) 6/9/93
#
# Disk geometry and partition layout tables.
# Key:
# dt controller type
# ty type of disk (fixed, removeable, simulated)
# d[0-4] drive-type-dependent parameters
# ns #sectors/track
# nt #tracks/cylinder
# nc #cylinders/disk
# sc #sectors/cylinder, nc*nt default
# su #sectors/unit, sc*nc default
# se sector size, DEV_BSIZE default
# rm rpm, 3600 default
# sf supports bad144-style bad sector forwarding
# sk sector skew per track, default 0
# cs sector skew per cylinder, default 0
# hs headswitch time, default 0
# ts one-cylinder seek time, default 0
# il sector interleave (n:1), 1 default
# bs boot block size, default BBSIZE
# sb superblock size, default SBSIZE
# o[a-h] partition offsets in sectors
# p[a-h] partition sizes in sectors
# b[a-h] partition block sizes in bytes
# f[a-h] partition fragment sizes in bytes
# t[a-h] partition types (filesystem, swap, etc)
# b[0-1] primary and secondary bootstraps, optional
#
# All partition sizes contain space for bad sector tables unless
# the device drivers fail to support this. Smaller disks may
# not have all partitions and all disks have no defaults for
# the `h' partition. The strategy here is that `a' always
# has the same amount for all disks (currently 65536 sectors or 32megs).
* The `b' partition is approx 48 megs while `c' is always the entire disk. T
# The sum of `d', `e', and `f' is equal to `g' which is everything else.

5
etc/etc.hpcmips/fstab.wd Normal file
View File

@ -0,0 +1,5 @@
# $NetBSD: fstab.wd,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
/dev/wd0a / ffs rw 1 1
/dev/wd0b none swap sw 0 0
kernfs /kern kernfs rw 0 0
procfs /proc procfs rw 0 0

41
etc/etc.hpcmips/ttys Normal file
View File

@ -0,0 +1,41 @@
#
# $NetBSD: ttys,v 1.1.1.1 1999/09/16 12:18:27 takemura Exp $
#
# name getty type status comments
#
console "/usr/libexec/getty std.9600" unknown on secure
#
# pseudo-terminals
#
ttyp0 none network
ttyp1 none network
ttyp2 none network
ttyp3 none network
ttyp4 none network
ttyp5 none network
ttyp6 none network
ttyp7 none network
ttyp8 none network
ttyp9 none network
ttypa none network
ttypb none network
ttypc none network
ttypd none network
ttype none network
ttypf none network
ttyq0 none network
ttyq1 none network
ttyq2 none network
ttyq3 none network
ttyq4 none network
ttyq5 none network
ttyq6 none network
ttyq7 none network
ttyq8 none network
ttyq9 none network
ttyqa none network
ttyqb none network
ttyqc none network
ttyqd none network
ttyqe none network
ttyqf none network

View File

@ -0,0 +1,16 @@
.PATH: ${.CURDIR}/arch/mips/fplib
SRCS+=fplib_libc.c fplib_glue.c softfloat.c
softfloat.o: softfloat.c
${COMPILE.c} -freg-struct-return -c ${.IMPSRC} -o ${.TARGET}
@${LD} -x -r ${.TARGET}
@mv a.out ${.TARGET}
softfloat.po: softfloat.c
${COMPILE.c} -freg-struct-return -p ${.IMPSRC} -o ${.TARGET}
@${LD} -X -r ${.TARGET}
@mv a.out ${.TARGET}
softfloat.so: softfloat.c
${COMPILE.c} -freg-struct-return -c ${.IMPSRC} -o ${.TARGET}

View File

@ -0,0 +1,52 @@
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 1a.
Written by John R. Hauser. This work was made possible by the International
Computer Science Institute, located at Suite 600, 1947 Center Street,
Berkeley, California 94704. Funding was provided in part by the National
Science Foundation under grant MIP-9311980. The original version of
this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the web page `http://www.cs.berkeley.edu/~jhauser/
softfloat.html'.
THIS PACKAGE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
been made to avoid it, THIS PACKAGE MAY CONTAIN FAULTS THAT WILL AT TIMES
RESULT IN INCORRECT BEHAVIOR. USE OF THIS PACKAGE IS RESTRICTED TO PERSONS
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY AND ALL
LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these three paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Include common integer types and flags.
-------------------------------------------------------------------------------
*/
#include "hpcmips-gcc.h"
/*
-------------------------------------------------------------------------------
The word `INLINE' appears before all routines that should be inlined. If
a compiler does not support inlining, this macro should be defined to be
`static'.
-------------------------------------------------------------------------------
*/
#define INLINE extern inline
#ifdef __lint
#undef INLINE
#define INLINE /* for lint */
#endif

View File

@ -0,0 +1,133 @@
/* $NetBSD: fplib_glue.c,v 1.1.1.1 1999/09/16 12:18:25 takemura Exp $ */
/*-
* Copyright (c) 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Neil A. Carson and Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "environment.h"
#include "softfloat.h"
/********************************* COMPARISONS ********************************/
/*
* 'Equal' wrapper. This returns 0 if the numbers are equal, or (1 | -1)
* otherwise. So we need to invert the output.
*/
int __eqsf2(float32 a,float32 b) {
return float32_eq(a,b)?0:1;
}
int __eqdf2(float64 a,float64 b) {
return float64_eq(a,b)?0:1;
}
/*
* 'Not Equal' wrapper. This returns -1 or 1 (say, 1!) if the numbers are
* not equal, 0 otherwise. However no not equal call is provided, so we have
* to use an 'equal' call and invert the result. The result is already
* inverted though! Confusing?!
*/
int __nesf2(float32 a,float32 b) {
return float32_eq(a,b)?0:-1;
}
int __nedf2(float64 a,float64 b) {
return float64_eq(a,b)?0:-1;
}
/*
* 'Greater Than' wrapper. This returns 1 if the number is greater, 0
* or -1 otherwise. Unfortunately, no such function exists. We have to
* instead compare the numbers using the 'less than' calls in order to
* make up our mind. This means that we can call 'less than or equal' and
* invert the result.
*/
int __gtsf2(float32 a,float32 b) {
return float32_le(a,b)?0:1;
}
int __gtdf2(float64 a,float64 b) {
return float64_le(a,b)?0:1;
}
/*
* 'Greater Than or Equal' wrapper. We emulate this by inverting the result
* of a 'less than' call.
*/
int __gesf2(float32 a,float32 b) {
return float32_lt(a,b)?-1:0;
}
int __gedf2(float64 a,float64 b) {
return float64_lt(a,b)?-1:0;
}
/*
* 'Less Than' wrapper. A 1 from the ARM code needs to be turned into -1.
*/
int __ltsf2(float32 a,float32 b) {
return float32_lt(a,b)?-1:0;
}
int __ltdf2(float64 a,float64 b) {
return float64_lt(a,b)?-1:0;
}
/*
* 'Less Than or Equal' wrapper. A 0 must turn into a 1, and a 1 into a 0.
*/
int __lesf2(float32 a,float32 b) {
return float32_le(a,b)?0:1;
}
int __ledf2(float64 a,float64 b) {
return float64_le(a,b)?0:1;
}
/*
* Float negate... This isn't provided by the library, but it's hardly the
* hardest function in the world to write... :) In fact, because of the
* position in the registers of arguments, the double precision version can
* go here too ;-)
*/
#define SIGN_BIT_TWIDDLE
float32 __negsf2(float32 a) {
return (a ^ 0x80000000);
}
float64 __negdf2(float64 a) {
return (a ^ 0x8000000000000000LL);
}

