NetBSD/sys/kern/subr_autoconf.c

2611 lines
61 KiB
C
Raw Normal View History

/* $NetBSD: subr_autoconf.c,v 1.148 2008/05/19 17:06:02 ad Exp $ */
/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
* All rights reserved.
2005-02-27 00:34:55 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
2003-11-17 13:07:58 +03:00
* NetBSD Project. See http://www.NetBSD.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
2005-02-27 00:34:55 +03:00
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2005-02-27 00:34:55 +03:00
*
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
*/
/*
1994-05-20 08:15:04 +04:00
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
1994-05-20 08:15:04 +04:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1994-05-20 08:15:04 +04:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
1994-05-20 08:15:04 +04:00
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1994-05-20 08:15:04 +04:00
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
*
1998-03-01 05:20:01 +03:00
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.148 2008/05/19 17:06:02 ad Exp $");
#include "opt_ddb.h"
1993-12-18 06:59:02 +03:00
#include <sys/param.h>
#include <sys/device.h>
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/kauth.h>
1993-12-18 06:59:02 +03:00
#include <sys/malloc.h>
1996-02-04 05:15:01 +03:00
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/kthread.h>
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
#include <sys/buf.h>
#include <sys/dirent.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/unistd.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
2007-12-09 23:27:42 +03:00
#include <sys/callout.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
#include <sys/disk.h>
#include <machine/limits.h>
#include "opt_userconf.h"
#ifdef USERCONF
#include <sys/userconf.h>
#endif
#ifdef __i386__
#include "opt_splash.h"
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
#include <dev/splash/splash.h>
extern struct splash_progress *splash_progress_state;
#endif
#endif
/*
* Autoconfiguration subroutines.
*/
typedef struct pmf_private {
int pp_nwait;
int pp_nlock;
lwp_t *pp_holder;
kmutex_t pp_mtx;
kcondvar_t pp_cv;
} pmf_private_t;
/*
* ioconf.c exports exactly two names: cfdata and cfroots. All system
* devices and drivers are found via these tables.
*/
extern struct cfdata cfdata[];
2003-03-16 11:09:58 +03:00
extern const short cfroots[];
/*
* List of all cfdriver structures. We use this to detect duplicates
* when other cfdrivers are loaded.
*/
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];
/*
* Initial list of cfattach's.
*/
extern const struct cfattachinit cfattachinit[];
/*
* List of cfdata tables. We always have one such list -- the one
* built statically when the kernel was configured.
*/
struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
static struct cftable initcftable;
2005-12-20 07:39:36 +03:00
#define ROOT ((device_t)NULL)
struct matchinfo {
2005-08-26 18:20:40 +04:00
cfsubmatch_t fn;
struct device *parent;
2005-08-26 18:20:40 +04:00
const int *locs;
void *aux;
struct cfdata *match;
int pri;
};
static char *number(char *, int);
2005-12-20 07:39:36 +03:00
static void mapply(struct matchinfo *, cfdata_t);
static device_t config_devalloc(const device_t, const cfdata_t, const int *);
static void config_devdealloc(device_t);
static void config_makeroom(int, struct cfdriver *);
static void config_devlink(device_t);
static void config_devunlink(device_t);
1996-02-04 05:15:01 +03:00
static void pmflock_debug(device_t, const char *, int);
static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
static device_t deviter_next1(deviter_t *);
static void deviter_reinit(deviter_t *);
struct deferred_config {
TAILQ_ENTRY(deferred_config) dc_queue;
2005-12-20 07:39:36 +03:00
device_t dc_dev;
void (*dc_func)(device_t);
};
TAILQ_HEAD(deferred_config_head, deferred_config);
struct deferred_config_head deferred_config_queue =
TAILQ_HEAD_INITIALIZER(deferred_config_queue);
struct deferred_config_head interrupt_config_queue =
TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
int interrupt_config_threads = 8;
2005-12-20 07:39:36 +03:00
static void config_process_deferred(struct deferred_config_head *, device_t);
/* Hooks to finalize configuration once all real devices have been found. */
struct finalize_hook {
TAILQ_ENTRY(finalize_hook) f_list;
2005-12-20 07:39:36 +03:00
int (*f_func)(device_t);
device_t f_dev;
};
static TAILQ_HEAD(, finalize_hook) config_finalize_list =
TAILQ_HEAD_INITIALIZER(config_finalize_list);
static int config_finalize_done;
/* list of all devices */
struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
kcondvar_t alldevs_cv;
kmutex_t alldevs_mtx;
static int alldevs_nread = 0;
static int alldevs_nwrite = 0;
static lwp_t *alldevs_writer = NULL;
volatile int config_pending; /* semaphore for mountroot */
#define STREQ(s1, s2) \
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
static int config_initialized; /* config_init() has been called. */
static int config_do_twiddle;
MALLOC_DEFINE(M_PMFPRIV, "pmfpriv", "device pmf private storage");
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
struct vnode *
opendisk(struct device *dv)
{
int bmajor, bminor;
struct vnode *tmpvn;
int error;
dev_t dev;
/*
* Lookup major number for disk block device.
*/
bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
if (bmajor == -1)
return NULL;
bminor = minor(device_unit(dv));
/*
* Fake a temporary vnode for the disk, open it, and read
* and hash the sectors.
*/
dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
MAKEDISKDEV(bmajor, bminor, RAW_PART);
if (bdevvp(dev, &tmpvn))
panic("%s: can't alloc vnode for %s", __func__,
device_xname(dv));
error = VOP_OPEN(tmpvn, FREAD, NOCRED);
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
if (error) {
#ifndef DEBUG
/*
* Ignore errors caused by missing device, partition,
* or medium.
