NetBSD/sys/arch/hp300/dev/dma.c

585 lines
14 KiB
C
Raw Normal View History

/* $NetBSD: dma.c,v 1.11 1997/01/30 09:04:33 thorpej Exp $ */
1994-10-26 10:22:45 +03:00
/*
* Copyright (c) 1995, 1996, 1997
* Jason R. Thorpe. All rights reserved.
1994-05-23 09:58:16 +04:00
* Copyright (c) 1982, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-10-26 10:22:45 +03:00
* @(#)dma.c 8.1 (Berkeley) 6/10/93
*/
/*
* DMA driver
*/
1994-05-23 09:58:16 +04:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/device.h>
1994-05-23 09:58:16 +04:00
#include <machine/cpu.h>
1994-05-23 09:58:16 +04:00
#include <hp300/dev/dmareg.h>
#include <hp300/dev/dmavar.h>
#include <hp300/hp300/isr.h>
extern u_int kvtop();
extern void PCIA();
/*
* The largest single request will be MAXPHYS bytes which will require
* at most MAXPHYS/NBPG+1 chain elements to describe, i.e. if none of
* the buffer pages are physically contiguous (MAXPHYS/NBPG) and the
* buffer is not page aligned (+1).
*/
#define DMAMAXIO (MAXPHYS/NBPG+1)
struct dma_chain {
int dc_count;
char *dc_addr;
};
struct dma_channel {
struct dmaqueue *dm_job; /* current job */
struct dma_softc *dm_softc; /* pointer back to softc */
struct dmadevice *dm_hwaddr; /* registers if DMA_C */
struct dmaBdevice *dm_Bhwaddr; /* registers if not DMA_C */
char dm_flags; /* misc. flags */
u_short dm_cmd; /* DMA controller command */
int dm_cur; /* current segment */
int dm_last; /* last segment */
struct dma_chain dm_chain[DMAMAXIO]; /* all segments */
};
struct dma_softc {
char *sc_xname; /* XXX external name */
struct dmareg *sc_dmareg; /* pointer to our hardware */
struct dma_channel sc_chan[NDMACHAN]; /* 2 channels */
TAILQ_HEAD(, dmaqueue) sc_queue; /* job queue */
char sc_type; /* A, B, or C */
int sc_ipl; /* our interrupt level */
void *sc_ih; /* interrupt cookie */
} Dma_softc;
/* types */
#define DMA_B 0
#define DMA_C 1
/* flags */
#define DMAF_PCFLUSH 0x01
#define DMAF_VCFLUSH 0x02
#define DMAF_NOINTR 0x04
int dmaintr __P((void *));
#ifdef DEBUG
int dmadebug = 0;
#define DDB_WORD 0x01 /* same as DMAGO_WORD */
#define DDB_LWORD 0x02 /* same as DMAGO_LWORD */
#define DDB_FOLLOW 0x04
#define DDB_IO 0x08
void dmatimeout __P((void *));
int dmatimo[NDMACHAN];
long dmahits[NDMACHAN];
long dmamisses[NDMACHAN];
long dmabyte[NDMACHAN];
long dmaword[NDMACHAN];
long dmalword[NDMACHAN];
#endif
void
dmainit()
{
struct dma_softc *sc = &Dma_softc;
struct dmareg *dma;
struct dma_channel *dc;
int i;
char rev;
/* There's just one. */
sc->sc_dmareg = (struct dmareg *)DMA_BASE;
dma = sc->sc_dmareg;
sc->sc_xname = "dma0";
/*
* Determine the DMA type. A DMA_A or DMA_B will fail the
* following probe.
*
* XXX Don't know how to easily differentiate the A and B cards,
* so we just hope nobody has an A card (A cards will work if
* splbio works out to ipl 3).
