NetBSD/sys/dev/i2c/axp20x.c

566 lines
18 KiB
C
Raw Normal View History

/* $NetBSD: axp20x.c,v 1.4 2015/10/15 13:48:57 bouyer Exp $ */
/*-
* Copyright (c) 2014 Jared D. McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: axp20x.c,v 1.4 2015/10/15 13:48:57 bouyer Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kmem.h>
#include <dev/i2c/i2cvar.h>
#include <dev/i2c/axp20xvar.h>
#include <dev/sysmon/sysmonvar.h>
#define AXP_INPUT_STATUS 0x00
#define AXP_INPUT_STATUS_AC_PRESENT __BIT(7)
#define AXP_INPUT_STATUS_AC_OK __BIT(6)
#define AXP_INPUT_STATUS_VBUS_PRESENT __BIT(5)
#define AXP_INPUT_STATUS_VBUS_OK __BIT(4)
#define AXP_POWER_MODE 0x01
#define AXP_POWER_MODE_OVERTEMP __BIT(7)
#define AXP_POWER_MODE_CHARGING __BIT(6)
#define AXP_POWER_MODE_BATTOK __BIT(5)
#define AXP_POWEROUT_CTRL 0x12
#define AXP_POWEROUT_CTRL_LDO3 __BIT(6)
#define AXP_POWEROUT_CTRL_DCDC2 __BIT(4)
#define AXP_POWEROUT_CTRL_LDO4 __BIT(3)
#define AXP_POWEROUT_CTRL_LDO2 __BIT(2)
#define AXP_POWEROUT_CTRL_DCDC3 __BIT(1)
#define AXP_POWEROUT_CTRL_EXTEN __BIT(0)
#define AXP_DCDC2 0x23
#define AXP_DCDC2_VOLT_MASK __BITS(0,5)
#define AXP_DCDC2_VOLT_SHIFT 0
#define AXP_DCDC2_LDO3_VRC 0x25
#define AXP_DCDC3 0x27
#define AXP_DCDC3_VOLT_MASK __BITS(0,6)
#define AXP_DCDC3_VOLT_SHIFT 0
#define AXP_LDO2_4 0x28
#define AXP_LDO2_VOLT_MASK __BITS(4,7)
#define AXP_LDO2_VOLT_SHIFT 4
#define AXP_LDO4_VOLT_MASK __BITS(0,3)
#define AXP_LDO4_VOLT_SHIFT 0
static int ldo4_mvV[] = {
1250,
1300,
1400,
1500,
1600,
1700,
1800,
1900,
2000,
2500,
2700,
2800,
3000,
3100,
3200,
3300
};
#define AXP_LDO3 0x29
#define AXP_LDO3_TRACK __BIT(7)
#define AXP_LDO3_VOLT_MASK __BITS(0,6)
#define AXP_LDO3_VOLT_SHIFT 0
#define AXP_ACV_MON_REG 0x56 /* 2 bytes */
#define AXP_ACI_MON_REG 0x58 /* 2 bytes */
#define AXP_VBUSV_MON_REG 0x5a /* 2 bytes */
#define AXP_VBUSI_MON_REG 0x5c /* 2 bytes */
#define AXP_TEMP_MON_REG 0x5e /* 2 bytes */
#define AXP_BATTV_MON_REG 0x78 /* 2 bytes */
#define AXP_BATTCI_MON_REG 0x7a /* 2 bytes */
#define AXP_BATTDI_MON_REG 0x7c /* 2 bytes */
#define AXP_APSV_MON_REG 0x7e /* 2 bytes */
#define AXP_ADC_EN1 0x82
#define AXP_ADC_EN1_BATTV __BIT(7)
#define AXP_ADC_EN1_BATTI __BIT(6)
#define AXP_ADC_EN1_ACV __BIT(5)
#define AXP_ADC_EN1_ACI __BIT(4)
#define AXP_ADC_EN1_VBUSV __BIT(3)
#define AXP_ADC_EN1_VBUSI __BIT(2)
#define AXP_ADC_EN1_APSV __BIT(1)
#define AXP_ADC_EN1_TS __BIT(0)
#define AXP_ADC_EN2 0x83
#define AXP_ADC_EN2_TEMP __BIT(7)
#define AXP_SENSOR_ACOK 0
#define AXP_SENSOR_ACV 1
#define AXP_SENSOR_ACI 2
#define AXP_SENSOR_VBUSOK 3
#define AXP_SENSOR_VBUSV 4
#define AXP_SENSOR_VBUSI 5
#define AXP_SENSOR_BATTOK 6
#define AXP_SENSOR_BATTV 7
#define AXP_SENSOR_BATTI 8
#define AXP_SENSOR_APSV 9
#define AXP_SENSOR_TEMP 10
#define AXP_NSENSORS (AXP_SENSOR_TEMP + 1)
/* define per-ADC LSB to uV/uA values */
static int axp20x_sensors_lsb[] = {
0, /* AXP_SENSOR_ACOK */
1700, /* AXP_SENSOR_ACV */
625, /* AXP_SENSOR_ACI */
0,
1700, /* AXP_SENSOR_VBUSV */
375, /* AXP_SENSOR_VBUSI */
0,
1100, /* AXP_SENSOR_BATTV */
500, /* AXP_SENSOR_BATTI */
1400, /* AXP_SENSOR_APSV */
};
struct axp20x_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