*/
if (error != ENXIO && error != ENODEV)
#endif
printf("%s: can't open dev %s (%d)\n",
__func__, device_xname(dv), error);
vput(tmpvn);
return NULL;
}
return tmpvn;
}
int
config_handle_wedges(struct device *dv, int par)
{
struct dkwedge_list wl;
struct dkwedge_info *wi;
struct vnode *vn;
char diskname[16];
int i, error;
if ((vn = opendisk(dv)) == NULL)
return -1;
wl.dkwl_bufsize = sizeof(*wi) * 16;
wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
VOP_CLOSE(vn, FREAD, NOCRED);
Extract common code from i386, xen, and sparc64, creating config_handle_wedges() and read_disk_sectors(). On x86, handle_wedges() is a thin wrapper for config_handle_wedges(). Share opendisk() across architectures. Add kernel code in support of specifying a root partition by wedge name. E.g., root specifications "wedge:wd0a", "wedge:David's Root Volume" are possible. (Patches for config(1) coming soon.) In support of moving disks between architectures (esp. i386 <-> evbmips), I've written a routine convertdisklabel() that ensures that the raw partition is at RAW_DISK by following these steps: 0 If we have read a disklabel that has a RAW_PART with p_offset == 0 and p_size != 0, then use that raw partition. 1 If we have read a disklabel that has both partitions 'c' and 'd', and RAW_PART has p_offset != 0 or p_size == 0, but the other partition is suitable for a raw partition (p_offset == 0, p_size != 0), then swap the two partitions and use the new raw partition. 2 If the architecture's raw partition is 'd', and if there is no partition 'd', but there is a partition 'c' that is suitable for a raw partition, then copy partition 'c' to partition 'd'. 3 Determine the drive's last sector, using either the d_secperunit the drive reported, or by guessing (0x1fffffff). If we cannot read the drive's last sector, then fail. 4 If we have read a disklabel that has no partition slot RAW_PART, then create a partition RAW_PART. Make it span the whole drive. 5 If there are fewer than MAXPARTITIONS partitions, then "slide" the unsuitable raw partition RAW_PART, and subsequent partitions, into partition slots RAW_PART+1 and subsequent slots. Create a raw partition at RAW_PART. Make it span the whole drive. The convertdisklabel() procedure can probably stand to be simplified, but it ought to deal with all but an extraordinarily broken disklabel, now. i386: compiled and tested, sparc64: compiled, evbmips: compiled.
2007-06-24 05:43:34 +04:00
vput(vn);
if (error) {
#ifdef DEBUG_WEDGE
printf("%s: List wedges returned %d\n",
device_xname(dv), error);
#endif
free(wi, M_TEMP);
return -1;
}
#ifdef DEBUG_WEDGE
printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
wl.dkwl_nwedges, wl.dkwl_ncopied);
#endif
snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
par + 'a');
for (i = 0; i < wl.dkwl_ncopied; i++) {
#ifdef DEBUG_WEDGE
printf("%s: Looking for %s in %s\n",
device_xname(dv), diskname, wi[i].dkw_wname);
#endif
if (strcmp(wi[i].dkw_wname, diskname) == 0)
break;
}
if (i == wl.dkwl_ncopied) {
#ifdef DEBUG_WEDGE
printf("%s: Cannot find wedge with parent %s\n",
device_xname(dv), diskname);
#endif
free(wi, M_TEMP);
return -1;
}
#ifdef DEBUG_WEDGE
printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
(unsigned long long)wi[i].dkw_offset,
(unsigned long long)wi[i].dkw_size);
#endif
dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
free(wi, M_TEMP);
return 0;
}
/*
* Initialize the autoconfiguration data structures. Normally this
* is done by configure(), but some platforms need to do this very
* early (to e.g. initialize the console).
*/
void
config_init(void)
{
const struct cfattachinit *cfai;
int i, j;
if (config_initialized)
return;
mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&alldevs_cv, "alldevs");
/* allcfdrivers is statically initialized. */
for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
panic("configure: duplicate `%s' drivers",
cfdriver_list_initial[i]->cd_name);
}
for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
if (config_cfattach_attach(cfai->cfai_name,
cfai->cfai_list[j]) != 0)
panic("configure: duplicate `%s' attachment "
"of `%s' driver",
cfai->cfai_list[j]->ca_name,
cfai->cfai_name);
}
}
initcftable.ct_cfdata = cfdata;
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
config_initialized = 1;
}
void
config_deferred(device_t dev)
{
config_process_deferred(&deferred_config_queue, dev);
config_process_deferred(&interrupt_config_queue, dev);
}
static void
config_interrupts_thread(void *cookie)
{
struct deferred_config *dc;
while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
free(dc, M_DEVBUF);
config_pending_decr();
}
kthread_exit(0);
}
/*
* Configure the system's hardware.
*/
void
configure(void)
{
extern void ssp_init(void);
int i, s;
/* Initialize data structures. */
config_init();
2007-12-09 23:27:42 +03:00
pmf_init();
#ifdef USERCONF
if (boothowto & RB_USERCONF)
user_config();
#endif
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
config_do_twiddle = 1;
printf_nolog("Detecting hardware...");
}
/*
* Do the machine-dependent portion of autoconfiguration. This
* sets the configuration machinery here in motion by "finding"
* the root bus. When this function returns, we expect interrupts
* to be enabled.
*/
cpu_configure();
/* Initialize SSP. */
ssp_init();
/*
* Now that we've found all the hardware, start the real time
* and statistics clocks.
*/
initclocks();
cold = 0; /* clocks are running, we're warm now! */
s = splsched();
curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
splx(s);
/* Boot the secondary processors. */
2008-01-14 15:40:02 +03:00
mp_online = true;
#if defined(MULTIPROCESSOR)
cpu_boot_secondary_processors();
#endif
/* Setup the runqueues and scheduler. */
runq_init();
sched_init();
/*
* Create threads to call back and finish configuration for
* devices that want interrupts enabled.
*/
for (i = 0; i < interrupt_config_threads; i++) {
(void)kthread_create(PRI_NONE, 0, NULL,
config_interrupts_thread, NULL, NULL, "config");
}
/* Get the threads going and into any sleeps before continuing. */
yield();
/* Lock the kernel on behalf of lwp0. */
KERNEL_LOCK(1, NULL);
}
/*
* Add a cfdriver to the system.
*/
int
config_cfdriver_attach(struct cfdriver *cd)
{
struct cfdriver *lcd;
/* Make sure this driver isn't already in the system. */
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
if (STREQ(lcd->cd_name, cd->cd_name))
return (EEXIST);
}
LIST_INIT(&cd->cd_attach);
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
return (0);
}
/*
* Remove a cfdriver from the system.
*/
int
config_cfdriver_detach(struct cfdriver *cd)
{
int i;
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL)
return (EBUSY);
}
/* ...and no attachments loaded. */
if (LIST_EMPTY(&cd->cd_attach) == 0)
return (EBUSY);
LIST_REMOVE(cd, cd_list);
KASSERT(cd->cd_devs == NULL);
return (0);
}
/*
* Look up a cfdriver by name.
*/
struct cfdriver *
config_cfdriver_lookup(const char *name)
{
struct cfdriver *cd;
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
if (STREQ(cd->cd_name, name))
return (cd);
}
return (NULL);
}
/*
* Add a cfattach to the specified driver.
