Add support for kernel-based code to use a PCU. (for memory to memory

copies or in_cksum or ...)
This commit is contained in:
matt 2012-12-26 18:30:22 +00:00
parent 386c9021a9
commit 09ae87cfb2
3 changed files with 135 additions and 36 deletions

View File

@ -1,4 +1,4 @@
/* $NetBSD: subr_pcu.c,v 1.12 2012/08/30 02:24:48 matt Exp $ */
/* $NetBSD: subr_pcu.c,v 1.13 2012/12/26 18:30:23 matt Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
@ -57,7 +57,7 @@
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_pcu.c,v 1.12 2012/08/30 02:24:48 matt Exp $");
__KERNEL_RCSID(0, "$NetBSD: subr_pcu.c,v 1.13 2012/12/26 18:30:23 matt Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
@ -67,10 +67,15 @@ __KERNEL_RCSID(0, "$NetBSD: subr_pcu.c,v 1.12 2012/08/30 02:24:48 matt Exp $");
#if PCU_UNIT_COUNT > 0
static void pcu_lwp_op(const pcu_ops_t *, lwp_t *, int);
static inline void pcu_do_op(const pcu_ops_t *, lwp_t * const, const int);
static void pcu_cpu_op(const pcu_ops_t *, const int);
static void pcu_lwp_op(const pcu_ops_t *, lwp_t *, const int);
#define PCU_SAVE 0x01 /* Save PCU state to the LWP. */
#define PCU_RELEASE 0x02 /* Release PCU state on the CPU. */
__CTASSERT(PCU_KERNEL == 1);
#define PCU_SAVE (PCU_LOADED << 1) /* Save PCU state to the LWP. */
#define PCU_RELEASE (PCU_SAVE << 1) /* Release PCU state on the CPU. */
#define PCU_CLAIM (PCU_RELEASE << 1) /* CLAIM a PCU for a LWP. */
/* XXX */
extern const pcu_ops_t * const pcu_ops_md_defs[];
@ -85,20 +90,40 @@ extern const pcu_ops_t * const pcu_ops_md_defs[];
void
pcu_switchpoint(lwp_t *l)
{
const uint32_t pcu_inuse = l->l_pcu_used;
u_int id;
const uint32_t pcu_kernel_inuse = l->l_pcu_used[PCU_KERNEL];
uint32_t pcu_user_inuse = l->l_pcu_used[PCU_USER];
/* int s; */
KASSERTMSG(l == curlwp, "l %p != curlwp %p", l, curlwp);
if (__predict_true(pcu_inuse == 0)) {
if (__predict_false(pcu_kernel_inuse != 0)) {
for (u_int id = 0; id < PCU_UNIT_COUNT; id++) {
if ((pcu_kernel_inuse & (1 << id)) == 0) {
continue;
}
struct cpu_info * const pcu_ci = l->l_pcu_cpu[id];
if (pcu_ci == NULL || pcu_ci == l->l_cpu) {
continue;
}
const pcu_ops_t * const pcu = pcu_ops_md_defs[id];
/*
* Steal the PCU away from the current owner and
* take ownership of it.
*/
pcu_cpu_op(pcu, PCU_SAVE | PCU_RELEASE);
pcu_do_op(pcu, l, PCU_KERNEL | PCU_CLAIM | PCU_RELOAD);
pcu_user_inuse &= ~(1 << id);
}
}
if (__predict_true(pcu_user_inuse == 0)) {
/* PCUs are not in use. */
return;
}
/* commented out as we know we are already at IPL_SCHED */
/* s = splsoftclock(); */
for (id = 0; id < PCU_UNIT_COUNT; id++) {
if ((pcu_inuse & (1 << id)) == 0) {
for (u_int id = 0; id < PCU_UNIT_COUNT; id++) {
if ((pcu_user_inuse & (1 << id)) == 0) {
continue;
}
struct cpu_info * const pcu_ci = l->l_pcu_cpu[id];
@ -106,7 +131,7 @@ pcu_switchpoint(lwp_t *l)
continue;
}
const pcu_ops_t * const pcu = pcu_ops_md_defs[id];
pcu->pcu_state_release(l);
pcu->pcu_state_release(l, 0);
}
/* splx(s); */
}
@ -120,9 +145,10 @@ pcu_switchpoint(lwp_t *l)
void
pcu_discard_all(lwp_t *l)
{
const uint32_t pcu_inuse = l->l_pcu_used;
const uint32_t pcu_inuse = l->l_pcu_used[PCU_USER];
KASSERT(l == curlwp || ((l->l_flag & LW_SYSTEM) && pcu_inuse == 0));
KASSERT(l->l_pcu_used[PCU_KERNEL] == 0);
if (__predict_true(pcu_inuse == 0)) {
/* PCUs are not in use. */
@ -143,7 +169,7 @@ pcu_discard_all(lwp_t *l)
*/
pcu_lwp_op(pcu, l, PCU_RELEASE);
}
l->l_pcu_used = 0;
l->l_pcu_used[PCU_USER] = 0;
splx(s);
}
@ -155,7 +181,7 @@ pcu_discard_all(lwp_t *l)
void
pcu_save_all(lwp_t *l)
{
const uint32_t pcu_inuse = l->l_pcu_used;
const uint32_t pcu_inuse = l->l_pcu_used[PCU_USER];
/*
* Unless LW_WCORE, we aren't releasing since this LWP isn't giving
* up PCU, just saving it.
@ -171,6 +197,7 @@ pcu_save_all(lwp_t *l)
|| (((l->l_flag & LW_SYSTEM)
|| (curlwp->l_proc == l->l_proc && l->l_stat == LSSUSPENDED))
&& pcu_inuse == 0));
KASSERT(l->l_pcu_used[PCU_KERNEL] == 0);
if (__predict_true(pcu_inuse == 0)) {
/* PCUs are not in use. */
