add aarch64 support for cpuctl identify.

This commit is contained in:
ryo 2018-05-03 15:47:36 +00:00
parent cfdea5e9ed
commit 2972297404
1 changed files with 619 additions and 0 deletions

View File

@ -0,0 +1,619 @@
/* $NetBSD: aarch64.c,v 1.1 2018/05/03 15:47:36 ryo Exp $ */
/*
* Copyright (c) 2018 Ryo Shimizu <ryo@nerv.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: aarch64.c,v 1.1 2018/05/03 15:47:36 ryo Exp $");
#endif /* no lint */
#include <sys/types.h>
#include <sys/cpuio.h>
#include <sys/sysctl.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <err.h>
#include <arm/cputypes.h>
#include <aarch64/armreg.h>
#include "../cpuctl.h"
struct cpuidtab {
uint32_t cpu_partnum;
const char *cpu_name;
const char *cpu_class;
const char *cpu_architecture;
};
struct impltab {
uint32_t impl_id;
const char *impl_name;
};
struct fieldinfo {
int bitpos;
int bitwidth;
const char *name;
const char * const *info;
};
#define CPU_PARTMASK (CPU_ID_IMPLEMENTOR_MASK | CPU_ID_PARTNO_MASK)
const struct cpuidtab cpuids[] = {
{ CPU_ID_CORTEXA53R0 & CPU_PARTMASK, "Cortex-A53", "Cortex", "V8-A" },
{ CPU_ID_CORTEXA57R0 & CPU_PARTMASK, "Cortex-A57", "Cortex", "V8-A" },
{ CPU_ID_CORTEXA72R0 & CPU_PARTMASK, "Cortex-A72", "Cortex", "V8-A" },
{ CPU_ID_CORTEXA73R0 & CPU_PARTMASK, "Cortex-A73", "Cortex", "V8-A" },
{ CPU_ID_CORTEXA55R1 & CPU_PARTMASK, "Cortex-A55", "Cortex", "V8.2-A" },
{ CPU_ID_CORTEXA75R2 & CPU_PARTMASK, "Cortex-A75", "Cortex", "V8.2-A" }
};
const struct impltab implids[] = {
{ CPU_ID_ARM_LTD, "ARM Limited" },
{ CPU_ID_BROADCOM, "Broadcom Corporation" },
{ CPU_ID_CAVIUM, "Cavium Inc." },
{ CPU_ID_DEC, "Digital Equipment Corporation" },
{ CPU_ID_INFINEON, "Infineon Technologies AG" },
{ CPU_ID_MOTOROLA, "Motorola or Freescale Semiconductor Inc." },
{ CPU_ID_NVIDIA, "NVIDIA Corporation" },
{ CPU_ID_APM, "Applied Micro Circuits Corporation" },
{ CPU_ID_QUALCOMM, "Qualcomm Inc." },
{ CPU_ID_SAMSUNG, "SAMSUNG" },
{ CPU_ID_TI, "Texas Instruments" },
{ CPU_ID_MARVELL, "Marvell International Ltd." },
{ CPU_ID_APPLE, "Apple Inc." },
{ CPU_ID_FARADAY, "Faraday Technology Corporation" },
{ CPU_ID_INTEL, "Intel Corporation" }
};
/* ID_AA64PFR0_EL1 - AArch64 Processor Feature Register 0 */
struct fieldinfo id_aa64pfr0_fieldinfo[] = {
{
.bitpos = 0, .bitwidth = 4, .name = "EL0",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No EL0",
[1] = "AArch64",
[2] = "AArch64/AArch32"
}
},
{
.bitpos = 4, .bitwidth = 4, .name = "EL1",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No EL1",
[1] = "AArch64",
[2] = "AArch64/AArch32"
}
},
{
.bitpos = 8, .bitwidth = 4, .name = "EL2",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No EL2",
[1] = "AArch64",
[2] = "AArch64/AArch32"
}
},
{
.bitpos = 12, .bitwidth = 4, .name = "EL3",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No EL3",
[1] = "AArch64",
[2] = "AArch64/AArch32"
}
},
{
.bitpos = 16, .bitwidth = 4, .name = "FP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "Floating Point",
[15] = "No Floating Point"
}
},
{
.bitpos = 20, .bitwidth = 4, .name = "AdvSIMD",
.info = (const char *[16]) { /* 16=4bit */
[0] = "Advanced SIMD",
[15] = "No Advanced SIMD"
}
},
{
.bitpos = 24, .bitwidth = 4, .name = "GIC",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No GIC",
[1] = "GICv3"
}
},
{ .bitwidth = 0 } /* end of table */
};
/* ID_AA64ISAR0_EL1 - AArch64 Instruction Set Attribute Register 0 */
struct fieldinfo id_aa64isar0_fieldinfo[] = {
{
.bitpos = 4, .bitwidth = 4, .name = "AES",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No AES",
[1] = "AESE/AESD/AESMC/AESIMC",