*/
if (badbaddr((char *)&dma->dma_id[2])) {
rev = 'B';
#if !defined(HP320)
panic("dmainit: DMA card requires hp320 support");
#endif
} else
rev = dma->dma_id[2];
sc->sc_type = (rev == 'B') ? DMA_B : DMA_C;
TAILQ_INIT(&sc->sc_queue);
for (i = 0; i < NDMACHAN; i++) {
dc = &sc->sc_chan[i];
dc->dm_softc = sc;
dc->dm_job = NULL;
switch (i) {
case 0:
dc->dm_hwaddr = &dma->dma_chan0;
dc->dm_Bhwaddr = &dma->dma_Bchan0;
break;
case 1:
dc->dm_hwaddr = &dma->dma_chan1;
dc->dm_Bhwaddr = &dma->dma_Bchan1;
break;
default:
panic("dmainit: more than 2 channels?");
/* NOTREACHED */
}
}
#ifdef DEBUG
/* make sure timeout is really not needed */
timeout(dmatimeout, sc, 30 * hz);
#endif
1996-10-13 07:14:05 +04:00
printf("%s: 98620%c, 2 channels, %d bit\n", sc->sc_xname,
rev, (rev == 'B') ? 16 : 32);
/*
* Defer hooking up our interrupt until the first
* DMA-using controller has hooked up theirs.
*/
sc->sc_ih = NULL;
}
/*
* Compute the ipl and (re)establish the interrupt handler
* for the DMA controller.
*/
void
dmacomputeipl()
{
struct dma_softc *sc = &Dma_softc;
if (sc->sc_ih != NULL)
isrunlink(sc->sc_ih);
/*
* Our interrupt level must be as high as the highest
* device using DMA (i.e. splbio).
*/
sc->sc_ipl = PSLTOIPL(hp300_bioipl);
sc->sc_ih = isrlink(dmaintr, sc, sc->sc_ipl, ISRPRI_BIO);
}
int
dmareq(dq)
struct dmaqueue *dq;
{
struct dma_softc *sc = &Dma_softc;
int i, chan, s;
#if 1
s = splhigh(); /* XXXthorpej */
#else
s = splbio();
#endif
chan = dq->dq_chan;
for (i = NDMACHAN - 1; i >= 0; i--) {
/*
* Can we use this channel?
*/
if ((chan & (1 << i)) == 0)
continue;
/*
* We can use it; is it busy?
*/
if (sc->sc_chan[i].dm_job != NULL)
continue;
/*
* Not busy; give the caller this channel.
*/
sc->sc_chan[i].dm_job = dq;
dq->dq_chan = i;
splx(s);
return (1);
}
/*
* Couldn't get a channel now; put this in the queue.
*/
TAILQ_INSERT_TAIL(&sc->sc_queue, dq, dq_list);
splx(s);
return (0);
}
void
dmafree(dq)
struct dmaqueue *dq;
{
int unit = dq->dq_chan;
struct dma_softc *sc = &Dma_softc;
struct dma_channel *dc = &sc->sc_chan[unit];
struct dmaqueue *dn;
int chan, s;
#if 1
s = splhigh(); /* XXXthorpej */
#else
s = splbio();
#endif
#ifdef DEBUG
dmatimo[unit] = 0;
#endif
DMA_CLEAR(dc);
1994-05-23 09:58:16 +04:00
#if defined(HP360) || defined(HP370) || defined(HP380)
/*
* XXX we may not always go thru the flush code in dmastop()
*/
if (dc->dm_flags & DMAF_PCFLUSH) {
PCIA();
dc->dm_flags &= ~DMAF_PCFLUSH;
}
#endif
#if defined(HP320) || defined(HP350)
if (dc->dm_flags & DMAF_VCFLUSH) {
/*
* 320/350s have VACs that may also need flushing.
* In our case we only flush the supervisor side
* because we know that if we are DMAing to user
* space, the physical pages will also be mapped
* in kernel space (via vmapbuf) and hence cache-
* inhibited by the pmap module due to the multiple
* mapping.
*/
DCIS();
dc->dm_flags &= ~DMAF_VCFLUSH;
}
#endif
/*
* Channel is now free. Look for another job to run on this
* channel.
