NetBSD/sys/dev/raidframe/rf_aselect.c

425 lines
15 KiB
C
Raw Normal View History

/* $NetBSD: rf_aselect.c,v 1.16 2004/02/29 01:50:23 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Mark Holland, William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*****************************************************************************
*
* aselect.c -- algorithm selection code
*
*****************************************************************************/
2001-11-13 10:11:12 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_aselect.c,v 1.16 2004/02/29 01:50:23 oster Exp $");
2001-11-13 10:11:12 +03:00
#include <dev/raidframe/raidframevar.h>
#include "rf_archs.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagutils.h"
#include "rf_dagfuncs.h"
#include "rf_general.h"
#include "rf_desc.h"
#include "rf_map.h"
static void InitHdrNode(RF_DagHeader_t **, RF_Raid_t *);
int rf_SelectAlgorithm(RF_RaidAccessDesc_t *, RF_RaidAccessFlags_t);
/******************************************************************************
*
* Create and Initialiaze a dag header and termination node
*
*****************************************************************************/
static void
InitHdrNode(RF_DagHeader_t **hdr, RF_Raid_t *raidPtr)
{
/* create and initialize dag hdr */
*hdr = rf_AllocDAGHeader();
rf_MakeAllocList((*hdr)->allocList);
(*hdr)->status = rf_enable;
(*hdr)->numSuccedents = 0;
(*hdr)->raidPtr = raidPtr;
(*hdr)->next = NULL;
}
/******************************************************************************
*
* Create a DAG to do a read or write operation.
*
* create a list of dagLists, one list per parity stripe.
* return the lists in the desc->dagList (which is a list of lists).
*
* Normally, each list contains one dag for the entire stripe. In some
* tricky cases, we break this into multiple dags, either one per stripe
* unit or one per block (sector). When this occurs, these dags are returned
* as a linked list (dagList) which is executed sequentially (to preserve
* atomic parity updates in the stripe).
*
* dags which operate on independent parity goups (stripes) are returned in
* independent dagLists (distinct elements in desc->dagArray) and may be
* executed concurrently.
*
* Finally, if the SelectionFunc fails to create a dag for a block, we punt
* and return 1.
*
* The above process is performed in two phases:
* 1) create an array(s) of creation functions (eg stripeFuncs)
* 2) create dags and concatenate/merge to form the final dag.
*
* Because dag's are basic blocks (single entry, single exit, unconditional
* control flow, we can add the following optimizations (future work):
* first-pass optimizer to allow max concurrency (need all data dependencies)
* second-pass optimizer to eliminate common subexpressions (need true
* data dependencies)
* third-pass optimizer to eliminate dead code (need true data dependencies)
*****************************************************************************/
#define MAXNSTRIPES 50
int
rf_SelectAlgorithm(RF_RaidAccessDesc_t *desc, RF_RaidAccessFlags_t flags)
{
RF_AccessStripeMapHeader_t *asm_h = desc->asmap;
RF_IoType_t type = desc->type;
RF_Raid_t *raidPtr = desc->raidPtr;
void *bp = desc->bp;
RF_AccessStripeMap_t *asmap = asm_h->stripeMap;
RF_AccessStripeMap_t *asm_p;
RF_DagHeader_t *dag_h = NULL, *tempdag_h, *lastdag_h;
RF_DagList_t *dagList, *dagListend;
int i, j, k;