[2] = "AESE/AESD/AESMC/AESIMC+PMULL/PMULL2"
}
},
{
.bitpos = 8, .bitwidth = 4, .name = "SHA1",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No SHA1",
[1] = "SHA1C/SHA1P/SHA1M/SHA1H/SHA1SU0/SHA1SU1"
}
},
{
.bitpos = 12, .bitwidth = 4, .name = "SHA2",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No SHA2",
[1] = "SHA256H/SHA256H2/SHA256SU0/SHA256U1"
}
},
{
.bitpos = 16, .bitwidth = 4, .name = "CRC32",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No CRC32",
[1] = "CRC32B/CRC32H/CRC32W/CRC32X"
"/CRC32CB/CRC32CH/CRC32CW/CRC32CX"
}
},
{ .bitwidth = 0 } /* end of table */
};
/* ID_AA64MMFR0_EL1 - AArch64 Memory Model Feature Register 0 */
struct fieldinfo id_aa64mmfr0_fieldinfo[] = {
{
.bitpos = 0, .bitwidth = 4, .name = "PARange",
.info = (const char *[16]) { /* 16=4bit */
[0] = "32bits/4GB",
[1] = "36bits/64GB",
[2] = "40bits/1TB",
[3] = "42bits/4TB",
[4] = "44bits/16TB",
[5] = "48bits/256TB"
}
},
{
.bitpos = 4, .bitwidth = 4, .name = "ASIDBit",
.info = (const char *[16]) { /* 16=4bit */
[0] = "8bits",
[2] = "16bits"
}
},
{
.bitpos = 8, .bitwidth = 4, .name = "BigEnd",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No mixed-endian",
[1] = "Mixed-endian"
}
},
{
.bitpos = 12, .bitwidth = 4, .name = "SNSMem",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No distinction B/W Secure and Non-secure Memory",
[1] = "Distinction B/W Secure and Non-secure Memory"
}
},
{
.bitpos = 16, .bitwidth = 4, .name = "BigEndEL0",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No mixed-endian at EL0",
[1] = "Mixed-endian at EL0"
}
},
{
.bitpos = 20, .bitwidth = 4, .name = "TGran16",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No 16KB granule",
[1] = "16KB granule"
}
},
{
.bitpos = 24, .bitwidth = 4, .name = "TGran64",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No 64KB granule",
[15] = "64KB granule"
}
},
{
.bitpos = 28, .bitwidth = 4, .name = "TGran4",
.info = (const char *[16]) { /* 16=4bit */
[0] = "4KB granule",
[15] = "No 4KB granule"
}
},
{ .bitwidth = 0 } /* end of table */
};
/* MVFR0_EL1 - Media and VFP Feature Register 0 */
struct fieldinfo mvfr0_fieldinfo[] = {
{
.bitpos = 0, .bitwidth = 4, .name = "SIMDreg",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No SIMD",
[1] = "16x64-bit SIMD",
[2] = "32x64-bit SIMD"
}
},
{
.bitpos = 4, .bitwidth = 4, .name = "FPSP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No VFP support single precision",
[1] = "VFPv2 support single precision",
[2] = "VFPv2/VFPv3/VFPv4 support single precision"
}
},
{
.bitpos = 8, .bitwidth = 4, .name = "FPDP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No VFP support double precision",
[1] = "VFPv2 support double precision",
[2] = "VFPv2/VFPv3/VFPv4 support double precision"
}
},
{
.bitpos = 12, .bitwidth = 4, .name = "FPTrap",
.info = (const char *[16]) { /* 16=4bit */
[0] = "VFPv2 support exception trapping",
[1] = "VFPv2/VFPv3/VFPv4 support exception trapping"
}
},
{
.bitpos = 16, .bitwidth = 4, .name = "FPDivide",
.info = (const char *[16]) { /* 16=4bit */
[0] = "VDIV not supported",
[1] = "VDIV supported"
}
},
{
.bitpos = 20, .bitwidth = 4, .name = "FPSqrt",
.info = (const char *[16]) { /* 16=4bit */
[0] = "VSQRT not supported",
[1] = "VSQRT supported"
}
},
{
.bitpos = 24, .bitwidth = 4, .name = "FPShVec",
.info = (const char *[16]) { /* 16=4bit */
[0] = "Short Vectors not supported",
[1] = "Short Vectors supported"
}
},
{
.bitpos = 28, .bitwidth = 4, .name = "FPRound",
.info = (const char *[16]) { /* 16=4bit */
[0] = "Only Round to Nearest mode",
[1] = "All rounding modes"
}
},
{ .bitwidth = 0 } /* end of table */