uint8_t sc_inputstatus;
uint8_t sc_powermode;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensor[AXP_NSENSORS];
};
static int axp20x_match(device_t, cfdata_t, void *);
static void axp20x_attach(device_t, device_t, void *);
static void axp20x_sensors_refresh(struct sysmon_envsys *, envsys_data_t *);
static int axp20x_read(struct axp20x_softc *, uint8_t, uint8_t *, size_t, int);
static int axp20x_write(struct axp20x_softc *, uint8_t, uint8_t *, size_t, int);
CFATTACH_DECL_NEW(axp20x, sizeof(struct axp20x_softc),
axp20x_match, axp20x_attach, NULL, NULL);
static int
axp20x_match(device_t parent, cfdata_t match, void *aux)
{
return 1;
}
static void
axp20x_attach(device_t parent, device_t self, void *aux)
{
struct axp20x_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
int first;
int error;
uint8_t value;
sc->sc_dev = self;
sc->sc_i2c = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
error = axp20x_read(sc, AXP_INPUT_STATUS,
&sc->sc_inputstatus, 1, I2C_F_POLL);
if (error) {
aprint_error(": can't read status: %d\n", error);
return;
}
error = axp20x_read(sc, AXP_POWER_MODE,
&sc->sc_powermode, 1, I2C_F_POLL);
if (error) {
aprint_error(": can't read power mode: %d\n", error);
return;
}
value = AXP_ADC_EN1_ACV | AXP_ADC_EN1_ACI | AXP_ADC_EN1_VBUSV | AXP_ADC_EN1_VBUSI | AXP_ADC_EN1_APSV | AXP_ADC_EN1_TS;
if (sc->sc_powermode & AXP_POWER_MODE_BATTOK)
value |= AXP_ADC_EN1_BATTV | AXP_ADC_EN1_BATTI;
error = axp20x_write(sc, AXP_ADC_EN1, &value, 1, I2C_F_POLL);
if (error) {
aprint_error(": can't set AXP_ADC_EN1\n");
return;
}
error = axp20x_read(sc, AXP_ADC_EN2, &value, 1, I2C_F_POLL);
if (error) {
aprint_error(": can't read AXP_ADC_EN2\n");
return;
}
value |= AXP_ADC_EN2_TEMP;
error = axp20x_write(sc, AXP_ADC_EN2, &value, 1, I2C_F_POLL);
if (error) {
aprint_error(": can't set AXP_ADC_EN2\n");
return;
}
aprint_naive("\n");
first = 1;
if (sc->sc_inputstatus & AXP_INPUT_STATUS_AC_OK) {
aprint_verbose(": AC used");
first = 0;
} else if (sc->sc_inputstatus & AXP_INPUT_STATUS_AC_PRESENT) {
aprint_verbose(": AC present (but unused)");
first = 0;
}
if (sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_OK) {
aprint_verbose("%s VBUS used", first ? ":" : ",");
first = 0;
} else if (sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_PRESENT) {
aprint_verbose("%s VBUS present (but unused)", first ? ":" : ",");
first = 0;
}
if (sc->sc_powermode & AXP_POWER_MODE_BATTOK) {
aprint_verbose("%s battery present", first ? ":" : ",");
}
aprint_normal("\n");
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = axp20x_sensors_refresh;
sc->sc_sensor[AXP_SENSOR_ACOK].units = ENVSYS_INDICATOR;
sc->sc_sensor[AXP_SENSOR_ACOK].state = ENVSYS_SVALID;
sc->sc_sensor[AXP_SENSOR_ACOK].value_cur =
(sc->sc_inputstatus & AXP_INPUT_STATUS_AC_OK) ? 1 : 0;
snprintf(sc->sc_sensor[AXP_SENSOR_ACOK].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_ACOK].desc), "AC input");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACOK]);
sc->sc_sensor[AXP_SENSOR_ACV].units = ENVSYS_SVOLTS_DC;