View File

@ -0,0 +1,86 @@
/* $NetBSD: fplib_libc.c,v 1.1.1.1 1999/09/16 12:18:25 takemura Exp $ */
/*-
* Copyright (c) 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Neil A. Carson and Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include "environment.h"
#include "softfloat.h"
void sfp_setround __P((int rnd_dir));
int sfp_getround __P((void));
void sfp_setmask __P((int mask));
int sfp_getmask __P((void));
void sfp_setsticky __P((int except));
int sfp_getsticky __P((void));
void
sfp_setround(rnd_dir)
int rnd_dir;
{
float_rounding_mode = rnd_dir;
}
int
sfp_getround(void)
{
return(float_rounding_mode);
}
void
sfp_setmask(mask)
int mask;
{
}
int
sfp_getmask(void)
{
return(0);
}
void
sfp_setsticky(except)
int except;
{
float_exception_flags = except;
}
int
sfp_getsticky(void)
{
return(float_exception_flags);
}

View File

@ -0,0 +1,96 @@
/*
-------------------------------------------------------------------------------
One of the macros `BIGENDIAN' or `LITTLEENDIAN' must be defined.
-------------------------------------------------------------------------------
*/
#define LITTLEENDIAN
/*
-------------------------------------------------------------------------------
The macro `BITS64' can be defined to indicate that 64-bit integer types are
supported by the compiler.
-------------------------------------------------------------------------------
*/
#define BITS64
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines the most convenient type that holds
integers of at least as many bits as specified. For example, `uint8' should
be the most convenient type that can hold unsigned integers of as many as
8 bits. The `flag' type must be able to hold either a 0 or 1. For most
implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
to the same as `int'.
-------------------------------------------------------------------------------
*/
typedef int flag;
typedef unsigned char uint8;
typedef signed char int8;
typedef int uint16;
typedef int int16;
typedef unsigned int uint32;
typedef signed int int32;
#ifdef BITS64
typedef unsigned long long int uint64;
typedef signed long long int int64;
#endif
/*
-------------------------------------------------------------------------------
Each of the following `typedef's defines a type that holds integers
of _exactly_ the number of bits specified. For instance, for most
implementation of C, `bits16' and `sbits16' should be `typedef'ed to
`unsigned short int' and `signed short int' (or `short int'), respectively.
-------------------------------------------------------------------------------
*/
typedef unsigned char bits8;
typedef signed char sbits8;
typedef unsigned short int bits16;
typedef signed short int sbits16;
typedef unsigned int bits32;
typedef signed int sbits32;
#ifdef BITS64
typedef unsigned long long int bits64;
typedef signed long long int sbits64;
#endif
#ifdef BITS64
/*
-------------------------------------------------------------------------------
The `LIT64' macro takes as its argument a textual integer literal and
if necessary ``marks'' the literal as having a 64-bit integer type.
For example, the GNU C Compiler (`gcc') requires that 64-bit literals be
appended with the letters `LL' standing for `long long', which is `gcc's
name for the 64-bit integer type. Some compilers may allow `LIT64' to be
defined as the identity macro: `#define LIT64( a ) a'.
-------------------------------------------------------------------------------
*/
#define LIT64( a ) a##LL
#endif
/*
-------------------------------------------------------------------------------
The macro `INLINE' can be used before functions that should be inlined. If
a compiler does not support explicit inlining, this macro should be defined
to be `static'.
-------------------------------------------------------------------------------
*/
#define INLINE extern inline
#define float32_add __addsf3
#define float64_add __adddf3
#define float32_sub __subsf3
#define float64_sub __subdf3
#define float32_mul __mulsf3
#define float64_mul __muldf3
#define float32_div __divsf3
#define float64_div __divdf3
#define int32_to_float32 __floatsisf
#define int32_to_float64 __floatsidf
#define float32_to_int32_round_to_zero __fixsfsi
#define float64_to_int32_round_to_zero __fixdfsi
#define float32_to_uint32_round_to_zero __fixunssfsi
#define float64_to_uint32_round_to_zero __fixunsdfsi
#define float32_to_float64 __extendsfdf2
#define float64_to_float32 __truncdfsf2