};
/* MVFR1_EL1 - Media and VFP Feature Register 1 */
struct fieldinfo mvfr1_fieldinfo[] = {
{
.bitpos = 0, .bitwidth = 4, .name = "FPFtZ",
.info = (const char *[16]) { /* 16=4bit */
[0] = "only the Flush-to-Zero",
[1] = "full Denormalized number arithmetic"
}
},
{
.bitpos = 4, .bitwidth = 4, .name = "FPDNan",
.info = (const char *[16]) { /* 16=4bit */
[0] = "Default NaN",
[1] = "Propagation of NaN"
}
},
{
.bitpos = 8, .bitwidth = 4, .name = "SIMDLS",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No Advanced SIMD Load/Store",
[1] = "Advanced SIMD Load/Store"
}
},
{
.bitpos = 12, .bitwidth = 4, .name = "SIMDInt",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No Advanced SIMD Integer",
[1] = "Advanced SIMD Integer"
}
},
{
.bitpos = 16, .bitwidth = 4, .name = "SIMDSP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No Advanced SIMD single precision",
[1] = "Advanced SIMD single precision"
}
},
{
.bitpos = 20, .bitwidth = 4, .name = "SIMDHP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No Advanced SIMD half precision",
[1] = "Advanced SIMD half precision"
}
},
{
.bitpos = 24, .bitwidth = 4, .name = "FPHP",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No half precision conversion",
[1] = "half/single precision conversion",
[2] = "half/single/double precision conversion"
}
},
{
.bitpos = 28, .bitwidth = 4, .name = "SIMDFMAC",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No Fused Multiply-Accumulate",
[1] = "Fused Multiply-Accumulate"
}
},
{ .bitwidth = 0 } /* end of table */
};
/* MVFR2_EL1 - Media and VFP Feature Register 2 */
struct fieldinfo mvfr2_fieldinfo[] = {
{
.bitpos = 0, .bitwidth = 4, .name = "SIMDMisc",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No miscellaneous features",
[1] = "Conversion to Integer w/Directed Rounding modes",
[2] = "Conversion to Integer w/Directed Rounding modes"
", Round to Integral floating point",
[3] = "Conversion to Integer w/Directed Rounding modes"
", Round to Integral floating point"
", MaxNum and MinNum"
}
},
{
.bitpos = 4, .bitwidth = 4, .name = "FPMisc",
.info = (const char *[16]) { /* 16=4bit */
[0] = "No miscellaneous features",
[1] = "Floating point selection",
[2] = "Floating point selection"
", Conversion to Integer w/Directed Rounding modes",
[3] = "Floating point selection"
", Conversion to Integer w/Directed Rounding modes"
", Round to Integral floating point",
[4] = "Floating point selection"
", Conversion to Integer w/Directed Rounding modes"
", Round to Integral floating point"
", MaxNum and MinNum"
}
},
{ .bitwidth = 0 } /* end of table */
};
static void
print_fieldinfo(const char *cpuname, const char *setname,
struct fieldinfo *fieldinfo, uint64_t data)
{
uint64_t v;
const char *info;
int i;
#define WIDTHMASK(w) (0xffffffffffffffffULL >> (64 - (w)))
for (i = 0; fieldinfo[i].bitwidth != 0; i++) {
v = (data >> fieldinfo[i].bitpos) &
WIDTHMASK(fieldinfo[i].bitwidth);
info = fieldinfo[i].info[v];
if (info == NULL)
printf("%s: %s: %s: 0x%"PRIx64"\n",
cpuname, setname, fieldinfo[i].name, v);
else
printf("%s: %s: %s: %s\n",
cpuname, setname, fieldinfo[i].name, info);
}
}
/* MIDR_EL1 - Main ID Register */
static void
identify_midr(const char *cpuname, uint32_t cpuid)
{
unsigned int i;
uint32_t implid, cpupart, variant, revision;
const char *implementer = NULL;
static char implbuf[128];
implid = cpuid & CPU_ID_IMPLEMENTOR_MASK;
cpupart = cpuid & CPU_PARTMASK;
variant = __SHIFTOUT(cpuid, CPU_ID_VARIANT_MASK);
revision = __SHIFTOUT(cpuid, CPU_ID_REVISION_MASK);
for (i = 0; i < __arraycount(implids); i++) {
if (implid == implids[i].impl_id) {
