NetBSD/sys/dev/acpi/acpi_cpu_pstate.c

736 lines
14 KiB
C
Raw Normal View History

/* $NetBSD: acpi_cpu_pstate.c,v 1.18 2010/08/14 05:41:22 jruoho Exp $ */
/*-
* Copyright (c) 2010 Jukka Ruohonen <jruohonen@iki.fi>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.18 2010/08/14 05:41:22 jruoho Exp $");
#include <sys/param.h>
2010-08-10 06:42:05 +04:00
#include <sys/evcnt.h>
#include <sys/kmem.h>
#include <sys/once.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi_cpu_pstate")
static void acpicpu_pstate_attach_print(struct acpicpu_softc *);
2010-08-10 06:42:05 +04:00
static void acpicpu_pstate_attach_evcnt(struct acpicpu_softc *);
static void acpicpu_pstate_detach_evcnt(struct acpicpu_softc *);
static ACPI_STATUS acpicpu_pstate_pss(struct acpicpu_softc *sc);
static ACPI_STATUS acpicpu_pstate_pss_add(struct acpicpu_pstate *,
ACPI_OBJECT *);
static ACPI_STATUS acpicpu_pstate_pct(struct acpicpu_softc *);
static int acpicpu_pstate_max(struct acpicpu_softc *);
static void acpicpu_pstate_change(struct acpicpu_softc *);
static void acpicpu_pstate_bios(void);
void
acpicpu_pstate_attach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
const char *str;
ACPI_STATUS rv;
/*
* Three control methods are mandatory
* for P-states; _PSS, _PCT, and _PPC.
*/
rv = acpicpu_pstate_pss(sc);
if (ACPI_FAILURE(rv)) {
str = "_PSS";
goto fail;
}
rv = acpicpu_pstate_pct(sc);
if (ACPI_FAILURE(rv)) {
str = "_PCT";
goto fail;
}
rv = acpicpu_pstate_max(sc);
if (rv != 0) {
str = "_PPC";
goto fail;
}
sc->sc_flags |= ACPICPU_FLAG_P;
sc->sc_pstate_current = sc->sc_pstate[0].ps_freq;
acpicpu_pstate_bios();
2010-08-10 06:42:05 +04:00
acpicpu_pstate_attach_evcnt(sc);
acpicpu_pstate_attach_print(sc);
return;
fail:
switch (rv) {
case AE_NOT_FOUND:
return;
case AE_SUPPORT:
aprint_verbose_dev(sc->sc_dev, "P-states not supported\n");
return;
default:
aprint_error_dev(sc->sc_dev, "failed to evaluate "
"%s: %s\n", str, AcpiFormatException(rv));
}
}
static void
acpicpu_pstate_attach_print(struct acpicpu_softc *sc)
{
const uint8_t method = sc->sc_pstate_control.reg_spaceid;
struct acpicpu_pstate *ps;
static bool once = false;
const char *str;
uint32_t i;
if (once != false)
return;
2010-08-11 14:44:07 +04:00
str = (method != ACPI_ADR_SPACE_SYSTEM_IO) ? "FFH" : "I/O";
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq == 0)
continue;
2010-08-11 14:44:07 +04:00
aprint_debug_dev(sc->sc_dev, "P%d: %3s, "
"lat %3u us, pow %5u mW, %4u MHz\n", i, str,
ps->ps_latency, ps->ps_power, ps->ps_freq);
}
once = true;
}
2010-08-10 06:42:05 +04:00
static void
acpicpu_pstate_attach_evcnt(struct acpicpu_softc *sc)
{
struct acpicpu_pstate *ps;
uint32_t i;
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq == 0)
continue;
(void)snprintf(ps->ps_name, sizeof(ps->ps_name),
"P%u (%u MHz)", i, ps->ps_freq);
evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), ps->ps_name);
}
}
int
acpicpu_pstate_detach(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
static ONCE_DECL(once_detach);
size_t size;
int rv;
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
return 0;
rv = RUN_ONCE(&once_detach, acpicpu_md_pstate_stop);
if (rv != 0)
return rv;