View File

@ -0,0 +1,742 @@
/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Shifts `a' right by the number of bits given in `count'. If any nonzero
bits are shifted off, they are ``jammed'' into the least significant bit of
the result by setting the least significant bit to 1. The value of `count'
can be arbitrarily large; in particular, if `count' is greater than 32, the
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
The result is stored in the location pointed to by `zPtr'.
-------------------------------------------------------------------------------
*/
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
{
bits32 z;
if ( count == 0 ) {
z = a;
}
else if ( count < 32 ) {
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
}
else {
z = ( a != 0 );
}
*zPtr = z;
}
/*
-------------------------------------------------------------------------------
Shifts `a' right by the number of bits given in `count'. If any nonzero
bits are shifted off, they are ``jammed'' into the least significant bit of
the result by setting the least significant bit to 1. The value of `count'
can be arbitrarily large; in particular, if `count' is greater than 64, the
result will be either 0 or 1, depending on whether `a' is zero or nonzero.
The result is stored in the location pointed to by `zPtr'.
-------------------------------------------------------------------------------
*/
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
{
bits64 z;
if ( count == 0 ) {
z = a;
}
else if ( count < 64 ) {
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
}
else {
z = ( a != 0 );
}
*zPtr = z;
}
/*
-------------------------------------------------------------------------------
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
_plus_ the number of bits given in `count'. The shifted result is at most
64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
bits shifted off form a second 64-bit result as follows: The _last_ bit
shifted off is the most-significant bit of the extra result, and the other
63 bits of the extra result are all zero if and only if _all_but_the_last_
bits shifted off were all zero. This extra result is stored in the location
pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
(This routine makes more sense if `a0' and `a1' are considered to form a
fixed-point value with binary point between `a0' and `a1'. This fixed-point
value is shifted right by the number of bits given in `count', and the
integer part of the result is returned at the location pointed to by
`z0Ptr'. The fractional part of the result may be slightly corrupted as
described above, and is returned at the location pointed to by `z1Ptr'.)
-------------------------------------------------------------------------------
*/
INLINE void
shift64ExtraRightJamming(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1 != 0 );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z1 = a0 | ( a1 != 0 );
}
else {
z1 = ( ( a0 | a1 ) != 0 );
}
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
number of bits given in `count'. Any bits shifted off are lost. The value
of `count' can be arbitrarily large; in particular, if `count' is greater
than 128, the result will be 0. The result is broken into two 64-bit pieces
which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shift128Right(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
number of bits given in `count'. If any nonzero bits are shifted off, they
are ``jammed'' into the least significant bit of the result by setting the
least significant bit to 1. The value of `count' can be arbitrarily large;
in particular, if `count' is greater than 128, the result will be either
0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
nonzero. The result is broken into two 64-bit pieces which are stored at
the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shift128RightJamming(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z0, z1;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z1 = a1;
z0 = a0;
}
else if ( count < 64 ) {
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z1 = a0 | ( a1 != 0 );
}
else if ( count < 128 ) {
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
}
else {
z1 = ( ( a0 | a1 ) != 0 );
}
z0 = 0;
}
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
by 64 _plus_ the number of bits given in `count'. The shifted result is
at most 128 nonzero bits; these are broken into two 64-bit pieces which are
stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
off form a third 64-bit result as follows: The _last_ bit shifted off is
the most-significant bit of the extra result, and the other 63 bits of the
extra result are all zero if and only if _all_but_the_last_ bits shifted off
were all zero. This extra result is stored in the location pointed to by
`z2Ptr'. The value of `count' can be arbitrarily large.
(This routine makes more sense if `a0', `a1', and `a2' are considered
to form a fixed-point value with binary point between `a1' and `a2'. This
fixed-point value is shifted right by the number of bits given in `count',
and the integer part of the result is returned at the locations pointed to
by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
corrupted as described above, and is returned at the location pointed to by
`z2Ptr'.)
-------------------------------------------------------------------------------
*/
INLINE void
shift128ExtraRightJamming(
bits64 a0,
bits64 a1,
bits64 a2,
int16 count,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 negCount = ( - count ) & 63;
if ( count == 0 ) {
z2 = a2;
z1 = a1;
z0 = a0;
}
else {
if ( count < 64 ) {
z2 = a1<<negCount;
z1 = ( a0<<negCount ) | ( a1>>count );
z0 = a0>>count;
}
else {
if ( count == 64 ) {
z2 = a1;
z1 = a0;
}
else {
a2 |= a1;
if ( count < 128 ) {
z2 = a0<<negCount;
z1 = a0>>( count & 63 );
}
else {
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
z1 = 0;
}
}
z0 = 0;
}
z2 |= ( a2 != 0 );
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
number of bits given in `count'. Any bits shifted off are lost. The value
of `count' must be less than 64. The result is broken into two 64-bit
pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shortShift128Left(
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
{
*z1Ptr = a1<<count;
*z0Ptr =
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
}
/*
-------------------------------------------------------------------------------
Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
by the number of bits given in `count'. Any bits shifted off are lost.
The value of `count' must be less than 64. The result is broken into three
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
`z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
shortShift192Left(
bits64 a0,
bits64 a1,
bits64 a2,
int16 count,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 negCount;
z2 = a2<<count;
z1 = a1<<count;
z0 = a0<<count;
if ( 0 < count ) {
negCount = ( ( - count ) & 63 );
z1 |= a2>>negCount;
z0 |= a1>>negCount;
}
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
any carry out is lost. The result is broken into two 64-bit pieces which
are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
add128(
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits64 z1;
z1 = a1 + b1;
*z1Ptr = z1;
*z0Ptr = a0 + b0 + ( z1 < a1 );
}
/*