RF_FuncList_t *stripeFuncsList, *stripeFuncs, *stripeFuncsEnd, *temp;
RF_AccessStripeMap_t *asm_up, *asm_bp;
RF_AccessStripeMapHeader_t ***asmh_u, *endASMList;
RF_AccessStripeMapHeader_t ***asmh_b;
RF_VoidFuncPtr **stripeUnitFuncs, uFunc;
RF_VoidFuncPtr **blockFuncs, bFunc;
int numStripesBailed = 0, cantCreateDAGs = RF_FALSE;
int numStripeUnitsBailed = 0;
int stripeNum, numUnitDags = 0, stripeUnitNum, numBlockDags = 0;
RF_StripeNum_t numStripeUnits;
RF_SectorNum_t numBlocks;
RF_RaidAddr_t address;
int length;
RF_PhysDiskAddr_t *physPtr;
caddr_t buffer;
lastdag_h = NULL;
asmh_u = asmh_b = NULL;
stripeUnitFuncs = NULL;
blockFuncs = NULL;
stripeFuncsList = NULL;
stripeFuncsEnd = NULL;
/* walk through the asm list once collecting information */
/* attempt to find a single creation function for each stripe */
desc->numStripes = 0;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
desc->numStripes++;
stripeFuncs = rf_AllocFuncList();
if (stripeFuncsEnd == NULL) {
stripeFuncsList = stripeFuncs;
} else {
stripeFuncsEnd->next = stripeFuncs;
}
stripeFuncsEnd = stripeFuncs;
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_p, &(stripeFuncs->fp));
/* check to see if we found a creation func for this stripe */
if (stripeFuncs->fp == NULL) {
/* could not find creation function for entire stripe
* so, let's see if we can find one for each stripe
* unit in the stripe */
if (numStripesBailed == 0) {
/* one stripe map header for each stripe we
* bail on */
RF_Malloc(asmh_u, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes, (RF_AccessStripeMapHeader_t ***));
/* create an array of ptrs to arrays of
* stripeFuncs */
RF_Malloc(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
}
/* create an array of creation funcs (called
* stripeFuncs) for this stripe */
numStripeUnits = asm_p->numStripeUnitsAccessed;
RF_Malloc(stripeUnitFuncs[numStripesBailed], numStripeUnits * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
RF_Malloc(asmh_u[numStripesBailed], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
/* lookup array of stripeUnitFuncs for this stripe */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
/* remap for series of single stripe-unit
* accesses */
address = physPtr->raidAddress;
length = physPtr->numSector;
buffer = physPtr->bufPtr;
asmh_u[numStripesBailed][j] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
asm_up = asmh_u[numStripesBailed][j]->stripeMap;
/* get the creation func for this stripe unit */
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_up, &(stripeUnitFuncs[numStripesBailed][j]));
/* check to see if we found a creation func
* for this stripe unit */
if (stripeUnitFuncs[numStripesBailed][j] == (RF_VoidFuncPtr) NULL) {
/* could not find creation function
* for stripe unit so, let's see if we
* can find one for each block in the
* stripe unit */
if (numStripeUnitsBailed == 0) {
/* one stripe map header for
* each stripe unit we bail on */
RF_Malloc(asmh_b, sizeof(RF_AccessStripeMapHeader_t **) * asm_h->numStripes * raidPtr->Layout.numDataCol, (RF_AccessStripeMapHeader_t ***));
/* create an array of ptrs to
* arrays of blockFuncs */
RF_Malloc(blockFuncs, asm_h->numStripes * raidPtr->Layout.numDataCol * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr **));
}
/* create an array of creation funcs
* (called blockFuncs) for this stripe
* unit */
numBlocks = physPtr->numSector;
numBlockDags += numBlocks;