*/
int
config_cfattach_attach(const char *driver, struct cfattach *ca)
{
struct cfattach *lca;
struct cfdriver *cd;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure this attachment isn't already on this driver. */
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
if (STREQ(lca->ca_name, ca->ca_name))
return (EEXIST);
}
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
return (0);
}
/*
* Remove a cfattach from the specified driver.
*/
int
config_cfattach_detach(const char *driver, struct cfattach *ca)
{
struct cfdriver *cd;
2005-12-20 07:39:36 +03:00
device_t dev;
int i;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return (ESRCH);
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if ((dev = cd->cd_devs[i]) == NULL)
continue;
if (dev->dv_cfattach == ca)
return (EBUSY);
}
LIST_REMOVE(ca, ca_list);
return (0);
}
/*
* Look up a cfattach by name.
*/
static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
{
struct cfattach *ca;
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
if (STREQ(ca->ca_name, atname))
return (ca);
}
return (NULL);
}
/*
* Look up a cfattach by driver/attachment name.
*/
struct cfattach *
config_cfattach_lookup(const char *name, const char *atname)
{
struct cfdriver *cd;
cd = config_cfdriver_lookup(name);
if (cd == NULL)
return (NULL);
return (config_cfattach_lookup_cd(cd, atname));
}
/*
* Apply the matching function and choose the best. This is used
* a few times and we want to keep the code small.
*/
static void
2005-12-20 07:39:36 +03:00
mapply(struct matchinfo *m, cfdata_t cf)
{
int pri;
2005-08-26 18:20:40 +04:00
if (m->fn != NULL) {
pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
} else {
pri = config_match(m->parent, cf, m->aux);
}
if (pri > m->pri) {
m->match = cf;
m->pri = pri;
}
}
int
2005-12-20 07:39:36 +03:00
config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
const struct cfiattrdata *ci;
const struct cflocdesc *cl;
int nlocs, i;
ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
KASSERT(ci);
nlocs = ci->ci_loclen;
for (i = 0; i < nlocs; i++) {
cl = &ci->ci_locdesc[i];
/* !cld_defaultstr means no default value */
if ((!(cl->cld_defaultstr)
|| (cf->cf_loc[i] != cl->cld_default))
&& cf->cf_loc[i] != locs[i])
return (0);
}
return (config_match(parent, cf, aux));
}
/*
* Helper function: check whether the driver supports the interface attribute
* and return its descriptor structure.
*/
static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
{
const struct cfiattrdata * const *cpp;
if (cd->cd_attrs == NULL)
return (0);
for (cpp = cd->cd_attrs; *cpp; cpp++) {
if (STREQ((*cpp)->ci_name, ia)) {
/* Match. */
return (*cpp);
}
}
return (0);
}
/*
* Lookup an interface attribute description by name.
* If the driver is given, consider only its supported attributes.
*/
const struct cfiattrdata *
cfiattr_lookup(const char *name, const struct cfdriver *cd)
{
const struct cfdriver *d;
const struct cfiattrdata *ia;
if (cd)
return (cfdriver_get_iattr(cd, name));
LIST_FOREACH(d, &allcfdrivers, cd_list) {
ia = cfdriver_get_iattr(d, name);
if (ia)
return (ia);
}
return (0);
}
/*
* Determine if `parent' is a potential parent for a device spec based
* on `cfp'.
*/
static int
2005-12-20 07:39:36 +03:00
cfparent_match(const device_t parent, const struct cfparent *cfp)
{
struct cfdriver *pcd;
/* We don't match root nodes here. */
if (cfp == NULL)
return (0);
pcd = parent->dv_cfdriver;
KASSERT(pcd != NULL);
/*
* First, ensure this parent has the correct interface
* attribute.
*/
if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
return (0);
/*
* If no specific parent device instance was specified (i.e.
* we're attaching to the attribute only), we're done!
*/
if (cfp->cfp_parent == NULL)
return (1);
/*
* Check the parent device's name.
*/
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
return (0); /* not the same parent */
/*
* Make sure the unit number matches.
*/
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
cfp->cfp_unit == parent->dv_unit)
return (1);
/* Unit numbers don't match. */
return (0);
}
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
/*
* Helper for config_cfdata_attach(): check all devices whether it could be
* parent any attachment in the config data table passed, and rescan.
*/
static void
rescan_with_cfdata(const struct cfdata *cf)
{
2005-12-20 07:39:36 +03:00
device_t d;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
const struct cfdata *cf1;
deviter_t di;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
/*
* "alldevs" is likely longer than an LKM's cfdata, so make it
* the outer loop.
*/
for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
if (!(d->dv_cfattach->ca_rescan))
continue;
for (cf1 = cf; cf1->cf_name; cf1++) {
if (!cfparent_match(d, cf1->cf_pspec))
continue;
(*d->dv_cfattach->ca_rescan)(d,
cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
}
}
deviter_release(&di);
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
}
/*
* Attach a supplemental config data table and rescan potential
* parent devices if required.
*/
int
2005-12-20 07:39:36 +03:00
config_cfdata_attach(cfdata_t cf, int scannow)
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
{
struct cftable *ct;
ct = malloc(sizeof(struct cftable), M_DEVBUF, M_WAITOK);
ct->ct_cfdata = cf;
TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
if (scannow)
rescan_with_cfdata(cf);
return (0);
}
/*
* Helper for config_cfdata_detach: check whether a device is
* found through any attachment in the config data table.
*/
static int
dev_in_cfdata(const struct device *d, const struct cfdata *cf)
{
const struct cfdata *cf1;
for (cf1 = cf; cf1->cf_name; cf1++)
if (d->dv_cfdata == cf1)
return (1);
return (0);
}
/*
* Detach a supplemental config data table. Detach all devices found
* through that table (and thus keeping references to it) before.
*/
int
2005-12-20 07:39:36 +03:00
config_cfdata_detach(cfdata_t cf)
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
{
2005-12-20 07:39:36 +03:00
device_t d;
int error = 0;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
struct cftable *ct;
deviter_t di;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
d = deviter_next(&di)) {
if (!dev_in_cfdata(d, cf))
continue;
if ((error = config_detach(d, 0)) != 0)
break;
}
deviter_release(&di);
if (error) {
aprint_error_dev(d, "unable to detach instance\n");
return error;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
}
TAILQ_FOREACH(ct, &allcftables, ct_list) {
if (ct->ct_cfdata == cf) {
TAILQ_REMOVE(&allcftables, ct, ct_list);
free(ct, M_DEVBUF);
return (0);
}
}
/* not found -- shouldn't happen */
return (EINVAL);
}
/*
* Invoke the "match" routine for a cfdata entry on behalf of
* an external caller, usually a "submatch" routine.