-------------------------------------------------------------------------------
Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
modulo 2^192, so any carry out is lost. The result is broken into three
64-bit pieces which are stored at the locations pointed to by `z0Ptr',
`z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
add192(
bits64 a0,
bits64 a1,
bits64 a2,
bits64 b0,
bits64 b1,
bits64 b2,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 carry0, carry1;
z2 = a2 + b2;
carry1 = ( z2 < a2 );
z1 = a1 + b1;
carry0 = ( z1 < a1 );
z0 = a0 + b0;
z1 += carry1;
z0 += ( z1 < carry1 );
z0 += carry0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
2^128, so any borrow out (carry out) is lost. The result is broken into two
64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
`z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
sub128(
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
{
*z1Ptr = a1 - b1;
*z0Ptr = a0 - b0 - ( a1 < b1 );
}
/*
-------------------------------------------------------------------------------
Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
result is broken into three 64-bit pieces which are stored at the locations
pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
sub192(
bits64 a0,
bits64 a1,
bits64 a2,
bits64 b0,
bits64 b1,
bits64 b2,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2;
int8 borrow0, borrow1;
z2 = a2 - b2;
borrow1 = ( a2 < b2 );
z1 = a1 - b1;
borrow0 = ( a1 < b1 );
z0 = a0 - b0;
z0 -= ( z1 < borrow1 );
z1 -= borrow1;
z0 -= borrow0;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
into two 64-bit pieces which are stored at the locations pointed to by
`z0Ptr' and `z1Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
{
bits32 aHigh, aLow, bHigh, bLow;
bits64 z0, zMiddleA, zMiddleB, z1;
aLow = a;
aHigh = a>>32;
bLow = b;
bHigh = b>>32;
z1 = ( (bits64) aLow ) * bLow;
zMiddleA = ( (bits64) aLow ) * bHigh;
zMiddleB = ( (bits64) aHigh ) * bLow;
z0 = ( (bits64) aHigh ) * bHigh;
zMiddleA += zMiddleB;
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
zMiddleA <<= 32;
z1 += zMiddleA;
z0 += ( z1 < zMiddleA );
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
`b' to obtain a 192-bit product. The product is broken into three 64-bit
pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
`z2Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
mul128By64To192(
bits64 a0,
bits64 a1,
bits64 b,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr
)
{
bits64 z0, z1, z2, more1;
mul64To128( a1, b, &z1, &z2 );
mul64To128( a0, b, &z0, &more1 );
add128( z0, more1, 0, z1, &z0, &z1 );
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
product. The product is broken into four 64-bit pieces which are stored at
the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
-------------------------------------------------------------------------------
*/
INLINE void
mul128To256(
bits64 a0,
bits64 a1,
bits64 b0,
bits64 b1,
bits64 *z0Ptr,
bits64 *z1Ptr,
bits64 *z2Ptr,
bits64 *z3Ptr
)
{
bits64 z0, z1, z2, z3;
bits64 more1, more2;
mul64To128( a1, b1, &z2, &z3 );
mul64To128( a1, b0, &z1, &more2 );
add128( z1, more2, 0, z2, &z1, &z2 );
mul64To128( a0, b0, &z0, &more1 );
add128( z0, more1, 0, z1, &z0, &z1 );
mul64To128( a0, b1, &more1, &more2 );
add128( more1, more2, 0, z2, &more1, &z2 );
add128( z0, z1, 0, more1, &z0, &z1 );
*z3Ptr = z3;
*z2Ptr = z2;
*z1Ptr = z1;
*z0Ptr = z0;
}
/*
-------------------------------------------------------------------------------
Returns an approximation to the 64-bit integer quotient obtained by dividing
`b' into the 128-bit value formed by concatenating `a0' and `a1'. The
divisor `b' must be at least 2^63. If q is the exact quotient truncated
toward zero, the approximation returned lies between q and q + 2 inclusive.
If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
unsigned integer is returned.
-------------------------------------------------------------------------------
*/
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
{
bits64 b0, b1;
bits64 rem0, rem1, term0, term1;
bits64 z;
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
b0 = b>>32;
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
mul64To128( b, z, &term0, &term1 );
sub128( a0, a1, term0, term1, &rem0, &rem1 );
while ( ( (sbits64) rem0 ) < 0 ) {
z -= LIT64( 0x100000000 );
b1 = b<<32;
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
}
rem0 = ( rem0<<32 ) | ( rem1>>32 );
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
return z;
}
/*
-------------------------------------------------------------------------------
Returns an approximation to the square root of the 32-bit significand given
by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
`aExp' (the least significant bit) is 1, the integer returned approximates
2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
case, the approximation returned lies strictly within +/-2 of the exact
value.
-------------------------------------------------------------------------------
*/
static bits32 estimateSqrt32( int16 aExp, bits32 a )
{
static const bits16 sqrtOddAdjustments[] = {
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
};
static const bits16 sqrtEvenAdjustments[] = {
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
};
int8 index;
bits32 z;
index = ( a>>27 ) & 15;
if ( aExp & 1 ) {
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
z = ( ( a / z )<<14 ) + ( z<<15 );
a >>= 1;
}
else {
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
z = a / z + z;
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
}
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
}
/*
-------------------------------------------------------------------------------
Returns the number of leading 0 bits before the most-significant 1 bit of
`a'. If `a' is zero, 32 is returned.
-------------------------------------------------------------------------------
*/
static int8 countLeadingZeros32( bits32 a )
{
static const int8 countLeadingZerosHigh[] = {
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
int8 shiftCount;
shiftCount = 0;
if ( a < 0x10000 ) {
shiftCount += 16;
a <<= 16;
}
if ( a < 0x1000000 ) {
shiftCount += 8;
a <<= 8;
}
shiftCount += countLeadingZerosHigh[ a>>24 ];
return shiftCount;
}
/*
-------------------------------------------------------------------------------
Returns the number of leading 0 bits before the most-significant 1 bit of
`a'. If `a' is zero, 64 is returned.
-------------------------------------------------------------------------------
*/
static int8 countLeadingZeros64( bits64 a )
{
int8 shiftCount;
shiftCount = 0;
if ( a < ( (bits64) 1 )<<32 ) {
shiftCount += 32;
}
else {
a >>= 32;
}
shiftCount += countLeadingZeros32( a );
return shiftCount;
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
is equal to the 128-bit value formed by concatenating `b0' and `b1'.
Otherwise, returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 == b0 ) && ( a1 == b1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
Otherwise, returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
not equal to the 128-bit value formed by concatenating `b0' and `b1'.
Otherwise, returns 0.
-------------------------------------------------------------------------------
*/
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
{
return ( a0 != b0 ) || ( a1 != b1 );
}