RF_Malloc(blockFuncs[numStripeUnitsBailed], numBlocks * sizeof(RF_VoidFuncPtr), (RF_VoidFuncPtr *));
RF_Malloc(asmh_b[numStripeUnitsBailed], numBlocks * sizeof(RF_AccessStripeMapHeader_t *), (RF_AccessStripeMapHeader_t **));
/* lookup array of blockFuncs for this
* stripe unit */
for (k = 0; k < numBlocks; k++) {
/* remap for series of single
* stripe-unit accesses */
address = physPtr->raidAddress + k;
length = 1;
buffer = physPtr->bufPtr + (k * (1 << raidPtr->logBytesPerSector));
asmh_b[numStripeUnitsBailed][k] = rf_MapAccess(raidPtr, address, length, buffer, RF_DONT_REMAP);
asm_bp = asmh_b[numStripeUnitsBailed][k]->stripeMap;
/* get the creation func for
* this stripe unit */
(raidPtr->Layout.map->SelectionFunc) (raidPtr, type, asm_bp, &(blockFuncs[numStripeUnitsBailed][k]));
/* check to see if we found a
* creation func for this
* stripe unit */
if (blockFuncs[numStripeUnitsBailed][k] == NULL)
cantCreateDAGs = RF_TRUE;
}
numStripeUnitsBailed++;
} else {
numUnitDags++;
}
}
RF_ASSERT(j == numStripeUnits);
numStripesBailed++;
}
}
if (cantCreateDAGs) {
/* free memory and punt */
if (numStripesBailed > 0) {
stripeNum = 0;
stripeFuncs = stripeFuncsList;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
if (stripeFuncs->fp == NULL) {
numStripeUnits = asm_p->numStripeUnitsAccessed;
for (j = 0; j < numStripeUnits; j++)
rf_FreeAccessStripeMap(asmh_u[stripeNum][j]);
RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
stripeNum++;
}
stripeFuncs = stripeFuncs->next;
}
RF_ASSERT(stripeNum == numStripesBailed);
RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
}
while (stripeFuncsList != NULL) {
temp = stripeFuncsList;
stripeFuncsList = stripeFuncsList->next;
rf_FreeFuncList(temp);
}
Fix the "We panic if we can't create a DAG" problem that's existed ~forever. This requires a number of things: 1) If we can't create a DAG, set desc->numStripes to 0 in rf_SelectAlgorithm. This will ensure that we don't attempt to free any dagArray[] elements in rf_StateCleanup. 2) Modify rf_State_CreateDAG() to not panic in the event of a DAG failure. Instead, set the bp->b_flags and bp->b_error, and set things up to skip to rf_State_Cleanup(). 3) Need to mark desc->status as "bad" so that we actually stop looking for a different DAG. (which we won't find... no matter how many times we try). 4) rf_State_LastState() will then do the biodone(), and return EIO for the IO in question. 5) Remove some " || 1 "'s from ProcessNode(). These were for debugging, and we don't need the failure notices spewing over and over again as the failing DAGs are processed. 6) Needed to change if (asmap->numDataFailed + asmap->numParityFailed > 1) to if ((asmap->numDataFailed + asmap->numParityFailed > 1) || (raidPtr->numFailures > 1)){ in rf_raid5.c so that it doesn't try to return rf_CreateNonRedundantWriteDAG as the creation function. 7) Note that we can't apply the above change to the RAID 1 code as with the silly "fake 2-D" RAID 1 sets, it is possible to have 2 failed components in the RAID 1 set, and that would stop them from working. (I really don't know why/how those "fake 2-D" RAID 1 sets even work with all the "single-fault" assumptions present in the rest of the code.) 8) Needed to protect rf_RAID0DagSelect() in a similar way -- it should return NULL as the createFunc. 9) No point printing out "Multiple disks failed..." a zillion times.