size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);
if (sc->sc_pstate != NULL)
kmem_free(sc->sc_pstate, size);
sc->sc_flags &= ~ACPICPU_FLAG_P;
2010-08-10 06:42:05 +04:00
acpicpu_pstate_detach_evcnt(sc);
return 0;
}
2010-08-10 06:42:05 +04:00
static void
acpicpu_pstate_detach_evcnt(struct acpicpu_softc *sc)
{
struct acpicpu_pstate *ps;
uint32_t i;
for (i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
if (ps->ps_freq != 0)
evcnt_detach(&ps->ps_evcnt);
}
}
int
acpicpu_pstate_start(device_t self)
{
struct acpicpu_softc *sc = device_private(self);
static ONCE_DECL(once_start);
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
return 0;
return RUN_ONCE(&once_start, acpicpu_md_pstate_start);
}
bool
acpicpu_pstate_suspend(device_t self)
{
return true;
}
bool
acpicpu_pstate_resume(device_t self)
{
acpicpu_pstate_callback(self);
return true;
}
void
acpicpu_pstate_callback(void *aux)
{
struct acpicpu_softc *sc;
device_t self = aux;
uint32_t old, new;
sc = device_private(self);
mutex_enter(&sc->sc_mtx);
old = sc->sc_pstate_max;
acpicpu_pstate_change(sc);
new = sc->sc_pstate_max;
mutex_exit(&sc->sc_mtx);
if (old != new) {
aprint_debug_dev(sc->sc_dev, "maximum frequency "
"changed from P%u (%u MHz) to P%u (%u MHz)\n",
old, sc->sc_pstate[old].ps_freq, new,
sc->sc_pstate[sc->sc_pstate_max].ps_freq);
#if 0
/*
* If the maximum changed, proactively
* raise or lower the target frequency.
*/
acpicpu_pstate_set(sc, sc->sc_pstate[new].ps_freq);
#endif
}
}
ACPI_STATUS
acpicpu_pstate_pss(struct acpicpu_softc *sc)
{
struct acpicpu_pstate *ps;
ACPI_OBJECT *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint32_t count;
uint32_t i, j;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
sc->sc_pstate_count = obj->Package.Count;
if (sc->sc_pstate_count == 0) {
rv = AE_NOT_EXIST;
goto out;
}
if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
rv = AE_LIMIT;
goto out;
}
sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
sizeof(struct acpicpu_pstate), KM_SLEEP);
if (sc->sc_pstate == NULL) {
rv = AE_NO_MEMORY;
goto out;
}
for (count = i = 0; i < sc->sc_pstate_count; i++) {
ps = &sc->sc_pstate[i];
rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);
if (ACPI_FAILURE(rv)) {
ps->ps_freq = 0;
continue;
}
for (j = 0; j < i; j++) {
if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
ps->ps_freq = 0;
break;
}
}
if (ps->ps_freq != 0)
count++;
}
rv = (count != 0) ? AE_OK : AE_NOT_EXIST;
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static ACPI_STATUS
acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
{
ACPI_OBJECT *elm;
uint32_t val[6];
uint32_t *p;
int i;
if (obj->Type != ACPI_TYPE_PACKAGE)
return AE_TYPE;
if (obj->Package.Count != 6)
return AE_BAD_DATA;
elm = obj->Package.Elements;
for (i = 0; i < 6; i++) {
if (elm[i].Type != ACPI_TYPE_INTEGER)
return AE_TYPE;
if (elm[i].Integer.Value > UINT32_MAX)
return AE_AML_NUMERIC_OVERFLOW;
val[i] = elm[i].Integer.Value;
}
p = &ps->ps_freq;
for (i = 0; i < 6; i++, p++)
*p = val[i];
if (ps->ps_freq == 0 || ps->ps_freq > 9999)
return AE_BAD_DECIMAL_CONSTANT;
/*
* The latency is typically around 10 usec
* on Intel CPUs. Use that as the minimum.