sc->sc_sensor[AXP_SENSOR_ACV].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_ACV].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_ACV].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_ACV].desc), "AC input voltage");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACV]);
sc->sc_sensor[AXP_SENSOR_ACI].units = ENVSYS_SAMPS;
sc->sc_sensor[AXP_SENSOR_ACI].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_ACI].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_ACI].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_ACI].desc), "AC input current");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACI]);
sc->sc_sensor[AXP_SENSOR_VBUSOK].units = ENVSYS_INDICATOR;
sc->sc_sensor[AXP_SENSOR_VBUSOK].state = ENVSYS_SVALID;
sc->sc_sensor[AXP_SENSOR_VBUSOK].value_cur =
(sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_OK) ? 1 : 0;
snprintf(sc->sc_sensor[AXP_SENSOR_VBUSOK].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_VBUSOK].desc), "VBUS input");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUSOK]);
sc->sc_sensor[AXP_SENSOR_VBUSV].units = ENVSYS_SVOLTS_DC;
sc->sc_sensor[AXP_SENSOR_VBUSV].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_VBUSV].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_VBUSV].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_VBUSV].desc), "VBUS input voltage");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUSV]);
sc->sc_sensor[AXP_SENSOR_VBUSI].units = ENVSYS_SAMPS;
sc->sc_sensor[AXP_SENSOR_VBUSI].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_VBUSI].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_VBUSI].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_VBUSI].desc), "VBUS input current");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUSI]);
sc->sc_sensor[AXP_SENSOR_BATTOK].units = ENVSYS_INDICATOR;
sc->sc_sensor[AXP_SENSOR_BATTOK].state = ENVSYS_SVALID;
sc->sc_sensor[AXP_SENSOR_BATTOK].value_cur =
(sc->sc_powermode & AXP_POWER_MODE_BATTOK) ? 1 : 0;
snprintf(sc->sc_sensor[AXP_SENSOR_BATTOK].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_BATTOK].desc), "battery");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATTOK]);
sc->sc_sensor[AXP_SENSOR_BATTV].units = ENVSYS_SVOLTS_DC;
sc->sc_sensor[AXP_SENSOR_BATTV].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_BATTV].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_BATTV].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_BATTV].desc), "battery voltage");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATTV]);
sc->sc_sensor[AXP_SENSOR_BATTI].units = ENVSYS_SAMPS;
sc->sc_sensor[AXP_SENSOR_BATTI].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_BATTI].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_BATTI].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_BATTI].desc), "battery current");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATTI]);
sc->sc_sensor[AXP_SENSOR_APSV].units = ENVSYS_SVOLTS_DC;
sc->sc_sensor[AXP_SENSOR_APSV].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_APSV].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_APSV].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_APSV].desc), "APS output voltage");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_APSV]);