2004-01-03 00:41:08 +03:00
desc->numStripes = 0;
return (1);
} else {
/* begin dag creation */
stripeNum = 0;
stripeUnitNum = 0;
/* create a list of dagLists and fill them in */
dagListend = NULL;
stripeFuncs = stripeFuncsList;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
/* grab dag header for this stripe */
dag_h = NULL;
dagList = rf_AllocDAGList();
/* always tack the new dagList onto the end of the list... */
if (dagListend == NULL) {
desc->dagList = dagList;
} else {
dagListend->next = dagList;
}
dagListend = dagList;
dagList->desc = desc;
if (stripeFuncs->fp == NULL) {
/* use bailout functions for this stripe */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
uFunc = stripeUnitFuncs[stripeNum][j];
if (uFunc == (RF_VoidFuncPtr) NULL) {
/* use bailout functions for
* this stripe unit */
for (k = 0; k < physPtr->numSector; k++) {
/* create a dag for
* this block */
InitHdrNode(&tempdag_h, raidPtr);
dagList->numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
bFunc = blockFuncs[stripeUnitNum][k];
RF_ASSERT(bFunc);
asm_bp = asmh_b[stripeUnitNum][k]->stripeMap;
(*bFunc) (raidPtr, asm_bp, tempdag_h, bp, flags, tempdag_h->allocList);
}
stripeUnitNum++;
} else {
/* create a dag for this unit */
InitHdrNode(&tempdag_h, raidPtr);
dagList->numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
asm_up = asmh_u[stripeNum][j]->stripeMap;
(*uFunc) (raidPtr, asm_up, tempdag_h, bp, flags, tempdag_h->allocList);
}
}
RF_ASSERT(j == asm_p->numStripeUnitsAccessed);
/* merge linked bailout dag to existing dag
* collection */
stripeNum++;
} else {
/* Create a dag for this parity stripe */
InitHdrNode(&tempdag_h, raidPtr);
dagList->numDags++;
if (dag_h == NULL) {
dag_h = tempdag_h;
} else {
lastdag_h->next = tempdag_h;
}
lastdag_h = tempdag_h;
(stripeFuncs->fp) (raidPtr, asm_p, tempdag_h, bp, flags, tempdag_h->allocList);
}
dagList->dags = dag_h;
stripeFuncs = stripeFuncs->next;
}
RF_ASSERT(i == desc->numStripes);
/* free memory */
if ((numStripesBailed > 0) || (numStripeUnitsBailed > 0)) {
stripeNum = 0;
stripeUnitNum = 0;
if (dag_h->asmList) {
endASMList = dag_h->asmList;
while (endASMList->next)
endASMList = endASMList->next;
} else
endASMList = NULL;
/* walk through io, stripe by stripe */
stripeFuncs = stripeFuncsList;
for (i = 0, asm_p = asmap; asm_p; asm_p = asm_p->next, i++) {
if (stripeFuncs->fp == NULL) {
numStripeUnits = asm_p->numStripeUnitsAccessed;
/* walk through stripe, stripe unit by
* stripe unit */
for (j = 0, physPtr = asm_p->physInfo; physPtr; physPtr = physPtr->next, j++) {
if (stripeUnitFuncs[stripeNum][j] == NULL) {
numBlocks = physPtr->numSector;
/* walk through stripe
* unit, block by
* block */
for (k = 0; k < numBlocks; k++)
if (dag_h->asmList == NULL) {
dag_h->asmList = asmh_b[stripeUnitNum][k];
endASMList = dag_h->asmList;
} else {
endASMList->next = asmh_b[stripeUnitNum][k];
endASMList = endASMList->next;
}
RF_Free(asmh_b[stripeUnitNum], numBlocks * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(blockFuncs[stripeUnitNum], numBlocks * sizeof(RF_VoidFuncPtr));
stripeUnitNum++;
}
if (dag_h->asmList == NULL) {
dag_h->asmList = asmh_u[stripeNum][j];
endASMList = dag_h->asmList;
} else {
endASMList->next = asmh_u[stripeNum][j];
endASMList = endASMList->next;
}
}
RF_Free(asmh_u[stripeNum], numStripeUnits * sizeof(RF_AccessStripeMapHeader_t *));
RF_Free(stripeUnitFuncs[stripeNum], numStripeUnits * sizeof(RF_VoidFuncPtr));
stripeNum++;
}
stripeFuncs = stripeFuncs->next;
}
RF_ASSERT(stripeNum == numStripesBailed);
RF_Free(stripeUnitFuncs, asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_u, asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
if (numStripeUnitsBailed > 0) {
RF_ASSERT(stripeUnitNum == numStripeUnitsBailed);
RF_Free(blockFuncs, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_VoidFuncPtr));
RF_Free(asmh_b, raidPtr->Layout.numDataCol * asm_h->numStripes * sizeof(RF_AccessStripeMapHeader_t **));
}
}
while (stripeFuncsList != NULL) {
temp = stripeFuncsList;
stripeFuncsList = stripeFuncsList->next;
rf_FreeFuncList(temp);
}
return (0);
}
}