*/
int
2005-12-20 07:39:36 +03:00
config_match(device_t parent, cfdata_t cf, void *aux)
{
struct cfattach *ca;
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
if (ca == NULL) {
/* No attachment for this entry, oh well. */
return (0);
}
return ((*ca->ca_match)(parent, cf, aux));
}
/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match. Return the `found child' if we got a match, or NULL
* otherwise. The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
2005-12-20 07:39:36 +03:00
cfdata_t
config_search_loc(cfsubmatch_t fn, device_t parent,
2005-08-26 18:20:40 +04:00
const char *ifattr, const int *locs, void *aux)
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
{
struct cftable *ct;
2005-12-20 07:39:36 +03:00
cfdata_t cf;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
struct matchinfo m;
KASSERT(config_initialized);
KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
2005-08-26 18:20:40 +04:00
m.fn = fn;
m.parent = parent;
2005-08-26 18:20:40 +04:00
m.locs = locs;
m.aux = aux;
m.match = NULL;
m.pri = 0;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
/* We don't match root nodes here. */
if (!cf->cf_pspec)
continue;
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent', and
* try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
/*
* If an interface attribute was specified,
* consider only children which attach to
* that attribute.
*/
if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
continue;
if (cfparent_match(parent, cf->cf_pspec))
mapply(&m, cf);
}
}
return (m.match);
}
2005-12-20 07:39:36 +03:00
cfdata_t
config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
void *aux)
{
return (config_search_loc(fn, parent, ifattr, NULL, aux));
}
/*
* Find the given root device.
* This is much like config_search, but there is no parent.
* Don't bother with multiple cfdata tables; the root node
* must always be in the initial table.
*/
2005-12-20 07:39:36 +03:00
cfdata_t
config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
{
2005-12-20 07:39:36 +03:00
cfdata_t cf;
2003-03-16 11:09:58 +03:00
const short *p;
struct matchinfo m;
2005-08-26 18:20:40 +04:00
m.fn = fn;
m.parent = ROOT;
m.aux = aux;
m.match = NULL;
m.pri = 0;
m.locs = 0;
/*
* Look at root entries for matching name. We do not bother
* with found-state here since only one root should ever be
* searched (and it must be done first).
*/
for (p = cfroots; *p >= 0; p++) {
cf = &cfdata[*p];
if (strcmp(cf->cf_name, rootname) == 0)
mapply(&m, cf);
}
return (m.match);
}
2003-02-09 12:14:58 +03:00
static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured. Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return true. If the device was
* not configured, call the given `print' function and return 0.
*/
2005-12-20 07:39:36 +03:00
device_t
config_found_sm_loc(device_t parent,
2005-08-26 18:20:40 +04:00
const char *ifattr, const int *locs, void *aux,
cfprint_t print, cfsubmatch_t submatch)
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
{
2005-12-20 07:39:36 +03:00
cfdata_t cf;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
2005-08-26 18:20:40 +04:00
if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
return(config_attach_loc(parent, cf, locs, aux, print));
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
if (print) {
if (config_do_twiddle)
twiddle();
aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
}
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
return (NULL);
}
2005-12-20 07:39:36 +03:00
device_t
config_found_ia(device_t parent, const char *ifattr, void *aux,
cfprint_t print)
{
return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
}
device_t
config_found(device_t parent, void *aux, cfprint_t print)
{
return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
}
/*
* As above, but for root devices.
*/
2005-12-20 07:39:36 +03:00
device_t
config_rootfound(const char *rootname, void *aux)
{
2005-12-20 07:39:36 +03:00
cfdata_t cf;
if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
aprint_error("root device %s not configured\n", rootname);
return (NULL);
}
/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{
*--ep = 0;
while (n >= 10) {
*--ep = (n % 10) + '0';
n /= 10;
}
*--ep = n + '0';
return (ep);
}
/*
* Expand the size of the cd_devs array if necessary.
*/
static void
config_makeroom(int n, struct cfdriver *cd)
{
int old, new;
void **nsp;
if (n < cd->cd_ndevs)
return;
/*
* Need to expand the array.
*/
old = cd->cd_ndevs;
2001-12-10 03:33:04 +03:00
if (old == 0)
new = 4;
else
new = old * 2;
while (new <= n)
new *= 2;
cd->cd_ndevs = new;
nsp = malloc(new * sizeof(void *), M_DEVBUF,
2005-02-27 00:34:55 +03:00
cold ? M_NOWAIT : M_WAITOK);
2001-12-05 19:12:42 +03:00
if (nsp == NULL)
panic("config_attach: %sing dev array",
old != 0 ? "expand" : "creat");
memset(nsp + old, 0, (new - old) * sizeof(void *));
2001-12-10 03:33:04 +03:00
if (old != 0) {
memcpy(nsp, cd->cd_devs, old * sizeof(void *));
free(cd->cd_devs, M_DEVBUF);
}
cd->cd_devs = nsp;
}
static void
config_devlink(device_t dev)
{
struct cfdriver *cd = dev->dv_cfdriver;
/* put this device in the devices array */
config_makeroom(dev->dv_unit, cd);
if (cd->cd_devs[dev->dv_unit])
panic("config_attach: duplicate %s", device_xname(dev));
cd->cd_devs[dev->dv_unit] = dev;
/* It is safe to add a device to the tail of the list while
* readers are in the list, but not while a writer is in
* the list. Wait for any writer to complete.
*/
mutex_enter(&alldevs_mtx);
while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
cv_wait(&alldevs_cv, &alldevs_mtx);
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
cv_signal(&alldevs_cv);
mutex_exit(&alldevs_mtx);
}
static void
config_devunlink(device_t dev)
{
struct cfdriver *cd = dev->dv_cfdriver;
int i;
/* Unlink from device list. */
TAILQ_REMOVE(&alldevs, dev, dv_list);
/* Remove from cfdriver's array. */
cd->cd_devs[dev->dv_unit] = NULL;
/*
* If the device now has no units in use, deallocate its softc array.