*/
if (ps->ps_latency < 10)
ps->ps_latency = 10;
return AE_OK;
}
ACPI_STATUS
acpicpu_pstate_pct(struct acpicpu_softc *sc)
{
static const size_t size = sizeof(struct acpicpu_reg);
struct acpicpu_reg *reg[2];
ACPI_OBJECT *elm, *obj;
ACPI_BUFFER buf;
ACPI_STATUS rv;
uint8_t width;
int i;
rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);
if (ACPI_FAILURE(rv))
return rv;
obj = buf.Pointer;
if (obj->Type != ACPI_TYPE_PACKAGE) {
rv = AE_TYPE;
goto out;
}
if (obj->Package.Count != 2) {
rv = AE_LIMIT;
goto out;
}
for (i = 0; i < 2; i++) {
elm = &obj->Package.Elements[i];
if (elm->Type != ACPI_TYPE_BUFFER) {
rv = AE_TYPE;
goto out;
}
if (size > elm->Buffer.Length) {
rv = AE_AML_BAD_RESOURCE_LENGTH;
goto out;
}
reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;
switch (reg[i]->reg_spaceid) {
case ACPI_ADR_SPACE_SYSTEM_IO:
if (reg[i]->reg_addr == 0) {
rv = AE_AML_ILLEGAL_ADDRESS;
goto out;
}
width = reg[i]->reg_bitwidth;
if (width + reg[i]->reg_bitoffset > 32) {
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
if (width != 8 && width != 16 && width != 32) {
2010-08-08 22:25:06 +04:00
rv = AE_AML_BAD_RESOURCE_VALUE;
goto out;
}
break;
case ACPI_ADR_SPACE_FIXED_HARDWARE:
if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
2010-08-08 22:25:06 +04:00
rv = AE_SUPPORT;
goto out;
}
break;
default:
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
}
if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
rv = AE_AML_INVALID_SPACE_ID;
goto out;
}
(void)memcpy(&sc->sc_pstate_control, reg[0], size);
(void)memcpy(&sc->sc_pstate_status, reg[1], size);
out:
if (buf.Pointer != NULL)
ACPI_FREE(buf.Pointer);
return rv;
}
static int
acpicpu_pstate_max(struct acpicpu_softc *sc)
{
ACPI_INTEGER val;
ACPI_STATUS rv;
/*
* Evaluate the currently highest P-state that can be used.
* If available, we can use either this state or any lower
* power (i.e. higher numbered) state from the _PSS object.
*/
rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);
sc->sc_pstate_max = 0;
if (ACPI_FAILURE(rv))
return 1;
if (val > sc->sc_pstate_count - 1)
return 1;
if (sc->sc_pstate[val].ps_freq == 0)
return 1;
sc->sc_pstate_max = val;
return 0;
}
static void
acpicpu_pstate_change(struct acpicpu_softc *sc)
{
ACPI_OBJECT_LIST arg;
ACPI_OBJECT obj[2];
arg.Count = 2;
arg.Pointer = obj;
obj[0].Type = ACPI_TYPE_INTEGER;
obj[1].Type = ACPI_TYPE_INTEGER;
obj[0].Integer.Value = ACPICPU_P_NOTIFY;
obj[1].Integer.Value = acpicpu_pstate_max(sc);
(void)AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
}
static void
acpicpu_pstate_bios(void)
{
const uint8_t val = AcpiGbl_FADT.PstateControl;
const uint32_t addr = AcpiGbl_FADT.SmiCommand;
if (addr == 0)
return;
(void)AcpiOsWritePort(addr, val, 8);
}
int
acpicpu_pstate_get(struct acpicpu_softc *sc, uint32_t *freq)
{
const uint8_t method = sc->sc_pstate_control.reg_spaceid;
struct acpicpu_pstate *ps = NULL;
