NetBSD/sys/dev/acpi/acpi_apm.c

441 lines
12 KiB
C
Raw Normal View History

/* $NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $ */
/*-
* Copyright (c) 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christos Zoulas and by Jared McNeill.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Autoconfiguration support for the Intel ACPI Component Architecture
* ACPI reference implementation.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/envsys.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/acpi/acpivar.h>
#include <dev/apm/apmvar.h>
static void acpiapm_disconnect(void *);
static void acpiapm_enable(void *, int);
static int acpiapm_set_powstate(void *, u_int, u_int);
static int acpiapm_get_powstat(void *, u_int, struct apm_power_info *);
static bool apm_per_sensor(const struct sysmon_envsys *,
const envsys_data_t *, void *);
static int acpiapm_get_event(void *, u_int *, u_int *);
static void acpiapm_cpu_busy(void *);
static void acpiapm_cpu_idle(void *);
static void acpiapm_get_capabilities(void *, u_int *, u_int *);
struct apm_accessops acpiapm_accessops = {
acpiapm_disconnect,
acpiapm_enable,
acpiapm_set_powstate,
acpiapm_get_powstat,
acpiapm_get_event,
acpiapm_cpu_busy,
acpiapm_cpu_idle,
acpiapm_get_capabilities,
};
#ifdef ACPI_APM_DEBUG
#define DPRINTF(a) uprintf a
#else
#define DPRINTF(a)
#endif
#ifndef ACPI_APM_DEFAULT_STANDBY_STATE
#define ACPI_APM_DEFAULT_STANDBY_STATE (1)
#endif
#ifndef ACPI_APM_DEFAULT_SUSPEND_STATE
#define ACPI_APM_DEFAULT_SUSPEND_STATE (3)
#endif
#define ACPI_APM_DEFAULT_CAP \
((ACPI_APM_DEFAULT_STANDBY_STATE!=0 ? APM_GLOBAL_STANDBY : 0) | \
(ACPI_APM_DEFAULT_SUSPEND_STATE!=0 ? APM_GLOBAL_SUSPEND : 0))
#define ACPI_APM_STATE_MIN (0)
#define ACPI_APM_STATE_MAX (4)
/* It is assumed that there is only acpiapm instance. */
static int resumed = 0, capability_changed = 0;
static int standby_state = ACPI_APM_DEFAULT_STANDBY_STATE;
static int suspend_state = ACPI_APM_DEFAULT_SUSPEND_STATE;
static int capabilities = ACPI_APM_DEFAULT_CAP;
static int acpiapm_node = CTL_EOL, standby_node = CTL_EOL;
struct acpi_softc;
extern void acpi_enter_sleep_state(int);
static int acpiapm_match(device_t, cfdata_t , void *);
static void acpiapm_attach(device_t, device_t, void *);
static int sysctl_state(SYSCTLFN_PROTO);
CFATTACH_DECL_NEW(acpiapm, sizeof(struct apm_softc),
acpiapm_match, acpiapm_attach, NULL, NULL);
static int
/*ARGSUSED*/
acpiapm_match(device_t parent, cfdata_t match, void *aux)
{
return apm_match();
}
static void
/*ARGSUSED*/
acpiapm_attach(device_t parent, device_t self, void *aux)
{
struct apm_softc *sc = device_private(self);
sc->sc_dev = self;
sc->sc_ops = &acpiapm_accessops;
sc->sc_cookie = parent;
sc->sc_vers = 0x0102;
sc->sc_detail = 0;
sc->sc_hwflags = APM_F_DONT_RUN_HOOKS;
apm_attach(sc);
}
static int
get_state_value(int id)
{
const int states[] = {
ACPI_STATE_S0,
ACPI_STATE_S1,
ACPI_STATE_S2,
ACPI_STATE_S3,
ACPI_STATE_S4
};
if (id < ACPI_APM_STATE_MIN || id > ACPI_APM_STATE_MAX)
return ACPI_STATE_S0;
return states[id];
}
static int
sysctl_state(SYSCTLFN_ARGS)
{
int newstate, error, *ref, cap, oldcap;
struct sysctlnode node;
if (rnode->sysctl_num == standby_node) {
ref = &standby_state;
cap = APM_GLOBAL_STANDBY;
} else {
ref = &suspend_state;
cap = APM_GLOBAL_SUSPEND;
}
newstate = *ref;
node = *rnode;
node.sysctl_data = &newstate;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (newstate < ACPI_APM_STATE_MIN || newstate > ACPI_APM_STATE_MAX)
return EINVAL;
*ref = newstate;
oldcap = capabilities;
capabilities = newstate != 0 ? oldcap | cap : oldcap & ~cap;
if ((capabilities ^ oldcap) != 0)
capability_changed = 1;
return 0;