View File

@ -0,0 +1,496 @@
/*
===============================================================================
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
Underflow tininess-detection mode, statically initialized to default value.
(The declaration in `softfloat.h' must match the `int8' type here.)
-------------------------------------------------------------------------------
*/
int8 float_detect_tininess = float_tininess_after_rounding;
/*
-------------------------------------------------------------------------------
Raises the exceptions specified by `flags'. Floating-point traps can be
defined here if desired. It is currently not possible for such a trap
to substitute a result value. If traps are not implemented, this routine
should be simply `float_exception_flags |= flags;'.
-------------------------------------------------------------------------------
*/
void float_raise( int8 flags )
{
float_exception_flags |= flags;
}
/*
-------------------------------------------------------------------------------
Internal canonical NaN format.
-------------------------------------------------------------------------------
*/
typedef struct {
flag sign;
bits64 high, low;
} commonNaNT;
/*
-------------------------------------------------------------------------------
The pattern for a default generated single-precision NaN.
-------------------------------------------------------------------------------
*/
#define float32_default_nan 0xFFC00000
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float32_is_nan( float32 a )
{
return ( 0xFF000000 < (bits32) ( a<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the single-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float32_is_signaling_nan( float32 a )
{
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the single-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float32ToCommonNaN( float32 a )
{
commonNaNT z;
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>31;
z.low = 0;
z.high = ( (bits64) a )<<41;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the single-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float32 commonNaNToFloat32( commonNaNT a )
{
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
}
/*
-------------------------------------------------------------------------------
Takes two single-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float32 propagateFloat32NaN( float32 a, float32 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float32_is_nan( a );
aIsSignalingNaN = float32_is_signaling_nan( a );
bIsNaN = float32_is_nan( b );
bIsSignalingNaN = float32_is_signaling_nan( b );
a |= 0x00400000;
b |= 0x00400000;
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
return bIsNaN ? b : a;
}
else if ( aIsNaN ) {
if ( bIsSignalingNaN | ! bIsNaN ) return a;
returnLargerSignificand:
if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
return ( a < b ) ? a : b;
}
else {
return b;
}
}
/*
-------------------------------------------------------------------------------
The pattern for a default generated double-precision NaN.
-------------------------------------------------------------------------------
*/
#define float64_default_nan LIT64( 0xFFF8000000000000 )
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float64_is_nan( float64 a )
{
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the double-precision floating-point value `a' is a signaling
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float64_is_signaling_nan( float64 a )
{
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the double-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float64ToCommonNaN( float64 a )
{
commonNaNT z;
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a>>63;
z.low = 0;
z.high = a<<12;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the double-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float64 commonNaNToFloat64( commonNaNT a )
{
return
( ( (bits64) a.sign )<<63 )
| LIT64( 0x7FF8000000000000 )
| ( a.high>>12 );
}
/*
-------------------------------------------------------------------------------
Takes two double-precision floating-point values `a' and `b', one of which
is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float64 propagateFloat64NaN( float64 a, float64 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float64_is_nan( a );
aIsSignalingNaN = float64_is_signaling_nan( a );
bIsNaN = float64_is_nan( b );
bIsSignalingNaN = float64_is_signaling_nan( b );
a |= LIT64( 0x0008000000000000 );
b |= LIT64( 0x0008000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
return bIsNaN ? b : a;
}
else if ( aIsNaN ) {
if ( bIsSignalingNaN | ! bIsNaN ) return a;
returnLargerSignificand:
if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
return ( a < b ) ? a : b;
}
else {
return b;
}
}
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
The pattern for a default generated extended double-precision NaN. The
`high' and `low' values hold the most- and least-significant bits,
respectively.
-------------------------------------------------------------------------------
*/
#define floatx80_default_nan_high 0xFFFF
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_nan( floatx80 a )
{
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the extended double-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag floatx80_is_signaling_nan( floatx80 a )
{
bits64 aLow;
aLow = a.low & ~ LIT64( 0x4000000000000000 );
return
( ( a.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( a.low == aLow );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the extended double-precision floating-
point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
invalid exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT floatx80ToCommonNaN( floatx80 a )
{
commonNaNT z;
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>15;
z.low = 0;
z.high = a.low<<1;
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the extended
double-precision floating-point format.
-------------------------------------------------------------------------------
*/
static floatx80 commonNaNToFloatx80( commonNaNT a )
{
floatx80 z;
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
return z;
}
/*
-------------------------------------------------------------------------------
Takes two extended double-precision floating-point values `a' and `b', one
of which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = floatx80_is_nan( a );
aIsSignalingNaN = floatx80_is_signaling_nan( a );
bIsNaN = floatx80_is_nan( b );
bIsSignalingNaN = floatx80_is_signaling_nan( b );
a.low |= LIT64( 0xC000000000000000 );
b.low |= LIT64( 0xC000000000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
return bIsNaN ? b : a;
}
else if ( aIsNaN ) {
if ( bIsSignalingNaN | ! bIsNaN ) return a;
returnLargerSignificand:
if ( a.low < b.low ) return b;
if ( b.low < a.low ) return a;
return ( a.high < b.high ) ? a : b;
}
else {
return b;
}
}
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
The pattern for a default generated quadruple-precision NaN. The `high' and
`low' values hold the most- and least-significant bits, respectively.
-------------------------------------------------------------------------------
*/
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
#define float128_default_nan_low LIT64( 0x0000000000000000 )
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_nan( float128 a )
{
return
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns 1 if the quadruple-precision floating-point value `a' is a
signaling NaN; otherwise returns 0.
-------------------------------------------------------------------------------
*/
flag float128_is_signaling_nan( float128 a )
{
return
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the quadruple-precision floating-point NaN
`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
exception is raised.
-------------------------------------------------------------------------------
*/
static commonNaNT float128ToCommonNaN( float128 a )
{
commonNaNT z;
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
z.sign = a.high>>63;
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
return z;
}
/*
-------------------------------------------------------------------------------
Returns the result of converting the canonical NaN `a' to the quadruple-
precision floating-point format.
-------------------------------------------------------------------------------
*/
static float128 commonNaNToFloat128( commonNaNT a )
{
float128 z;
shift128Right( a.high, a.low, 16, &z.high, &z.low );
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
return z;
}
/*
-------------------------------------------------------------------------------
Takes two quadruple-precision floating-point values `a' and `b', one of
which is a NaN, and returns the appropriate NaN result. If either `a' or
`b' is a signaling NaN, the invalid exception is raised.
-------------------------------------------------------------------------------
*/
static float128 propagateFloat128NaN( float128 a, float128 b )
{
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
aIsNaN = float128_is_nan( a );
aIsSignalingNaN = float128_is_signaling_nan( a );
bIsNaN = float128_is_nan( b );
bIsSignalingNaN = float128_is_signaling_nan( b );
a.high |= LIT64( 0x0000800000000000 );
b.high |= LIT64( 0x0000800000000000 );
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