uint32_t i, val = 0;
uint64_t addr;
uint8_t width;
int rv;
if (sc->sc_cold != false) {
rv = EBUSY;
goto fail;
}
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
if (sc->sc_pstate_current != ACPICPU_P_STATE_UNKNOWN) {
*freq = sc->sc_pstate_current;
mutex_exit(&sc->sc_mtx);
return 0;
}
mutex_exit(&sc->sc_mtx);
switch (method) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_pstate_get(sc, freq);
if (rv != 0)
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_pstate_status.reg_addr;
width = sc->sc_pstate_status.reg_bitwidth;
(void)AcpiOsReadPort(addr, &val, width);
if (val == 0) {
rv = EIO;
goto fail;
}
for (i = 0; i < sc->sc_pstate_count; i++) {
if (sc->sc_pstate[i].ps_freq == 0)
continue;
if (val == sc->sc_pstate[i].ps_status) {
ps = &sc->sc_pstate[i];
break;
}
}
if (__predict_false(ps == NULL)) {
rv = EIO;
goto fail;
}
*freq = ps->ps_freq;
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
sc->sc_pstate_current = *freq;
mutex_exit(&sc->sc_mtx);
return 0;
fail:
aprint_error_dev(sc->sc_dev, "failed "
"to get frequency (err %d)\n", rv);
mutex_enter(&sc->sc_mtx);
*freq = sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
mutex_exit(&sc->sc_mtx);
return rv;
}
int
acpicpu_pstate_set(struct acpicpu_softc *sc, uint32_t freq)
{
const uint8_t method = sc->sc_pstate_control.reg_spaceid;
struct acpicpu_pstate *ps = NULL;
uint32_t i, val;
uint64_t addr;
uint8_t width;
int rv;
if (sc->sc_cold != false) {
rv = EBUSY;
goto fail;
}
if ((sc->sc_flags & ACPICPU_FLAG_P) == 0) {
rv = ENODEV;
goto fail;
}
mutex_enter(&sc->sc_mtx);
for (i = sc->sc_pstate_max; i < sc->sc_pstate_count; i++) {
if (sc->sc_pstate[i].ps_freq == 0)
continue;
if (sc->sc_pstate[i].ps_freq == freq) {
ps = &sc->sc_pstate[i];
break;
}
}
mutex_exit(&sc->sc_mtx);
if (__predict_false(ps == NULL)) {
rv = EINVAL;
goto fail;
}
switch (method) {
case ACPI_ADR_SPACE_FIXED_HARDWARE:
rv = acpicpu_md_pstate_set(ps);
if (rv != 0)
goto fail;
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
addr = sc->sc_pstate_control.reg_addr;
width = sc->sc_pstate_control.reg_bitwidth;
(void)AcpiOsWritePort(addr, ps->ps_control, width);
addr = sc->sc_pstate_status.reg_addr;
width = sc->sc_pstate_status.reg_bitwidth;
/*
* Some systems take longer to respond
* than the reported worst-case latency.
*/
for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {
(void)AcpiOsReadPort(addr, &val, width);
if (val == ps->ps_status)
break;
DELAY(ps->ps_latency);
}
if (i == ACPICPU_P_STATE_RETRY) {
rv = EAGAIN;
goto fail;
}
break;
default:
rv = ENOTTY;
goto fail;
}
mutex_enter(&sc->sc_mtx);
ps->ps_evcnt.ev_count++;
sc->sc_pstate_current = freq;
mutex_exit(&sc->sc_mtx);
return 0;
fail:
aprint_error_dev(sc->sc_dev, "failed to set "
"frequency to %u (err %d)\n", freq, rv);
mutex_enter(&sc->sc_mtx);
sc->sc_pstate_current = ACPICPU_P_STATE_UNKNOWN;
mutex_exit(&sc->sc_mtx);
return rv;
}