}
SYSCTL_SETUP(sysctl_acpiapm_setup, "sysctl machdep.acpiapm subtree setup")
{
const struct sysctlnode *node;
if (sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL))
return;
if (sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "acpiapm", NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL))
return;
acpiapm_node = node->sysctl_num;
if (sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "standby", NULL,
&sysctl_state, 0, NULL, 0,
CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL))
return;
standby_node = node->sysctl_num;
if (sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_READWRITE,
CTLTYPE_INT, "suspend", NULL,
&sysctl_state, 0, NULL, 0,
CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL))
return;
}
/*****************************************************************************
* Minimalistic ACPI /dev/apm emulation support, for ACPI suspend
*****************************************************************************/
static void
/*ARGSUSED*/
acpiapm_disconnect(void *opaque)
{
return;
}
static void
/*ARGSUSED*/
acpiapm_enable(void *opaque, int onoff)
{
return;
}
static int
acpiapm_set_powstate(void *opaque, u_int devid, u_int powstat)
{
if (devid != APM_DEV_ALLDEVS)
return APM_ERR_UNRECOG_DEV;
switch (powstat) {
case APM_SYS_READY:
break;
case APM_SYS_STANDBY:
acpi_enter_sleep_state(get_state_value(standby_state));
resumed = 1;
break;
case APM_SYS_SUSPEND:
acpi_enter_sleep_state(get_state_value(suspend_state));
resumed = 1;
break;
case APM_SYS_OFF:
break;
case APM_LASTREQ_INPROG:
break;
case APM_LASTREQ_REJECTED:
break;
}
return 0;
}
struct apm_sensor_info {
struct apm_power_info *pinfo;
int present;
int lastcap, descap, cap, warncap, lowcap, discharge;
int lastcap_valid, cap_valid, discharge_valid;
};
static bool
apm_per_sensor(const struct sysmon_envsys *sme, const envsys_data_t *edata,
void *arg)
{
struct apm_sensor_info *info = (struct apm_sensor_info *)arg;
int data;
if (sme->sme_class != SME_CLASS_ACADAPTER &&
sme->sme_class != SME_CLASS_BATTERY)
return false;
if (edata->state == ENVSYS_SINVALID)
return true;
data = edata->value_cur;
DPRINTF(("%s (%s) %d\n", sme->sme_name, edata->desc, data));
if (strstr(edata->desc, "connected")) {
info->pinfo->ac_state = data ? APM_AC_ON : APM_AC_OFF;
}
else if (strstr(edata->desc, "present") && data != 0)
info->present++;
else if (strstr(edata->desc, "charging")) {
if (data)
info->pinfo->battery_flags |= APM_BATT_FLAG_CHARGING;
else
info->pinfo->battery_flags &= ~APM_BATT_FLAG_CHARGING;
}
else if (strstr(edata->desc, "last full cap")) {
info->lastcap += data / 1000;
info->lastcap_valid = 1;
}
else if (strstr(edata->desc, "design cap"))
info->descap = data / 1000;
else if (strstr(edata->desc, "charge") &&
strstr(edata->desc, "charge rate") == NULL &&
strstr(edata->desc, "charge state") == NULL) {
/* Update cumulative capacity */
info->cap += data / 1000;
/* get warning- & critical-capacity values */
info->warncap = edata->limits.sel_warnmin / 1000;
info->lowcap = edata->limits.sel_critmin / 1000;
info->cap_valid = 1;
info->pinfo->nbattery++;
}
else if (strstr(edata->desc, "discharge rate")) {
info->discharge += data / 1000;
info->discharge_valid = 1;
}
return true;
}
static int
/*ARGSUSED*/
acpiapm_get_powstat(void *opaque, u_int batteryid,
struct apm_power_info *pinfo)
{
#define APM_BATT_FLAG_WATERMARK_MASK (APM_BATT_FLAG_CRITICAL | \
APM_BATT_FLAG_LOW | \
APM_BATT_FLAG_HIGH)
struct apm_sensor_info info;
2010-04-12 10:56:19 +04:00
/* Denote most variables as uninitialized. */
info.lowcap = info.warncap = info.descap = -1;
/*
* Prepare to aggregate capacity, charge, and discharge over all
* batteries.