@ -200,17 +227,36 @@ pcu_do_op(const pcu_ops_t *pcu, lwp_t * const l, const int flags)
{
struct cpu_info * const ci = curcpu();
const u_int id = pcu->pcu_id;
u_int state_flags = flags & (PCU_KERNEL|PCU_RELOAD|PCU_ENABLE);
uint32_t id_mask = 1 << id;
const bool kernel_p = (l->l_pcu_used[PCU_KERNEL] & id_mask) != 0;
KASSERT(l->l_pcu_cpu[id] == ci);
KASSERT(l->l_pcu_cpu[id] == (flags & PCU_CLAIM ? NULL : ci));
if (flags & PCU_SAVE) {
pcu->pcu_state_save(l);
pcu->pcu_state_save(l, (kernel_p ? PCU_KERNEL : 0));
}
if (flags & PCU_RELEASE) {
pcu->pcu_state_release(l);
pcu->pcu_state_release(l, state_flags);
if (flags & PCU_KERNEL) {
l->l_pcu_used[PCU_KERNEL] &= ~id_mask;
}
ci->ci_pcu_curlwp[id] = NULL;
l->l_pcu_cpu[id] = NULL;
}
if (flags & PCU_CLAIM) {
if (l->l_pcu_used[(flags & PCU_KERNEL)] & id_mask)
state_flags |= PCU_LOADED;
pcu->pcu_state_load(l, state_flags);
l->l_pcu_cpu[id] = ci;
ci->ci_pcu_curlwp[id] = l;
l->l_pcu_used[flags & PCU_KERNEL] |= id_mask;
}
if (flags == PCU_KERNEL) {
KASSERT(ci->ci_pcu_curlwp[id] == l);
pcu->pcu_state_save(l, 0);
l->l_pcu_used[PCU_KERNEL] |= id_mask;
}
}
/*
@ -236,7 +282,7 @@ pcu_cpu_op(const pcu_ops_t *pcu, const int flags)
* pcu_lwp_op: perform PCU state save, release or both operations on LWP.
*/
static void
pcu_lwp_op(const pcu_ops_t *pcu, lwp_t *l, int flags)
pcu_lwp_op(const pcu_ops_t *pcu, lwp_t *l, const int flags)
{
const u_int id = pcu->pcu_id;
struct cpu_info *ci;
@ -254,6 +300,7 @@ pcu_lwp_op(const pcu_ops_t *pcu, lwp_t *l, int flags)
/*
* State is on the current CPU - just perform the operations.
*/
KASSERT((flags & PCU_CLAIM) == 0);
KASSERTMSG(ci->ci_pcu_curlwp[id] == l,
"%s: cpu%u: pcu_curlwp[%u] (%p) != l (%p)",
__func__, cpu_index(ci), id, ci->ci_pcu_curlwp[id], l);
@ -261,13 +308,18 @@ pcu_lwp_op(const pcu_ops_t *pcu, lwp_t *l, int flags)
splx(s);
return;
}
splx(s);
if (__predict_false(ci == NULL)) {
if (flags & PCU_CLAIM) {
pcu_do_op(pcu, l, flags);
}
/* Cross-call has won the race - no state to manage. */
splx(s);
return;
}
splx(s);
/*
* State is on the remote CPU - perform the operations there.
* Note: there is a race condition; see description in the top.
@ -300,6 +352,7 @@ pcu_load(const pcu_ops_t *pcu)
/* Does this CPU already have our PCU state loaded? */
if (ci == curci) {
KASSERT(curci->ci_pcu_curlwp[id] == l);
pcu->pcu_state_load(l, PCU_ENABLE); /* Re-enable */
splx(s);
return;
}
@ -326,10 +379,7 @@ pcu_load(const pcu_ops_t *pcu)
* Finally, load the state for this LWP on this CPU. Indicate to
* load function whether PCU was used before. Note the usage.
*/
pcu->pcu_state_load(l, ((1 << id) & l->l_pcu_used) != 0);
curci->ci_pcu_curlwp[id] = l;
l->l_pcu_cpu[id] = curci;
l->l_pcu_used |= (1 << id);
pcu_do_op(pcu, l, PCU_CLAIM | PCU_ENABLE | PCU_RELOAD);
splx(s);
}
@ -348,7 +398,7 @@ pcu_discard(const pcu_ops_t *pcu)
return;
}
pcu_lwp_op(pcu, l, PCU_RELEASE);
l->l_pcu_used &= ~(1 << id);
l->l_pcu_used[PCU_USER] &= ~(1 << id);
}
/*
@ -377,7 +427,48 @@ pcu_used_p(const pcu_ops_t *pcu)
const u_int id = pcu->pcu_id;
lwp_t * const l = curlwp;
return l->l_pcu_used & (1 << id);
return l->l_pcu_used[0] & (1 << id);
}
void
pcu_kernel_acquire(const pcu_ops_t *pcu)
{
struct cpu_info * const ci = curcpu();
lwp_t * const l = curlwp;
const u_int id = pcu->pcu_id;
/*
* If we own the PCU, save our user state.
*/
if (ci == l->l_pcu_cpu[id]) {
pcu_lwp_op(pcu, l, PCU_KERNEL);
return;
}
if (ci->ci_data.cpu_pcu_curlwp[id] != NULL) {
/*
* The PCU is owned by another LWP so save its state.
*/
pcu_cpu_op(pcu, PCU_SAVE | PCU_RELEASE);
}
/*
* Mark the PCU as hijacked and take ownership of it.
*/
printf("!");
pcu_lwp_op(pcu, l, PCU_KERNEL | PCU_CLAIM | PCU_ENABLE | PCU_RELOAD);
}
void
pcu_kernel_release(const pcu_ops_t *pcu)
{
lwp_t * const l = curlwp;
KASSERT(l->l_pcu_used[PCU_KERNEL] & (1 << pcu->pcu_id));
/*
* Release the PCU, if the curlwp wants to use it, it will have incur
* a trap to reenable it.
*/
pcu_lwp_op(pcu, l, PCU_KERNEL | PCU_RELEASE);
}
#endif /* PCU_UNIT_COUNT > 0 */