*/
dc->dm_job = NULL;
chan = 1 << unit;
for (dn = sc->sc_queue.tqh_first; dn != NULL;
dn = dn->dq_list.tqe_next) {
if (dn->dq_chan & chan) {
/* Found one... */
TAILQ_REMOVE(&sc->sc_queue, dn, dq_list);
dc->dm_job = dn;
dn->dq_chan = dq->dq_chan;
splx(s);
/* Start the initiator. */
(*dn->dq_start)(dn->dq_softc);
return;
}
}
splx(s);
}
void
dmago(unit, addr, count, flags)
int unit;
register char *addr;
register int count;
register int flags;
{
struct dma_softc *sc = &Dma_softc;
register struct dma_channel *dc = &sc->sc_chan[unit];
register char *dmaend = NULL;
register int seg, tcount;
if (count > MAXPHYS)
panic("dmago: count > MAXPHYS");
#if defined(HP320)
if (sc->sc_type == DMA_B && (flags & DMAGO_LWORD))
panic("dmago: no can do 32-bit DMA");
#endif
#ifdef DEBUG
if (dmadebug & DDB_FOLLOW)
1996-10-13 07:14:05 +04:00
printf("dmago(%d, %x, %x, %x)\n",
unit, addr, count, flags);
if (flags & DMAGO_LWORD)
dmalword[unit]++;
else if (flags & DMAGO_WORD)
dmaword[unit]++;
else
dmabyte[unit]++;
#endif
/*
* Build the DMA chain
*/
for (seg = 0; count > 0; seg++) {
dc->dm_chain[seg].dc_addr = (char *) kvtop(addr);
1994-05-23 09:58:16 +04:00
#if defined(HP380)
/*
* Push back dirty cache lines
*/
if (mmutype == MMU_68040)
DCFP(dc->dm_chain[seg].dc_addr);
1994-05-23 09:58:16 +04:00
#endif
if (count < (tcount = NBPG - ((int)addr & PGOFSET)))
tcount = count;
dc->dm_chain[seg].dc_count = tcount;
addr += tcount;
count -= tcount;
if (flags & DMAGO_LWORD)
tcount >>= 2;
else if (flags & DMAGO_WORD)
tcount >>= 1;
/*
* Try to compact the DMA transfer if the pages are adjacent.
* Note: this will never happen on the first iteration.
*/
if (dc->dm_chain[seg].dc_addr == dmaend
#if defined(HP320)
/* only 16-bit count on 98620B */
&& (sc->sc_type != DMA_B ||
dc->dm_chain[seg - 1].dc_count + tcount <= 65536)
#endif
) {
#ifdef DEBUG
dmahits[unit]++;
#endif
dmaend += dc->dm_chain[seg].dc_count;
dc->dm_chain[--seg].dc_count += tcount;
} else {
#ifdef DEBUG
dmamisses[unit]++;
#endif
dmaend = dc->dm_chain[seg].dc_addr +
dc->dm_chain[seg].dc_count;
dc->dm_chain[seg].dc_count = tcount;
}
}
dc->dm_cur = 0;
dc->dm_last = --seg;
dc->dm_flags = 0;
/*
* Set up the command word based on flags
*/
dc->dm_cmd = DMA_ENAB | DMA_IPL(sc->sc_ipl) | DMA_START;
if ((flags & DMAGO_READ) == 0)
dc->dm_cmd |= DMA_WRT;
if (flags & DMAGO_LWORD)
dc->dm_cmd |= DMA_LWORD;
else if (flags & DMAGO_WORD)
dc->dm_cmd |= DMA_WORD;
if (flags & DMAGO_PRI)
dc->dm_cmd |= DMA_PRI;
1994-05-23 09:58:16 +04:00
#if defined(HP380)
/*
* On the 68040 we need to flush (push) the data cache before a
* DMA (already done above) and flush again after DMA completes.
* In theory we should only need to flush prior to a write DMA
* and purge after a read DMA but if the entire page is not
* involved in the DMA we might purge some valid data.
*/
if (mmutype == MMU_68040 && (flags & DMAGO_READ))
dc->dm_flags |= DMAF_PCFLUSH;
1994-05-23 09:58:16 +04:00
#endif
#if defined(HP360) || defined(HP370)
/*
* Remember if we need to flush external physical cache when
* DMA is done. We only do this if we are reading (writing memory).
*/
if (ectype == EC_PHYS && (flags & DMAGO_READ))
dc->dm_flags |= DMAF_PCFLUSH;
#endif
#if defined(HP320) || defined(HP350)
if (ectype == EC_VIRT && (flags & DMAGO_READ))
dc->dm_flags |= DMAF_VCFLUSH;
#endif
/*
* Remember if we can skip the dma completion interrupt on
* the last segment in the chain.
