PR/52976: Eitan Adler: handle larger primes

Using results from
    J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
    bases, Math. Comp. 86(304):985-1003, 2017.
teach primes(6) to enumerate primes up to 2^64 - 1.  Until Sorenson
and Webster's paper, we did not know how many strong speudoprime tests
were required when testing alleged primes between 3825123056546413051
and 2^64 - 1.

Adapted from: FreeBSD
This commit is contained in:
christos 2018-02-03 15:40:29 +00:00
parent 317df2f20a
commit 2429b427fa
4 changed files with 38 additions and 31 deletions

View File

@ -1,4 +1,4 @@
.\" $NetBSD: primes.6,v 1.5 2014/10/04 13:15:50 wiz Exp $
.\" $NetBSD: primes.6,v 1.6 2018/02/03 15:40:29 christos Exp $
.\"
.\" Copyright (c) 1989, 1993
.\" The Regents of the University of California. All rights reserved.
@ -35,7 +35,7 @@
.\"
.\" By Landon Curt Noll, http://www.isthe.com/chongo/index.html /\oo/\
.\"
.Dd February 3, 2008
.Dd February 2, 2018
.Dt PRIMES 6
.Os
.Sh NAME
@ -100,14 +100,7 @@ Originally by
.An Landon Curt Noll ,
extended to some 64-bit primes by
.An Colin Percival .
.Sh CAVEATS
.Sh BUGS
This
.Nm
program won't get you a world record.
.Pp
The program is not able to list primes between
3825123056546413050 and 18446744073709551615 (2^64
- 1) as it relies on strong pseudoprime tests after
sieving, and it is yet unknown how many of those
tests are needed to prove primality for integers
larger than 3825123056546413050.

View File

@ -1,4 +1,4 @@
/* $NetBSD: primes.c,v 1.21 2014/10/04 13:15:50 wiz Exp $ */
/* $NetBSD: primes.c,v 1.22 2018/02/03 15:40:29 christos Exp $ */
/*
* Copyright (c) 1989, 1993
@ -42,7 +42,7 @@ __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
#if 0
static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
#else
__RCSID("$NetBSD: primes.c,v 1.21 2014/10/04 13:15:50 wiz Exp $");
__RCSID("$NetBSD: primes.c,v 1.22 2018/02/03 15:40:29 christos Exp $");
#endif
#endif /* not lint */
@ -118,7 +118,7 @@ main(int argc, char *argv[])
argv += optind;
start = 0;
stop = SPSPMAX;
stop = (uint64_t)(-1);
/*
* Convert low and high args. Strtoumax(3) sets errno to
@ -145,9 +145,6 @@ main(int argc, char *argv[])
err(1, "%s", argv[1]);
if (*p != '\0')
errx(1, "%s: illegal numeric format.", argv[1]);
if (stop > SPSPMAX)
errx(1, "%s: stop value too large (>%" PRIu64 ").",
argv[1], (uint64_t) SPSPMAX);
break;
case 1:
/* Start on the command line. */

View File

@ -1,4 +1,4 @@
/* $NetBSD: primes.h,v 1.6 2014/10/02 21:36:37 ast Exp $ */
/* $NetBSD: primes.h,v 1.7 2018/02/03 15:40:29 christos Exp $ */
/*
* Copyright (c) 1989, 1993
@ -69,6 +69,3 @@ extern const size_t pattern_size; /* length of pattern array */
/* Test for primality using strong pseudoprime tests. */
int isprime(uint64_t);
/* Maximum value which the SPSP code can handle. */
#define SPSPMAX 3825123056546413050ULL

View File

@ -1,4 +1,4 @@
/* $NetBSD: spsp.c,v 1.1 2014/10/02 21:36:37 ast Exp $ */
/* $NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $ */
/*-
* Copyright (c) 2014 Colin Percival
@ -36,7 +36,7 @@ __COPYRIGHT("@(#) Copyright (c) 1989, 1993\
#if 0
static char sccsid[] = "@(#)primes.c 8.5 (Berkeley) 5/10/95";
#else
__RCSID("$NetBSD: spsp.c,v 1.1 2014/10/02 21:36:37 ast Exp $");
__RCSID("$NetBSD: spsp.c,v 1.2 2018/02/03 15:40:29 christos Exp $");
#endif
#endif /* not lint */
@ -46,23 +46,33 @@ __RCSID("$NetBSD: spsp.c,v 1.1 2014/10/02 21:36:37 ast Exp $");
#include "primes.h"
/* Return a * b % n, where 0 <= a, b < 2^63, 0 < n < 2^63. */
/* Return a * b % n, where 0 <= n. */
static uint64_t
mulmod(uint64_t a, uint64_t b, uint64_t n)
{
uint64_t x = 0;
uint64_t an = a % n;
while (b != 0) {
if (b & 1)
x = (x + a) % n;
a = (a + a) % n;
if (b & 1) {
x += an;
if ((x < an) || (x >= n))
x -= n;
}
if (an + an < an)
an = an + an - n;
else if (an + an >= n)
an = an + an - n;
else
an = an + an;
b >>= 1;
}
return (x);
}
/* Return a^r % n, where 0 <= a < 2^63, 0 < n < 2^63. */
/* Return a^r % n, where 0 < n. */
static uint64_t
powmod(uint64_t a, uint64_t r, uint64_t n)
{
@ -186,10 +196,20 @@ isprime(uint64_t _n)
return (0);
if (n < 3825123056546413051)
return (1);
/*
* Value from:
* J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
* bases, Math. Comp. 86(304):985-1003, 2017.
*/
/* We can't handle values larger than this. */
assert(n <= SPSPMAX);
/* No SPSPs to bases 2..37 less than 318665857834031151167461. */
if (!spsp(n, 29))
return (0);
if (!spsp(n, 31))
return (0);
if (!spsp(n, 37))
return (0);
/* UNREACHABLE */
return (0);
/* All 64-bit values are less than 318665857834031151167461. */
return (1);
}