View File

@ -1,4 +1,4 @@
/* $NetBSD: lwp.h,v 1.165 2012/10/07 20:43:18 matt Exp $ */
/* $NetBSD: lwp.h,v 1.166 2012/12/26 18:30:22 matt Exp $ */
/*-
* Copyright (c) 2001, 2006, 2007, 2008, 2009, 2010
@ -128,7 +128,7 @@ struct lwp {
#if PCU_UNIT_COUNT > 0
struct cpu_info * volatile l_pcu_cpu[PCU_UNIT_COUNT];
uint32_t l_pcu_used;
uint16_t l_pcu_used[2];
#endif
/* Process level and global state, misc. */

View File

@ -1,4 +1,4 @@
/* $NetBSD: pcu.h,v 1.9 2012/04/18 13:42:11 yamt Exp $ */
/* $NetBSD: pcu.h,v 1.10 2012/12/26 18:30:22 matt Exp $ */
/*-
* Copyright (c) 2011 The NetBSD Foundation, Inc.
@ -50,26 +50,32 @@
#if PCU_UNIT_COUNT > 0
/*
* pcu_state_save(lwp)
* pcu_state_save(lwp, flags)
* save the current CPU's state into the given LWP's MD storage.
*
* pcu_state_load(lwp, used)
* pcu_state_load(lwp, flags)
* load PCU state from the given LWP's MD storage to the current CPU.
* the 'used' argument is true if it isn't the first time the LWP uses
* the PCU.
* the 'flags' argument contains PCU_LOADED if it isn't the first time
* the LWP has used the PCU.
*
* pcu_state_release(lwp)
* pcu_state_release(lwp, flags)
* tell MD code detect the next use of the PCU on the LWP, and call
* pcu_load().
*/
typedef struct {
u_int pcu_id;
void (*pcu_state_save)(lwp_t *);
void (*pcu_state_load)(lwp_t *, bool);
void (*pcu_state_release)(lwp_t *);
void (*pcu_state_save)(lwp_t *, u_int);
void (*pcu_state_load)(lwp_t *, u_int);
void (*pcu_state_release)(lwp_t *, u_int);
} pcu_ops_t;
#define PCU_USER 0x00 /* PCU state is for the user */
#define PCU_KERNEL 0x01 /* PCU state is for the kernel */
#define PCU_RELOAD 0x02 /* Load registers into the PCU, */
#define PCU_ENABLE 0x04 /* Enable the PCU, */
#define PCU_LOADED 0x08 /* LWP has used the PCU before, */
void pcu_switchpoint(lwp_t *);
void pcu_discard_all(lwp_t *);
void pcu_save_all(lwp_t *);
@ -77,6 +83,8 @@ void pcu_save_all(lwp_t *);
void pcu_load(const pcu_ops_t *);
void pcu_save(const pcu_ops_t *);
void pcu_discard(const pcu_ops_t *);
void pcu_kernel_acquire(const pcu_ops_t *);
void pcu_kernel_release(const pcu_ops_t *);
bool pcu_used_p(const pcu_ops_t *);
#else