*/
for (i = 0; i < cd->cd_ndevs; i++)
if (cd->cd_devs[i] != NULL)
break;
if (i == cd->cd_ndevs) { /* nothing found; deallocate */
free(cd->cd_devs, M_DEVBUF);
cd->cd_devs = NULL;
cd->cd_ndevs = 0;
}
}
static device_t
config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
{
struct cfdriver *cd;
struct cfattach *ca;
size_t lname, lunit;
const char *xunit;
int myunit;
char num[10];
device_t dev;
void *dev_private;
const struct cfiattrdata *ia;
cd = config_cfdriver_lookup(cf->cf_name);
if (cd == NULL)
return (NULL);
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
if (ca == NULL)
return (NULL);
if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
ca->ca_devsize < sizeof(struct device))
panic("config_devalloc: %s", cf->cf_atname);
#ifndef __BROKEN_CONFIG_UNIT_USAGE
if (cf->cf_fstate == FSTATE_STAR) {
for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
if (cd->cd_devs[myunit] == NULL)
break;
/*
* myunit is now the unit of the first NULL device pointer,
* or max(cd->cd_ndevs,cf->cf_unit).
*/
} else {
myunit = cf->cf_unit;
if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
return (NULL);
}
#else
myunit = cf->cf_unit;
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof(num)], myunit);
lunit = &num[sizeof(num)] - xunit;
if (lname + lunit > sizeof(dev->dv_xname))
panic("config_devalloc: device name too long");
/* get memory for all device vars */
KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
if (ca->ca_devsize > 0) {
dev_private = malloc(ca->ca_devsize, M_DEVBUF,
M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
if (dev_private == NULL)
panic("config_devalloc: memory allocation for device softc failed");
} else {
KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
dev_private = NULL;
}
if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
dev = malloc(sizeof(struct device), M_DEVBUF,
M_ZERO | (cold ? M_NOWAIT : M_WAITOK));
} else {
dev = dev_private;
}
if (dev == NULL)
panic("config_devalloc: memory allocation for device_t failed");
2007-12-09 23:27:42 +03:00
dev->dv_class = cd->cd_class;
dev->dv_cfdata = cf;
dev->dv_cfdriver = cd;
dev->dv_cfattach = ca;
dev->dv_unit = myunit;
2007-12-09 23:27:42 +03:00
dev->dv_activity_count = 0;
dev->dv_activity_handlers = NULL;
dev->dv_private = dev_private;
memcpy(dev->dv_xname, cd->cd_name, lname);
memcpy(dev->dv_xname + lname, xunit, lunit);
dev->dv_parent = parent;
2007-12-09 23:27:42 +03:00
if (parent != NULL)
dev->dv_depth = parent->dv_depth + 1;
else
dev->dv_depth = 0;
dev->dv_flags = DVF_ACTIVE; /* always initially active */
dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
if (locs) {
KASSERT(parent); /* no locators at root */
ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
parent->dv_cfdriver);
dev->dv_locators = malloc(ia->ci_loclen * sizeof(int),
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
memcpy(dev->dv_locators, locs, ia->ci_loclen * sizeof(int));
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
}
dev->dv_properties = prop_dictionary_create();
KASSERT(dev->dv_properties != NULL);
return (dev);
}
static void
config_devdealloc(device_t dev)
{
KASSERT(dev->dv_properties != NULL);
prop_object_release(dev->dv_properties);
2007-12-09 23:27:42 +03:00
if (dev->dv_activity_handlers)
panic("config_devdealloc with registered handlers");
if (dev->dv_locators)
free(dev->dv_locators, M_DEVBUF);
if ((dev->dv_flags & DVF_PRIV_ALLOC) != 0 && dev->dv_private != NULL)
free(dev->dv_private, M_DEVBUF);
free(dev, M_DEVBUF);
}
/*
* Attach a found device.
*/
device_t
config_attach_loc(device_t parent, cfdata_t cf,
const int *locs, void *aux, cfprint_t print)
{
device_t dev;
struct cftable *ct;
const char *drvname;
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
dev = config_devalloc(parent, cf, locs);
if (!dev)
panic("config_attach: allocation of device softc failed");
/* XXX redundant - see below? */
if (cf->cf_fstate != FSTATE_STAR) {
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
#ifdef __BROKEN_CONFIG_UNIT_USAGE
else
cf->cf_unit++;
#endif
config_devlink(dev);
if (config_do_twiddle)
twiddle();
else
aprint_naive("Found ");
/*
* We want the next two printfs for normal, verbose, and quiet,
* but not silent (in which case, we're twiddling, instead).
*/
if (parent == ROOT) {
aprint_naive("%s (root)", device_xname(dev));
aprint_normal("%s (root)", device_xname(dev));
} else {
aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
if (print)
(void) (*print)(aux, NULL);
}
/*
* Before attaching, clobber any unfound devices that are
* otherwise identical.
* XXX code above is redundant?
*/
drvname = dev->dv_cfdriver->cd_name;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, drvname) &&
cf->cf_unit == dev->dv_unit) {
if (cf->cf_fstate == FSTATE_NOTFOUND)
cf->cf_fstate = FSTATE_FOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Bump the unit number on all starred cfdata
* entries for this device.
*/
if (cf->cf_fstate == FSTATE_STAR)
cf->cf_unit++;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, aux);
#endif
2007-12-09 23:27:42 +03:00
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
if (splash_progress_state)
splash_progress_update(splash_progress_state);
#endif
2007-12-09 23:27:42 +03:00
if (!device_pmf_is_registered(dev))
aprint_debug_dev(dev, "WARNING: power management not supported\n");
2007-12-09 23:27:42 +03:00
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
2005-12-20 07:39:36 +03:00
device_t
config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
{
return (config_attach_loc(parent, cf, NULL, aux, print));
}
/*
* As above, but for pseudo-devices. Pseudo-devices attached in this
* way are silently inserted into the device tree, and their children
* attached.
*
* Note that because pseudo-devices are attached silently, any information
* the attach routine wishes to print should be prefixed with the device
* name by the attach routine.