if ( aIsSignalingNaN ) {
if ( bIsSignalingNaN ) goto returnLargerSignificand;
return bIsNaN ? b : a;
}
else if ( aIsNaN ) {
if ( bIsSignalingNaN | ! bIsNaN ) return a;
returnLargerSignificand:
if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
return ( a.high < b.high ) ? a : b;
}
else {
return b;
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,290 @@
/*
===============================================================================
This C header file is part of the SoftFloat IEC/IEEE Floating-point
Arithmetic Package, Release 2a.
Written by John R. Hauser. This work was made possible in part by the
International Computer Science Institute, located at Suite 600, 1947 Center
Street, Berkeley, California 94704. Funding was partially provided by the
National Science Foundation under grant MIP-9311980. The original version
of this code was written as part of a project to build a fixed-point vector
processor in collaboration with the University of California at Berkeley,
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
arithmetic/SoftFloat.html'.
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
Derivative works are acceptable, even for commercial purposes, so long as
(1) they include prominent notice that the work is derivative, and (2) they
include prominent notice akin to these four paragraphs for those parts of
this code that are retained.
===============================================================================
*/
/*
-------------------------------------------------------------------------------
The macro `FLOATX80' must be defined to enable the extended double-precision
floating-point format `floatx80'. If this macro is not defined, the
`floatx80' type will not be defined, and none of the functions that either
input or output the `floatx80' type will be defined. The same applies to
the `FLOAT128' macro and the quadruple-precision format `float128'.
-------------------------------------------------------------------------------
*/
#undef FLOATX80
#undef FLOAT128
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point types.
-------------------------------------------------------------------------------
*/
typedef unsigned int float32;
typedef unsigned long long float64;
#ifdef FLOATX80
typedef struct {
unsigned long long low;
unsigned short high;
} floatx80;
#endif
#ifdef FLOAT128
typedef struct {
unsigned long long low, high;
} float128;
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point underflow tininess-detection mode.
-------------------------------------------------------------------------------
*/
extern signed char float_detect_tininess;
enum {
float_tininess_after_rounding = 0,
float_tininess_before_rounding = 1
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point rounding mode.
-------------------------------------------------------------------------------
*/
extern signed char float_rounding_mode;
enum {
float_round_nearest_even = 0,
float_round_down = 1,
float_round_up = 2,
float_round_to_zero = 3
};
/*
-------------------------------------------------------------------------------
Software IEC/IEEE floating-point exception flags.
-------------------------------------------------------------------------------
*/
extern signed char float_exception_flags;
enum {
float_flag_invalid = 1,
float_flag_divbyzero = 4,
float_flag_overflow = 8,
float_flag_underflow = 16,
float_flag_inexact = 32
};
/*
-------------------------------------------------------------------------------
Routine to raise any or all of the software IEC/IEEE floating-point
exception flags.
-------------------------------------------------------------------------------
*/
void float_raise( signed char );
/*
-------------------------------------------------------------------------------
Software IEC/IEEE integer-to-floating-point conversion routines.
-------------------------------------------------------------------------------
*/
float32 int32_to_float32( int );
float64 int32_to_float64( int );
#ifdef FLOATX80
floatx80 int32_to_floatx80( int );
#endif
#ifdef FLOAT128
float128 int32_to_float128( int );
#endif
float32 int64_to_float32( long long );
float64 int64_to_float64( long long );
#ifdef FLOATX80
floatx80 int64_to_floatx80( long long );
#endif
#ifdef FLOAT128
float128 int64_to_float128( long long );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float32_to_int32( float32 );
int float32_to_int32_round_to_zero( float32 );
long long float32_to_int64( float32 );
long long float32_to_int64_round_to_zero( float32 );
float64 float32_to_float64( float32 );
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 );
#endif
#ifdef FLOAT128
float128 float32_to_float128( float32 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE single-precision operations.
-------------------------------------------------------------------------------
*/
float32 float32_round_to_int( float32 );
float32 float32_add( float32, float32 );
float32 float32_sub( float32, float32 );
float32 float32_mul( float32, float32 );
float32 float32_div( float32, float32 );
float32 float32_rem( float32, float32 );
float32 float32_sqrt( float32 );
flag float32_eq( float32, float32 );
flag float32_le( float32, float32 );
flag float32_lt( float32, float32 );
flag float32_eq_signaling( float32, float32 );
flag float32_le_quiet( float32, float32 );
flag float32_lt_quiet( float32, float32 );
flag float32_is_signaling_nan( float32 );
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float64_to_int32( float64 );
int float64_to_int32_round_to_zero( float64 );
long long float64_to_int64( float64 );
long long float64_to_int64_round_to_zero( float64 );
float32 float64_to_float32( float64 );
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 );
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE double-precision operations.
-------------------------------------------------------------------------------
*/
float64 float64_round_to_int( float64 );
float64 float64_add( float64, float64 );
float64 float64_sub( float64, float64 );
float64 float64_mul( float64, float64 );
float64 float64_div( float64, float64 );
float64 float64_rem( float64, float64 );
float64 float64_sqrt( float64 );
flag float64_eq( float64, float64 );
flag float64_le( float64, float64 );
flag float64_lt( float64, float64 );
flag float64_eq_signaling( float64, float64 );
flag float64_le_quiet( float64, float64 );
flag float64_lt_quiet( float64, float64 );
flag float64_is_signaling_nan( float64 );
#ifdef FLOATX80
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision conversion routines.
-------------------------------------------------------------------------------
*/
int floatx80_to_int32( floatx80 );
int floatx80_to_int32_round_to_zero( floatx80 );
long long floatx80_to_int64( floatx80 );
long long floatx80_to_int64_round_to_zero( floatx80 );
float32 floatx80_to_float32( floatx80 );
float64 floatx80_to_float64( floatx80 );
#ifdef FLOAT128
float128 floatx80_to_float128( floatx80 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision rounding precision. Valid
values are 32, 64, and 80.
-------------------------------------------------------------------------------
*/
extern signed flag floatx80_rounding_precision;
/*
-------------------------------------------------------------------------------
Software IEC/IEEE extended double-precision operations.
-------------------------------------------------------------------------------
*/
floatx80 floatx80_round_to_int( floatx80 );
floatx80 floatx80_add( floatx80, floatx80 );
floatx80 floatx80_sub( floatx80, floatx80 );
floatx80 floatx80_mul( floatx80, floatx80 );
floatx80 floatx80_div( floatx80, floatx80 );
floatx80 floatx80_rem( floatx80, floatx80 );
floatx80 floatx80_sqrt( floatx80 );
flag floatx80_eq( floatx80, floatx80 );
flag floatx80_le( floatx80, floatx80 );
flag floatx80_lt( floatx80, floatx80 );
flag floatx80_eq_signaling( floatx80, floatx80 );
flag floatx80_le_quiet( floatx80, floatx80 );
flag floatx80_lt_quiet( floatx80, floatx80 );
flag floatx80_is_signaling_nan( floatx80 );
#endif
#ifdef FLOAT128
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision conversion routines.
-------------------------------------------------------------------------------
*/
int float128_to_int32( float128 );
int float128_to_int32_round_to_zero( float128 );
long long float128_to_int64( float128 );
long long float128_to_int64_round_to_zero( float128 );
float32 float128_to_float32( float128 );
float64 float128_to_float64( float128 );
#ifdef FLOATX80
floatx80 float128_to_floatx80( float128 );
#endif
/*
-------------------------------------------------------------------------------
Software IEC/IEEE quadruple-precision operations.
-------------------------------------------------------------------------------
*/
float128 float128_round_to_int( float128 );
float128 float128_add( float128, float128 );
float128 float128_sub( float128, float128 );
float128 float128_mul( float128, float128 );
float128 float128_div( float128, float128 );
float128 float128_rem( float128, float128 );
float128 float128_sqrt( float128 );
flag float128_eq( float128, float128 );
flag float128_le( float128, float128 );
flag float128_lt( float128, float128 );
flag float128_eq_signaling( float128, float128 );
flag float128_le_quiet( float128, float128 );
flag float128_lt_quiet( float128, float128 );
flag float128_is_signaling_nan( float128 );
#endif