*/
if (flags & DMAGO_NOINT) {
if (dc->dm_cur == dc->dm_last)
dc->dm_cmd &= ~DMA_ENAB;
else
dc->dm_flags |= DMAF_NOINTR;
}
#ifdef DEBUG
if (dmadebug & DDB_IO) {
if ((dmadebug&DDB_WORD) && (dc->dm_cmd&DMA_WORD) ||
(dmadebug&DDB_LWORD) && (dc->dm_cmd&DMA_LWORD)) {
1996-10-13 07:14:05 +04:00
printf("dmago: cmd %x, flags %x\n",
dc->dm_cmd, dc->dm_flags);
for (seg = 0; seg <= dc->dm_last; seg++)
printf(" %d: %d@%x\n", seg,
dc->dm_chain[seg].dc_count,
dc->dm_chain[seg].dc_addr);
}
}
dmatimo[unit] = 1;
#endif
DMA_ARM(dc);
}
void
dmastop(unit)
register int unit;
{
struct dma_softc *sc = &Dma_softc;
register struct dma_channel *dc = &sc->sc_chan[unit];
struct dmaqueue *dq;
#ifdef DEBUG
if (dmadebug & DDB_FOLLOW)
1996-10-13 07:14:05 +04:00
printf("dmastop(%d)\n", unit);
dmatimo[unit] = 0;
#endif
DMA_CLEAR(dc);
1994-05-23 09:58:16 +04:00
#if defined(HP360) || defined(HP370) || defined(HP380)
if (dc->dm_flags & DMAF_PCFLUSH) {
PCIA();
dc->dm_flags &= ~DMAF_PCFLUSH;
}
#endif
#if defined(HP320) || defined(HP350)
if (dc->dm_flags & DMAF_VCFLUSH) {
/*
* 320/350s have VACs that may also need flushing.
* In our case we only flush the supervisor side
* because we know that if we are DMAing to user
* space, the physical pages will also be mapped
* in kernel space (via vmapbuf) and hence cache-
* inhibited by the pmap module due to the multiple
* mapping.
*/
DCIS();
dc->dm_flags &= ~DMAF_VCFLUSH;
}
#endif
/*
* We may get this interrupt after a device service routine
* has freed the dma channel. So, ignore the intr if there's
* nothing on the queue.
*/
if (dc->dm_job != NULL)
(*dc->dm_job->dq_done)(dc->dm_job->dq_softc);
}
int
dmaintr(arg)
void *arg;
{
struct dma_softc *sc = arg;
register struct dma_channel *dc;
register int i, stat;
int found = 0;
#ifdef DEBUG
if (dmadebug & DDB_FOLLOW)
1996-10-13 07:14:05 +04:00
printf("dmaintr\n");
#endif
for (i = 0; i < NDMACHAN; i++) {
dc = &sc->sc_chan[i];
stat = DMA_STAT(dc);
if ((stat & DMA_INTR) == 0)
continue;
found++;
#ifdef DEBUG
if (dmadebug & DDB_IO) {
if ((dmadebug&DDB_WORD) && (dc->dm_cmd&DMA_WORD) ||
(dmadebug&DDB_LWORD) && (dc->dm_cmd&DMA_LWORD))
printf("dmaintr: flags %x unit %d stat %x next %d\n",
dc->dm_flags, i, stat, dc->dm_cur + 1);
}
if (stat & DMA_ARMED)
1996-10-13 07:14:05 +04:00
printf("%s, chan %d: intr when armed\n",
sc->sc_xname, i);
#endif
/*
* Load the next segemnt, or finish up if we're done.
*/
dc->dm_cur++;
if (dc->dm_cur <= dc->dm_last) {
#ifdef DEBUG
dmatimo[i] = 1;
#endif
/*
* If we're the last segment, disable the
* completion interrupt, if necessary.
*/
if (dc->dm_cur == dc->dm_last &&
(dc->dm_flags & DMAF_NOINTR))
dc->dm_cmd &= ~DMA_ENAB;
DMA_CLEAR(dc);
DMA_ARM(dc);
} else
dmastop(i);
}
return(found);
}
#ifdef DEBUG
void
dmatimeout(arg)
void *arg;
{
register int i, s;
struct dma_softc *sc = arg;
for (i = 0; i < NDMACHAN; i++) {
s = splbio();
if (dmatimo[i]) {
if (dmatimo[i] > 1)
printf("%s: chan %d timeout #%d\n",
sc->sc_xname, i, dmatimo[i]-1);
dmatimo[i]++;
}
splx(s);
}
timeout(dmatimeout, sc, 30 * hz);
}
#endif