*/
2005-12-20 07:39:36 +03:00
device_t
config_attach_pseudo(cfdata_t cf)
{
2005-12-20 07:39:36 +03:00
device_t dev;
dev = config_devalloc(ROOT, cf, NULL);
if (!dev)
return (NULL);
/* XXX mark busy in cfdata */
config_devlink(dev);
#if 0 /* XXXJRT not yet */
#ifdef __HAVE_DEVICE_REGISTER
device_register(dev, NULL); /* like a root node */
#endif
#endif
(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
config_process_deferred(&deferred_config_queue, dev);
return (dev);
}
/*
* Detach a device. Optionally forced (e.g. because of hardware
* removal) and quiet. Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*/
int
2005-12-20 07:39:36 +03:00
config_detach(device_t dev, int flags)
{
struct cftable *ct;
2005-12-20 07:39:36 +03:00
cfdata_t cf;
2002-09-28 00:41:46 +04:00
const struct cfattach *ca;
struct cfdriver *cd;
#ifdef DIAGNOSTIC
2005-12-20 07:39:36 +03:00
device_t d;
#endif
int rv = 0;
#ifdef DIAGNOSTIC
if (dev->dv_cfdata != NULL &&
dev->dv_cfdata->cf_fstate != FSTATE_FOUND &&
dev->dv_cfdata->cf_fstate != FSTATE_STAR)
panic("config_detach: bad device fstate");
#endif
cd = dev->dv_cfdriver;
KASSERT(cd != NULL);
ca = dev->dv_cfattach;
KASSERT(ca != NULL);
KASSERT(curlwp != NULL);
mutex_enter(&alldevs_mtx);
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
;
else while (alldevs_nread != 0 ||
(alldevs_nwrite != 0 && alldevs_writer != curlwp))
cv_wait(&alldevs_cv, &alldevs_mtx);
if (alldevs_nwrite++ == 0)
alldevs_writer = curlwp;
mutex_exit(&alldevs_mtx);
/*
* Ensure the device is deactivated. If the device doesn't
* have an activation entry point, we allow DVF_ACTIVE to
* remain set. Otherwise, if DVF_ACTIVE is still set, the
* device is busy, and the detach fails.
*/
if (ca->ca_activate != NULL)
rv = config_deactivate(dev);
/*
* Try to detach the device. If that's not possible, then
* we either panic() (for the forced but failed case), or
* return an error.
*/
if (rv == 0) {
if (ca->ca_detach != NULL)
rv = (*ca->ca_detach)(dev, flags);
else
rv = EOPNOTSUPP;
}
if (rv != 0) {
if ((flags & DETACH_FORCE) == 0)
goto out;
else
panic("config_detach: forced detach of %s failed (%d)",
device_xname(dev), rv);
}
/*
* The device has now been successfully detached.
*/
#ifdef DIAGNOSTIC
/*
* Sanity: If you're successfully detached, you should have no
* children. (Note that because children must be attached
* after parents, we only need to search the latter part of
* the list.)
*/
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
d = TAILQ_NEXT(d, dv_list)) {
if (d->dv_parent == dev) {
printf("config_detach: detached device %s"
" has children %s\n", device_xname(dev), device_xname(d));
panic("config_detach");
}
}
#endif
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
/* notify the parent that the child is gone */
if (dev->dv_parent) {
2005-12-20 07:39:36 +03:00
device_t p = dev->dv_parent;
Add some extensions to the autoconf framework to better support loadable drivers and user controlled attach/detach of devices. An outline was given in http://mail-index.NetBSD.org/tech-kern/2004/08/11/0000.html To cite the relevant parts: -Add a "child detached" and a "rescan" method (both optional) to the device driver. (This is added to the "cfattach" for now because this is under the driver writer's control. Logically it belongs more to the "cfdriver", but this is automatically generated now.) The "child detached" is called by the autoconf framework during config_detach(), after the child's ca_detach() function was called but before the device data structure is freed. The "rescan" is called explicitely, either after a driver LKM was loaded, or on user request (see the "control device" below). -Add a field to the device instance where the "locators" (in terms of the autoconf framework), which describe the actual location of the device relatively to the parent bus, can be stored. This can be used by the "child detached" function for easier bookkeeping (no need to lookup by device instance pointer). (An idea for the future is to use this for generation of optimized kernel config files - like DEC's "doconfig".) -Pass the locators tuple describing a device's location to various autoconf functions to support the previous. And since locators do only make sense in relation to an "interface attribute", pass this as well. -Add helper functions to add/remove supplemental "cfdata" arrays. Needed for driver LKMs. There is some code duplication which will hopefully resolved when all "submatch"-style functions are changed to accept the locator argument. Some more cleanup can take place when config(8) issues more information about locators, in particular the length and default values. To be done later.
2004-08-18 02:13:18 +04:00
if (p->dv_cfattach->ca_childdetached)
(*p->dv_cfattach->ca_childdetached)(p, dev);
}
/*
* Mark cfdata to show that the unit can be reused, if possible.
*/
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, cd->cd_name)) {
if (cf->cf_fstate == FSTATE_FOUND &&
cf->cf_unit == dev->dv_unit)
cf->cf_fstate = FSTATE_NOTFOUND;
#ifdef __BROKEN_CONFIG_UNIT_USAGE
/*
* Note that we can only re-use a starred
* unit number if the unit being detached
* had the last assigned unit number.
*/
if (cf->cf_fstate == FSTATE_STAR &&
cf->cf_unit == dev->dv_unit + 1)
cf->cf_unit--;
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
}
}
}
config_devunlink(dev);
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
aprint_normal_dev(dev, "detached\n");
config_devdealloc(dev);
out:
mutex_enter(&alldevs_mtx);
if (--alldevs_nwrite == 0)
alldevs_writer = NULL;
cv_signal(&alldevs_cv);
mutex_exit(&alldevs_mtx);
return rv;
}
int
config_detach_children(device_t parent, int flags)
{
device_t dv;
deviter_t di;
int error = 0;
for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
dv = deviter_next(&di)) {
if (device_parent(dv) != parent)
continue;
if ((error = config_detach(dv, flags)) != 0)
break;
}
deviter_release(&di);
return error;
}
int
2005-12-20 07:39:36 +03:00
config_activate(device_t dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
dev->dv_flags |= DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
int
2005-12-20 07:39:36 +03:00
config_deactivate(device_t dev)
{
const struct cfattach *ca = dev->dv_cfattach;
int rv = 0, oflags = dev->dv_flags;
if (ca->ca_activate == NULL)
return (EOPNOTSUPP);
if (dev->dv_flags & DVF_ACTIVE) {
dev->dv_flags &= ~DVF_ACTIVE;
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
if (rv)
dev->dv_flags = oflags;
}
return (rv);
}
/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
2005-12-20 07:39:36 +03:00
config_defer(device_t dev, void (*func)(device_t))
{
struct deferred_config *dc;
if (dev->dv_parent == NULL)
panic("config_defer: can't defer config of a root device");
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_defer: deferred twice");
}
#endif
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (dc == NULL)
panic("config_defer: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Defer some autoconfiguration for a device until after interrupts
* are enabled.
*/
void
2005-12-20 07:39:36 +03:00
config_interrupts(device_t dev, void (*func)(device_t))
{
struct deferred_config *dc;
/*
* If interrupts are enabled, callback now.