*/
info.cap = info.lastcap = info.discharge = 0;
info.cap_valid = info.lastcap_valid = info.discharge_valid = 0;
info.present = 0;
info.pinfo = pinfo;
(void)memset(pinfo, 0, sizeof(*pinfo));
pinfo->ac_state = APM_AC_UNKNOWN;
pinfo->minutes_valid = 0;
pinfo->minutes_left = 0;
pinfo->batteryid = 0;
pinfo->nbattery = 0; /* to be incremented as batteries are found */
pinfo->battery_flags = 0;
pinfo->battery_state = APM_BATT_UNKNOWN; /* ignored */
pinfo->battery_life = APM_BATT_LIFE_UNKNOWN;
sysmon_envsys_foreach_sensor(apm_per_sensor, (void *)&info, true);
if (info.present == 0)
pinfo->battery_flags |= APM_BATT_FLAG_NO_SYSTEM_BATTERY;
if (info.cap_valid > 0) {
if (info.warncap != -1 && info.cap < info.warncap)
pinfo->battery_flags |= APM_BATT_FLAG_CRITICAL;
else if (info.lowcap != -1) {
if (info.cap < info.lowcap)
pinfo->battery_flags |= APM_BATT_FLAG_LOW;
else
pinfo->battery_flags |= APM_BATT_FLAG_HIGH;
}
if (info.lastcap_valid > 0 && info.lastcap != 0)
pinfo->battery_life = 100 * info.cap / info.lastcap;
else if (info.descap != -1 && info.descap != 0)
pinfo->battery_life = 100 * info.cap / info.descap;
}
if ((pinfo->battery_flags & APM_BATT_FLAG_CHARGING) == 0) {
/* discharging */
if (info.discharge != -1 && info.discharge != 0 &&
info.cap != -1)
pinfo->minutes_left = 60 * info.cap / info.discharge;
}
if ((pinfo->battery_flags & APM_BATT_FLAG_WATERMARK_MASK) == 0 &&
(pinfo->battery_flags & APM_BATT_FLAG_NO_SYSTEM_BATTERY) == 0) {
if (pinfo->ac_state == APM_AC_ON)
pinfo->battery_flags |= APM_BATT_FLAG_HIGH;
else
pinfo->battery_flags |= APM_BATT_FLAG_LOW;
}
DPRINTF(("%d %d %d %d %d %d\n", info.cap, info.warncap, info.lowcap,
info.lastcap, info.descap, info.discharge));
DPRINTF(("pinfo %d %d %d\n", pinfo->battery_flags,
pinfo->battery_life, pinfo->battery_life));
return 0;
}
static int
/*ARGSUSED*/
acpiapm_get_event(void *opaque, u_int *event_type, u_int *event_info)
{
if (capability_changed) {
capability_changed = 0;
*event_type = APM_CAP_CHANGE;
*event_info = 0;
return 0;
}
if (resumed) {
resumed = 0;
*event_type = APM_NORMAL_RESUME;
*event_info = 0;
return 0;
}
return APM_ERR_NOEVENTS;
}
static void
/*ARGSUSED*/
acpiapm_cpu_busy(void *opaque)
{
return;
}
static void
/*ARGSUSED*/
acpiapm_cpu_idle(void *opaque)
{
return;
}
static void
/*ARGSUSED*/
acpiapm_get_capabilities(void *opaque, u_int *numbatts,
u_int *capflags)
{
*numbatts = 1;
*capflags = capabilities;
return;
}