sc->sc_sensor[AXP_SENSOR_TEMP].units = ENVSYS_STEMP;
sc->sc_sensor[AXP_SENSOR_TEMP].state = ENVSYS_SINVALID;
sc->sc_sensor[AXP_SENSOR_TEMP].flags = ENVSYS_FHAS_ENTROPY;
snprintf(sc->sc_sensor[AXP_SENSOR_TEMP].desc,
sizeof(sc->sc_sensor[AXP_SENSOR_TEMP].desc),
"internal temperature");
sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_TEMP]);
sysmon_envsys_register(sc->sc_sme);
if (axp20x_read(sc, AXP_DCDC2, &value, 1, I2C_F_POLL) == 0) {
aprint_verbose_dev(sc->sc_dev, ": DCDC2 %dmV\n",
(int)(700 + (value & AXP_DCDC2_VOLT_MASK) * 25));
}
if (axp20x_read(sc, AXP_DCDC3, &value, 1, I2C_F_POLL) == 0) {
aprint_verbose_dev(sc->sc_dev, ": DCDC3 %dmV\n",
(int)(700 + (value & AXP_DCDC3_VOLT_MASK) * 25));
}
if (axp20x_read(sc, AXP_LDO2_4, &value, 1, I2C_F_POLL) == 0) {
aprint_verbose_dev(sc->sc_dev, ": LDO2 %dmV, LDO4 %dmV\n",
(int)(1800 +
((value & AXP_LDO2_VOLT_MASK) >> AXP_LDO2_VOLT_SHIFT) * 100
),
ldo4_mvV[(value & AXP_LDO4_VOLT_MASK) >> AXP_LDO4_VOLT_SHIFT]);
}
if (axp20x_read(sc, AXP_LDO3, &value, 1, I2C_F_POLL) == 0) {
if (value & AXP_LDO3_TRACK) {
aprint_verbose_dev(sc->sc_dev, ": LDO3: tracking\n");
} else {
aprint_verbose_dev(sc->sc_dev, ": LDO3 %dmV\n",
(int)(700 + (value & AXP_LDO3_VOLT_MASK) * 25));
}
}
}
static void
axp20x_sensors_refresh_volt(struct axp20x_softc *sc, int reg,
envsys_data_t *edata)
{
uint8_t buf[2];
int error;
error = axp20x_read(sc, reg, buf, sizeof(buf), 0);
if (error) {
edata->state = ENVSYS_SINVALID;
} else {
edata->value_cur = ((buf[0] << 4) | (buf[1] & 0xf)) *
axp20x_sensors_lsb[edata->sensor];
edata->state = ENVSYS_SVALID;
}
}
static void
axp20x_sensors_refresh_amp(struct axp20x_softc *sc, int reg,
envsys_data_t *edata)
{
uint8_t buf[2];
int error;
error = axp20x_read(sc, reg, buf, sizeof(buf), 0);
if (error) {
edata->state = ENVSYS_SINVALID;
} else {
edata->value_cur = ((buf[0] << 4) | (buf[1] & 0xf)) *
axp20x_sensors_lsb[edata->sensor];
edata->state = ENVSYS_SVALID;
}
}
static void
axp20x_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct axp20x_softc *sc = sme->sme_cookie;
uint8_t buf[2];
int error;
switch(edata->sensor) {
case AXP_SENSOR_ACOK:
case AXP_SENSOR_VBUSOK:
error = axp20x_read(sc, AXP_INPUT_STATUS,
&sc->sc_inputstatus, 1, 0);
if (error) {
edata->state = ENVSYS_SINVALID;
return;
}
if (edata->sensor == AXP_SENSOR_ACOK) {
edata->value_cur =
(sc->sc_inputstatus & AXP_INPUT_STATUS_AC_OK) ? 1 : 0;
} else {
edata->value_cur =
(sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_OK) ? 1 : 0;
}
edata->state = ENVSYS_SVALID;
return;
case AXP_SENSOR_BATTOK:
error = axp20x_read(sc, AXP_POWER_MODE,
&sc->sc_powermode, 1, 0);
if (error) {
edata->state = ENVSYS_SINVALID;
return;
}
edata->value_cur =
(sc->sc_powermode & AXP_POWER_MODE_BATTOK) ? 1 : 0;
return;
case AXP_SENSOR_ACV:
if (sc->sc_inputstatus & AXP_INPUT_STATUS_AC_OK)
axp20x_sensors_refresh_volt(sc, AXP_ACV_MON_REG, edata);
else
edata->state = ENVSYS_SINVALID;
return;
case AXP_SENSOR_ACI:
if (sc->sc_inputstatus & AXP_INPUT_STATUS_AC_OK)
axp20x_sensors_refresh_amp(sc, AXP_ACI_MON_REG, edata);
else
edata->state = ENVSYS_SINVALID;
return;
case AXP_SENSOR_VBUSV:
if (sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_OK)
axp20x_sensors_refresh_volt(sc, AXP_VBUSV_MON_REG, edata);
else
edata->state = ENVSYS_SINVALID;
return;
case AXP_SENSOR_VBUSI:
if (sc->sc_inputstatus & AXP_INPUT_STATUS_VBUS_OK)
axp20x_sensors_refresh_amp(sc, AXP_VBUSI_MON_REG, edata);
else
edata->state = ENVSYS_SINVALID;
return;
case AXP_SENSOR_BATTV:
if (sc->sc_powermode & AXP_POWER_MODE_BATTOK)
axp20x_sensors_refresh_volt(sc, AXP_BATTV_MON_REG, edata);
else
edata->state = ENVSYS_SINVALID;
return;
case AXP_SENSOR_BATTI:
if ((sc->sc_powermode & AXP_POWER_MODE_BATTOK) == 0) {
edata->state = ENVSYS_SINVALID;
return;
}
error = axp20x_read(sc, AXP_POWER_MODE,
&sc->sc_inputstatus, 1, 0);
if (error) {
edata->state = ENVSYS_SINVALID;
return;
}
if (sc->sc_inputstatus & AXP_POWER_MODE_CHARGING) {
axp20x_sensors_refresh_amp(sc, AXP_BATTCI_MON_REG,
edata);
edata->value_cur = -edata->value_cur;
} else {
axp20x_sensors_refresh_amp(sc, AXP_BATTDI_MON_REG,
edata);
}
return;
case AXP_SENSOR_APSV:
axp20x_sensors_refresh_volt(sc, AXP_APSV_MON_REG, edata);
return;
case AXP_SENSOR_TEMP:
error = axp20x_read(sc, AXP_TEMP_MON_REG, buf, sizeof(buf), 0);
if (error) {
edata->state = ENVSYS_SINVALID;
} else {
/* between -144.7C and 264.8C, step +0.1C */
edata->value_cur =
(((buf[0] << 4) | (buf[1] & 0xf)) - 1447)
* 100000 + 273150000;
edata->state = ENVSYS_SVALID;
}
return;
default:
aprint_error_dev(sc->sc_dev, ": invalid sensor %d\n",
edata->sensor);
}
}
static int
axp20x_read(struct axp20x_softc *sc, uint8_t reg, uint8_t *val, size_t len,
int flags)
{
int ret;
iic_acquire_bus(sc->sc_i2c, flags);
ret = iic_smbus_block_read(sc->sc_i2c, sc->sc_addr,
reg, val, len, flags);
iic_release_bus(sc->sc_i2c, flags);
return ret;
}
static int
axp20x_write(struct axp20x_softc *sc, uint8_t reg, uint8_t *val, size_t len,
int flags)
{
int ret;
iic_acquire_bus(sc->sc_i2c, flags);
ret = iic_smbus_block_write(sc->sc_i2c, sc->sc_addr,
reg, val, len, flags);
iic_release_bus(sc->sc_i2c, flags);
return ret;
}
int
axp20x_set_dcdc(device_t dev, int dcdc, int mvolt, bool poll)
{
struct axp20x_softc *sc = device_private(dev);
int ret;
int value;
uint8_t reg;
KASSERT(sc != NULL);
value = (mvolt - 700) / 25;
switch (dcdc) {
case AXP20X_DCDC2:
value <<= AXP_DCDC2_VOLT_SHIFT;
if (value > AXP_DCDC2_VOLT_MASK)
return EINVAL;
reg = value & AXP_DCDC2_VOLT_MASK;
ret = axp20x_write(sc, AXP_DCDC2, &reg, 1,
poll ? I2C_F_POLL : 0);
if (ret)
return ret;
if (axp20x_read(sc, AXP_DCDC2, &reg, 1, poll ? I2C_F_POLL : 0)
== 0) {
aprint_verbose_dev(sc->sc_dev,
": DCDC2 changed to %dmV\n",
(int)(700 + (reg & AXP_DCDC2_VOLT_MASK) * 25));
}
return 0;
case AXP20X_DCDC3:
value <<= AXP_DCDC3_VOLT_SHIFT;
if (value > AXP_DCDC3_VOLT_MASK)
return EINVAL;
reg = value & AXP_DCDC3_VOLT_MASK;
ret = axp20x_write(sc, AXP_DCDC3, &reg, 1,
poll ? I2C_F_POLL : 0);
if (ret)
return ret;
if (axp20x_read(sc, AXP_DCDC3, &reg, 1, poll ? I2C_F_POLL : 0)
== 0) {
aprint_verbose_dev(sc->sc_dev,
": DCDC3 changed to %dmV\n",
(int)(700 + (reg & AXP_DCDC3_VOLT_MASK) * 25));
}
return 0;
default:
aprint_error_dev(dev, "wrong DCDC %d\n", dcdc);
return EINVAL;
}
}