*/
if (cold == 0) {
(*func)(dev);
return;
}
#ifdef DIAGNOSTIC
for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
dc = TAILQ_NEXT(dc, dc_queue)) {
if (dc->dc_dev == dev)
panic("config_interrupts: deferred twice");
}
#endif
dc = malloc(sizeof(*dc), M_DEVBUF, cold ? M_NOWAIT : M_WAITOK);
if (dc == NULL)
panic("config_interrupts: unable to allocate callback");
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
config_pending_incr();
}
/*
* Process a deferred configuration queue.
*/
static void
config_process_deferred(struct deferred_config_head *queue,
2005-12-20 07:39:36 +03:00
device_t parent)
{
struct deferred_config *dc, *ndc;
for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
ndc = TAILQ_NEXT(dc, dc_queue);
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
TAILQ_REMOVE(queue, dc, dc_queue);
(*dc->dc_func)(dc->dc_dev);
free(dc, M_DEVBUF);
config_pending_decr();
}
}
}
/*
* Manipulate the config_pending semaphore.
*/
void
config_pending_incr(void)
{
config_pending++;
}
void
config_pending_decr(void)
{
#ifdef DIAGNOSTIC
if (config_pending == 0)
panic("config_pending_decr: config_pending == 0");
#endif
config_pending--;
if (config_pending == 0)
wakeup(&config_pending);
}
/*
* Register a "finalization" routine. Finalization routines are
* called iteratively once all real devices have been found during
* autoconfiguration, for as long as any one finalizer has done
* any work.
*/
int
2005-12-20 07:39:36 +03:00
config_finalize_register(device_t dev, int (*fn)(device_t))
{
struct finalize_hook *f;
/*
* If finalization has already been done, invoke the
* callback function now.
*/
if (config_finalize_done) {
while ((*fn)(dev) != 0)
/* loop */ ;
}
/* Ensure this isn't already on the list. */
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
if (f->f_func == fn && f->f_dev == dev)
return (EEXIST);
}
f = malloc(sizeof(*f), M_TEMP, M_WAITOK);
f->f_func = fn;
f->f_dev = dev;
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
return (0);
}
void
config_finalize(void)
{
struct finalize_hook *f;
struct pdevinit *pdev;
extern struct pdevinit pdevinit[];
int errcnt, rv;
/*
* Now that device driver threads have been created, wait for
* them to finish any deferred autoconfiguration.
*/
while (config_pending)
(void) tsleep(&config_pending, PWAIT, "cfpend", hz);
/* Attach pseudo-devices. */
for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
(*pdev->pdev_attach)(pdev->pdev_count);
/* Run the hooks until none of them does any work. */
do {
rv = 0;
TAILQ_FOREACH(f, &config_finalize_list, f_list)
rv |= (*f->f_func)(f->f_dev);
} while (rv != 0);
config_finalize_done = 1;
/* Now free all the hooks. */
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
TAILQ_REMOVE(&config_finalize_list, f, f_list);
free(f, M_TEMP);
}
errcnt = aprint_get_error_count();
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
(boothowto & AB_VERBOSE) == 0) {
if (config_do_twiddle) {
config_do_twiddle = 0;
printf_nolog("done.\n");
}
if (errcnt != 0) {
printf("WARNING: %d error%s while detecting hardware; "
"check system log.\n", errcnt,
errcnt == 1 ? "" : "s");
}
}
}
/*
* device_lookup:
*
* Look up a device instance for a given driver.
*/
void *
device_lookup(cfdriver_t cd, int unit)
{
if (unit < 0 || unit >= cd->cd_ndevs)
return (NULL);
return (cd->cd_devs[unit]);
}
/*
* device_lookup:
*
* Look up a device instance for a given driver.
*/
void *
device_lookup_private(cfdriver_t cd, int unit)
{
device_t dv;
if (unit < 0 || unit >= cd->cd_ndevs)
return NULL;
if ((dv = cd->cd_devs[unit]) == NULL)
return NULL;
return dv->dv_private;
}
/*
* Accessor functions for the device_t type.
*/
devclass_t
device_class(device_t dev)
{
return (dev->dv_class);
}
cfdata_t
device_cfdata(device_t dev)
{
return (dev->dv_cfdata);
}
cfdriver_t
device_cfdriver(device_t dev)
{
return (dev->dv_cfdriver);
}
cfattach_t
device_cfattach(device_t dev)
{
return (dev->dv_cfattach);
}
int
device_unit(device_t dev)
{
return (dev->dv_unit);
}
const char *
device_xname(device_t dev)
{
return (dev->dv_xname);
}
device_t
device_parent(device_t dev)
{
return (dev->dv_parent);
}
bool
device_is_active(device_t dev)
{
2007-12-09 23:27:42 +03:00
int active_flags;
active_flags = DVF_ACTIVE;
active_flags |= DVF_CLASS_SUSPENDED;
active_flags |= DVF_DRIVER_SUSPENDED;
active_flags |= DVF_BUS_SUSPENDED;
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
}
bool
device_is_enabled(device_t dev)
{
return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
}
bool
device_has_power(device_t dev)
{
int active_flags;
2007-12-09 23:27:42 +03:00
active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
}
int
2006-03-29 10:25:35 +04:00
device_locator(device_t dev, u_int locnum)
{
KASSERT(dev->dv_locators != NULL);
return (dev->dv_locators[locnum]);
}
void *
device_private(device_t dev)
{
/*
* The reason why device_private(NULL) is allowed is to simplify the
* work of a lot of userspace request handlers (i.e., c/bdev
* handlers) which grab cfdriver_t->cd_units[n].
* It avoids having them test for it to be NULL and only then calling
* device_private.
*/
return dev == NULL ? NULL : dev->dv_private;
}
prop_dictionary_t
device_properties(device_t dev)
{
return (dev->dv_properties);
}
/*
* device_is_a:
*
* Returns true if the device is an instance of the specified
* driver.
*/
bool
device_is_a(device_t dev, const char *dname)
{
return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
}
2007-12-09 23:27:42 +03:00
/*
* device_find_by_xname:
*
* Returns the device of the given name or NULL if it doesn't exist.
*/
device_t
device_find_by_xname(const char *name)
{
device_t dv;
deviter_t di;
for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
if (strcmp(device_xname(dv), name) == 0)
break;
}
deviter_release(&di);
return dv;
}
/*
* device_find_by_driver_unit:
*
* Returns the device of the given driver name and unit or
* NULL if it doesn't exist.