View File

@ -0,0 +1,115 @@
/* $NetBSD: ieee.h,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ieee.h 8.1 (Berkeley) 6/11/93
*/
/*
* ieee.h defines the machine-dependent layout of the machine's IEEE
* floating point.
*/
/*
* Define the number of bits in each fraction and exponent.
*
* k k+1
* Note that 1.0 x 2 == 0.1 x 2 and that denorms are represented
*
* (-exp_bias+1)
* as fractions that look like 0.fffff x 2 . This means that
*
* -126
* the number 0.10000 x 2 , for instance, is the same as the normalized
*
* -127 -128
* float 1.0 x 2 . Thus, to represent 2 , we need one leading zero
*
* -129
* in the fraction; to represent 2 , we need two, and so on. This
*
* (-exp_bias-fracbits+1)
* implies that the smallest denormalized number is 2
*
* for whichever format we are talking about: for single precision, for
*
* -126 -149
* instance, we get .00000000000000000000001 x 2 , or 1.0 x 2 , and
*
* -149 == -127 - 23 + 1.
*/
#define SNG_EXPBITS 8
#define SNG_FRACBITS 23
#define DBL_EXPBITS 11
#define DBL_FRACBITS 52
struct ieee_single {
u_int sng_frac:23;
u_int sng_exponent:8;
u_int sng_sign:1;
};
struct ieee_double {
u_int dbl_fracl;
u_int dbl_frach:20;
u_int dbl_exp:11;
u_int dbl_sign:1;
};
/*
* Floats whose exponent is in [1..INFNAN) (of whatever type) are
* `normal'. Floats whose exponent is INFNAN are either Inf or NaN.
* Floats whose exponent is zero are either zero (iff all fraction
* bits are zero) or subnormal values.
*
* A NaN is a `signalling NaN' if its QUIETNAN bit is clear in its
* high fraction; if the bit is set, it is a `quiet NaN'.
*/
#define SNG_EXP_INFNAN 255
#define DBL_EXP_INFNAN 2047
/*
* Exponent biases.
*/
#define SNG_EXP_BIAS 127
#define DBL_EXP_BIAS 1023

View File

@ -0,0 +1,48 @@
/* $NetBSD: sf_fabs.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1996 Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* fabs(x) returns the absolute value of x.
*/
#ifdef __STDC__
double fabs(double x)
#else
double fabs(x)
double x;
#endif
{
if (x < 0)
x = -x;
return(x);
}

View File

@ -0,0 +1,76 @@
/* $NetBSD: sf_flt_rounds.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1996 Mark Brinicombe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <ieeefp.h>
static const int map[] = {
1, /* round to nearest */
2, /* round to positive infinity */
3, /* round to negative infinity */
0 /* round to zero */
};
/*
* Return the current FP rounding mode
*
* Returns:
* 0 - round to zero
* 1 - round to nearest
* 2 - round to postive infinity
* 3 - round to negative infinity
*
* ok all we need to do is get the current FP rounding mode
* index our map table and return the appropriate value.
*
* HOWEVER:
* The ARM FPA codes the rounding mode into the actual FP instructions
* so there is no such thing as a global rounding mode.
* The default is round to nearest if rounding is not explictly specified.
* FP instructions generated by GCC will not explicitly specify a rounding
* mode.
*
* So the best we can do it to return the rounding mode FP instructions
* use if rounding is not specified which is round to nearest.
*
* This could change in the future with new floating point emulators or
* soft float FP libraries.
*/
int __flt_rounds(void);
int
__flt_rounds()
{
return(map[fpgetround()]);
}

View File

@ -0,0 +1,14 @@
/* $NetBSD: sf_fpgetmask.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Written by J.T. Conklin, Apr 11, 1995
* Public domain.
*/
#include <ieeefp.h>
fp_except
fpgetmask()
{
return sfp_getmask();
}

View File

@ -0,0 +1,64 @@
/* $NetBSD: sf_fpgetround.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1996 Mark Brinicombe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <ieeefp.h>
/*
* Return the current FP rounding mode
*
* ok all we need to do is return the current FP rounding mode
*
* HOWEVER:
* The ARM FPA codes the rounding mode into the actual FP instructions
* so there is no such thing as a global rounding mode.
* The default is round to nearest if rounding is not explictly specified.
* FP instructions generated by GCC will not explicitly specify a rounding
* mode.
*
* So the best we can do it to return the rounding mode FP instructions
* use if rounding is not specified which is round to nearest.
*
* This could change in the future with new floating point emulators or
* soft float FP libraries.
*/
fp_rnd
fpgetround()
{
#ifdef SOFT_FLOAT
return(sfp_getround());
#else
return(FP_RN);
#endif
}

View File

@ -0,0 +1,14 @@
/* $NetBSD: sf_fpgetsticky.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Written by J.T. Conklin, Apr 11, 1995
* Public domain.
*/
#include <ieeefp.h>
fp_except
fpgetsticky()
{
return sfp_getsticky();
}

View File

@ -0,0 +1,20 @@
/* $NetBSD: sf_fpsetmask.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Written by J.T. Conklin, Apr 11, 1995
* Public domain.
*/
#include <ieeefp.h>
fp_except
fpsetmask(mask)
fp_except mask;
{
fp_except old;
fp_except new;
old = sfp_getmask();
sfp_setmask(mask);
return old;
}

View File

@ -0,0 +1,71 @@
/* $NetBSD: sf_fpsetround.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1996 Mark Brinicombe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/types.h>
#include <ieeefp.h>
void sfp_setround __P((fp_rnd));
/*
* Return the current FP rounding mode
*
* ok all we need to do is return the current FP rounding mode
*
* HOWEVER:
* The ARM FPA codes the rounding mode into the actual FP instructions
* so there is no such thing as a global rounding mode.
* The default is round to nearest if rounding is not explictly specified.
* FP instructions generated by GCC will not explicitly specify a rounding
* mode.
*
* All we can do is abort
*
* This could change in the future with new floating point emulators or
* soft float FP libraries.
*/
fp_rnd
fpsetround(rnd_dir)
fp_rnd rnd_dir;
{
fp_rnd old_rnd;
old_rnd = fpgetround();
#ifdef SOFTFLOAT
sfp_setround(rnd_dir);
#else
abort();
#endif
return(old_rnd);
}

View File

@ -0,0 +1,19 @@
/* $NetBSD: sf_fpsetsticky.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Written by J.T. Conklin, Apr 11, 1995
* Public domain.
*/
#include <ieeefp.h>
fp_except
fpsetsticky(sticky)
fp_except sticky;
{
fp_except old;
old = sfp_getsticky();
sfp_setsticky(sticky);
return old;
}