implementer = implids[i].impl_name;
}
}
if (implementer == NULL) {
snprintf(implbuf, sizeof(implbuf), "unknown implementer: 0x%02x",
implid >> 24);
implementer = implbuf;
}
for (i = 0; i < __arraycount(cpuids); i++) {
if (cpupart == cpuids[i].cpu_partnum) {
printf("%s: %s, %s r%dp%d (%s %s core)\n",
cpuname, implementer,
cpuids[i].cpu_name, variant, revision,
cpuids[i].cpu_class,
cpuids[i].cpu_architecture);
return;
}
}
printf("%s: unknown CPU ID: 0x%08x\n", cpuname, cpuid);
}
/* REVIDR_EL1 - Revision ID Register */
static void
identify_revidr(const char *cpuname, uint32_t revidr)
{
printf("%s: revision: 0x%08x\n", cpuname, revidr);
}
/* MPIDR_EL1 - Multiprocessor Affinity Register */
static void
identify_mpidr(const char *cpuname, uint32_t mpidr)
{
const char *setname = "multiprocessor affinity";
printf("%s: %s: Affinity-Level: %"PRIu64"-%"PRIu64"-%"PRIu64"-%"PRIu64"\n",
cpuname, setname,
__SHIFTOUT(mpidr, MPIDR_AFF3),
__SHIFTOUT(mpidr, MPIDR_AFF2),
__SHIFTOUT(mpidr, MPIDR_AFF1),
__SHIFTOUT(mpidr, MPIDR_AFF0));
if ((mpidr & MPIDR_U) == 0)
printf("%s: %s: Multiprocessor system\n", cpuname, setname);
else
printf("%s: %s: Uniprocessor system\n", cpuname, setname);
if ((mpidr & MPIDR_MT) == 0)
printf("%s: %s: Core Independent\n", cpuname, setname);
else
printf("%s: %s: Multi-Threading\n", cpuname, setname);
}
static void *
sysctlfetch(const char *sname, size_t *lenp)
{
size_t len;
void *data;
if (sysctlbyname(sname, NULL, &len, NULL, 0) != 0) {
warn("sysctlbyname: %s", sname);
return NULL;
}
data = malloc(len);
if (data == NULL) {
warn("malloc");
return NULL;
}
if (sysctlbyname(sname, data, &len, NULL, 0) != 0) {
warn("sysctlbyname: %s", sname);
free(data);
return NULL;
}
*lenp = len;
return data;
}
void
identifycpu(int fd, const char *cpuname)
{
void *regs;
size_t len;
/* MIDR_EL1 */
regs = sysctlfetch("machdep.cpu_id", &len);
if (regs != NULL) {
if (len >= sizeof(uint32_t))
identify_midr(cpuname, ((uint32_t *)regs)[0]);
free(regs);
}
/* REVIDR_EL1 */
regs = sysctlfetch("machdep.id_revidr", &len);
if (regs != NULL) {
if (len >= sizeof(uint32_t))
identify_revidr(cpuname, ((uint32_t *)regs)[0]);
free(regs);
}
/* MPIDR_EL1 */
regs = sysctlfetch("machdep.id_mpidr", &len);
if (regs != NULL) {
if (len >= sizeof(uint64_t))
identify_mpidr(cpuname, ((uint64_t *)regs)[0]);
free(regs);
}
/* ID_AA64ISAR0_EL1 */
regs = sysctlfetch("machdep.id_aa64isar", &len);
if (regs != NULL) {
if (len >= sizeof(uint64_t))
print_fieldinfo(cpuname, "isa features 0",
id_aa64isar0_fieldinfo, ((uint64_t *)regs)[0]);
free(regs);
}
/* ID_AA64MMFR0_EL1 */
regs = sysctlfetch("machdep.id_aa64mmfr", &len);
if (regs != NULL) {
if (len >= sizeof(uint64_t))
print_fieldinfo(cpuname, "memory model 0",
id_aa64mmfr0_fieldinfo, ((uint64_t *)regs)[0]);
free(regs);
}
/* ID_AA64PFR0_EL1 */
regs = sysctlfetch("machdep.id_aa64pfr", &len);
if (regs != NULL) {
if (len >= sizeof(uint64_t))
print_fieldinfo(cpuname, "processor feature 0",
id_aa64pfr0_fieldinfo, ((uint64_t *)regs)[0]);
free(regs);
}
/* MVFR[012]_EL1 */
regs = sysctlfetch("machdep.id_mvfr", &len);
if (regs != NULL) {
if (len >= sizeof(uint32_t))
print_fieldinfo(cpuname, "media and VFP features 0",
mvfr0_fieldinfo, ((uint32_t *)regs)[0]);
if (len >= sizeof(uint32_t) * 2)
print_fieldinfo(cpuname, "media and VFP features 1",
mvfr1_fieldinfo, ((uint32_t *)regs)[1]);
if (len >= sizeof(uint32_t) * 3)
print_fieldinfo(cpuname, "media and VFP features 2",
mvfr2_fieldinfo, ((uint32_t *)regs)[2]);
free(regs);
}
}
bool
identifycpu_bind(void)
{
return true;
}
int
ucodeupdate_check(int fd, struct cpu_ucode *uc)
{
return 0;
}