View File

@ -0,0 +1,61 @@
/* $NetBSD: sf_isinf.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1996 Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD project.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "namespace.h"
#include <sys/types.h>
#include "ieee.h"
#include <math.h>
#ifdef __weak_alias
__weak_alias(isnan,_isnan);
__weak_alias(isinf,_isinf);
#endif
int
isnan(d)
double d;
{
register struct ieee_double *p = (struct ieee_double *)&d;
return(p->dbl_exp == DBL_EXP_INFNAN && (p->dbl_frach || p->dbl_fracl));
}
int
isinf(d)
double d;
{
register struct ieee_double *p = (struct ieee_double *)&d;
return(p->dbl_exp == DBL_EXP_INFNAN && !p->dbl_frach && !p->dbl_fracl);
}

View File

@ -0,0 +1,155 @@
/* $NetBSD: sf_ldexp.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: ldexp.c,v 1.1 1993/10/07 00:21:36 cgd Exp $
*/
#include <sys/cdefs.h>
#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static const char sccsid[] = "@(#)ldexp.c 8.1 (Berkeley) 6/4/93";
#else
__RCSID("$NetBSD: sf_ldexp.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $");
#endif
#endif /* LIBC_SCCS and not lint */
#include <math.h>
#include <sys/types.h>
#include "ieee.h"
#include <errno.h>
/*
* double ldexp(double val, int exp)
* returns: val * (2**exp)
*/
double
ldexp(val, exp)
double val;
int exp;
{
register int oldexp, newexp, mulexp;
union doub {
double v;
struct ieee_double s;
} u, mul;
/*
* If input is zero, or no change, just return input.
* Likewise, if input is Inf or NaN, just return it.
*/
u.v = val;
oldexp = u.s.dbl_exp;
if (val == 0 || exp == 0 || oldexp == DBL_EXP_INFNAN)
return (val);
/*
* Compute new exponent and check for over/under flow.
* Underflow, unfortunately, could mean switching to denormal.
* If result out of range, set ERANGE and return 0 if too small
* or Inf if too big, with the same sign as the input value.
*/
newexp = oldexp + exp;
if (newexp >= DBL_EXP_INFNAN) {
/* u.s.dbl_sign = val < 0; -- already set */
u.s.dbl_exp = DBL_EXP_INFNAN;
u.s.dbl_frach = u.s.dbl_fracl = 0;
errno = ERANGE;
return (u.v); /* Inf */
}
if (newexp <= 0) {
/*
* The output number is either a denormal or underflows
* (see comments in machine/ieee.h).
*/
if (newexp <= -DBL_FRACBITS) {
/* u.s.dbl_sign = val < 0; -- already set */
u.s.dbl_exp = 0;
u.s.dbl_frach = u.s.dbl_fracl = 0;
errno = ERANGE;
return (u.v); /* zero */
}
/*
* We are going to produce a denorm. Our `exp' argument
* might be as small as -2097, and we cannot compute
* 2^-2097, so we may have to do this as many as three
* steps (not just two, as for positive `exp's below).
*/
mul.v = 0;
while (exp <= -DBL_EXP_BIAS) {
mul.s.dbl_exp = 1;
val *= mul.v;
exp += DBL_EXP_BIAS - 1;
}
mul.s.dbl_exp = exp + DBL_EXP_BIAS;
val *= mul.v;
return (val);
}
/*
* Newexp is positive.
*
* If oldexp is zero, we are starting with a denorm, and simply
* adjusting the exponent will produce bogus answers. We need
* to fix that first.
*/
if (oldexp == 0) {
/*
* Multiply by 2^mulexp to make the number normalizable.
* We cannot multiply by more than 2^1023, but `exp'
* argument might be as large as 2046. A single
* adjustment, however, will normalize the number even
* for huge `exp's, and then we can use exponent
* arithmetic just as for normal `double's.
*/
mulexp = exp <= DBL_EXP_BIAS ? exp : DBL_EXP_BIAS;
mul.v = 0;
mul.s.dbl_exp = mulexp + DBL_EXP_BIAS;
val *= mul.v;
if (mulexp == exp)
return (val);
u.v = val;
newexp -= mulexp;
}
/*
* Both oldexp and newexp are positive; just replace the
* old exponent with the new one.
*/
u.s.dbl_exp = newexp;
return (u.v);
}

View File

@ -0,0 +1,104 @@
/* $NetBSD: sf_modf.c,v 1.1.1.1 1999/09/16 12:18:26 takemura Exp $ */
/*
* Copyright (c) 1994, 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include <sys/types.h>
#include "ieee.h"
#include <errno.h>
#include <math.h>
/*
* double modf(double val, double *iptr)
* returns: f and i such that |f| < 1.0, (f + i) = val, and
* sign(f) == sign(i) == sign(val).
*
* Beware signedness when doing subtraction, and also operand size!
*/
double
modf(val, iptr)
double val, *iptr;
{
union doub {
double v;
struct ieee_double s;
} u, v;
u_int64_t frac;
/*
* If input is Inf or NaN, return it and leave i alone.
*/
u.v = val;
if (u.s.dbl_exp == DBL_EXP_INFNAN)
return (u.v);
/*
* If input can't have a fractional part, return
* (appropriately signed) zero, and make i be the input.
*/
if ((int)u.s.dbl_exp - DBL_EXP_BIAS > DBL_FRACBITS - 1) {
*iptr = u.v;
v.v = 0.0;
v.s.dbl_sign = u.s.dbl_sign;
return (v.v);
}
/*
* If |input| < 1.0, return it, and set i to the appropriately
* signed zero.
*/
if (u.s.dbl_exp < DBL_EXP_BIAS) {
v.v = 0.0;
v.s.dbl_sign = u.s.dbl_sign;
*iptr = v.v;
return (u.v);
}
/*
* There can be a fractional part of the input.
* If you look at the math involved for a few seconds, it's
* plain to see that the integral part is the input, with the
* low (DBL_FRACBITS - (exponent - DBL_EXP_BIAS)) bits zeroed,
* the the fractional part is the part with the rest of the
* bits zeroed. Just zeroing the high bits to get the
* fractional part would yield a fraction in need of
* normalization. Therefore, we take the easy way out, and
* just use subtraction to get the fractional part.
*/
v.v = u.v;
/* Zero the low bits of the fraction, the sleazy way. */
frac = ((u_int64_t)v.s.dbl_frach << 32) + v.s.dbl_fracl;
frac >>= DBL_FRACBITS - (u.s.dbl_exp - DBL_EXP_BIAS);
frac <<= DBL_FRACBITS - (u.s.dbl_exp - DBL_EXP_BIAS);
v.s.dbl_fracl = frac & 0xffffffff;
v.s.dbl_frach = frac >> 32;
*iptr = v.v;
u.v -= v.v;
u.s.dbl_sign = v.s.dbl_sign;
return (u.v);
}