*/
device_t
device_find_by_driver_unit(const char *name, int unit)
{
struct cfdriver *cd;
if ((cd = config_cfdriver_lookup(name)) == NULL)
return NULL;
return device_lookup(cd, unit);
}
2007-12-09 23:27:42 +03:00
/*
* Power management related functions.
*/
bool
device_pmf_is_registered(device_t dev)
{
return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
}
bool
device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return false;
if (*dev->dv_driver_suspend != NULL &&
!(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags |= DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return false;
Use device_t and its accessors throughout. Use aprint_*_dev(). Improve PMF-ability. Add a 'flags' argument to suspend/resume handlers and callers such as pmf_system_suspend(). Define a flag, PMF_F_SELF, which indicates to PMF that a device is suspending/resuming itself. Add helper routines, pmf_device_suspend_self(dev) and pmf_device_resume_self(dev), that call pmf_device_suspend(dev, PMF_F_SELF) and pmf_device_resume(dev, PMF_F_SELF), respectively. Use PMF_F_SELF to suspend/resume self in ath(4), audio(4), rtw(4), and sip(4). In ath(4) and in rtw(4), replace the icky sc_enable/sc_disable callbacks, provided by the bus front-end, with self-suspension/resumption. Also, clean up the bus front-ends. Make sure that the interrupt handler is disestablished during suspension. Get rid of driver-private flags (e.g., RTW_F_ENABLED, ath_softc->sc_invalid); use device_is_active()/device_has_power() calls, instead. In the network-class suspend handler, call if_stop(, 0) instead of if_stop(, 1), because the latter is superfluous (bus- and driver-suspension hooks will 'disable' the NIC), and it may cause recursion. In the network-class resume handler, prevent infinite recursion through if_init() by getting out early if we are self-suspending (PMF_F_SELF). rtw(4) improvements: Destroy rtw(4) callouts when we detach it. Make rtw at pci detachable. Print some more information with the "rx frame too long" warning. Remove activate() methods: Get rid of rtw_activate() and ath_activate(). The device activate() methods are not good for much these days. Make ath at cardbus resume with crypto functions intact: Introduce a boolean device property, "pmf-powerdown". If pmf-powerdown is present and false, it indicates that a bus back-end should not remove power from a device. Honor this property in cardbus_child_suspend(). Set this property to 'false' in ath_attach(), since removing power from an ath at cardbus seems to lobotomize the WPA crypto engine. XXX Should the pmf-powerdown property propagate toward the root of the device tree? Miscellaneous ath(4) changes: Warn if ath(4) tries to write crypto keys to suspended hardware. Reduce differences between FreeBSD and NetBSD in ath(4) multicast filter setup. Make ath_printrxbuf() print an rx descriptor's status & key index, to help debug crypto errors. Shorten a staircase in ath_ioctl(). Don't check for ieee80211_ioctl() return code ERESTART, it never happens.
2008-03-12 21:02:21 +03:00
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
return false;
2007-12-09 23:27:42 +03:00
if (*dev->dv_driver_resume != NULL &&
!(*dev->dv_driver_resume)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_shutdown(device_t dev, int how)
{
if (*dev->dv_driver_shutdown != NULL &&
!(*dev->dv_driver_shutdown)(dev, how))
return false;
return true;
}
bool
2007-12-09 23:27:42 +03:00
device_pmf_driver_register(device_t dev,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
bool (*shutdown)(device_t, int))
2007-12-09 23:27:42 +03:00
{
pmf_private_t *pp;
if ((pp = malloc(sizeof(*pp), M_PMFPRIV, M_NOWAIT|M_ZERO)) == NULL)
return false;
mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&pp->pp_cv, "pmfsusp");
dev->dv_pmf_private = pp;
2007-12-09 23:27:42 +03:00
dev->dv_driver_suspend = suspend;
dev->dv_driver_resume = resume;
dev->dv_driver_shutdown = shutdown;
2007-12-09 23:27:42 +03:00
dev->dv_flags |= DVF_POWER_HANDLERS;
return true;
2007-12-09 23:27:42 +03:00
}
static const char *
curlwp_name(void)
{
if (curlwp->l_name != NULL)
return curlwp->l_name;
else
return curlwp->l_proc->p_comm;
}
2007-12-09 23:27:42 +03:00
void
device_pmf_driver_deregister(device_t dev)
{
pmf_private_t *pp = dev->dv_pmf_private;
2007-12-09 23:27:42 +03:00
dev->dv_driver_suspend = NULL;
dev->dv_driver_resume = NULL;
dev->dv_pmf_private = NULL;
mutex_enter(&pp->pp_mtx);
2007-12-09 23:27:42 +03:00
dev->dv_flags &= ~DVF_POWER_HANDLERS;
while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
/* Wake a thread that waits for the lock. That
* thread will fail to acquire the lock, and then
* it will wake the next thread that waits for the
* lock, or else it will wake us.
*/
cv_signal(&pp->pp_cv);
pmflock_debug(dev, __func__, __LINE__);
cv_wait(&pp->pp_cv, &pp->pp_mtx);
pmflock_debug(dev, __func__, __LINE__);
}
mutex_exit(&pp->pp_mtx);
cv_destroy(&pp->pp_cv);
mutex_destroy(&pp->pp_mtx);
free(pp, M_PMFPRIV);
2007-12-09 23:27:42 +03:00
}
bool
device_pmf_driver_child_register(device_t dev)
{
device_t parent = device_parent(dev);
if (parent == NULL || parent->dv_driver_child_register == NULL)
return true;
return (*parent->dv_driver_child_register)(dev);
}
void
device_pmf_driver_set_child_register(device_t dev,
bool (*child_register)(device_t))
{
dev->dv_driver_child_register = child_register;
}
Use device_t and its accessors throughout. Use aprint_*_dev(). Improve PMF-ability. Add a 'flags' argument to suspend/resume handlers and callers such as pmf_system_suspend(). Define a flag, PMF_F_SELF, which indicates to PMF that a device is suspending/resuming itself. Add helper routines, pmf_device_suspend_self(dev) and pmf_device_resume_self(dev), that call pmf_device_suspend(dev, PMF_F_SELF) and pmf_device_resume(dev, PMF_F_SELF), respectively. Use PMF_F_SELF to suspend/resume self in ath(4), audio(4), rtw(4), and sip(4). In ath(4) and in rtw(4), replace the icky sc_enable/sc_disable callbacks, provided by the bus front-end, with self-suspension/resumption. Also, clean up the bus front-ends. Make sure that the interrupt handler is disestablished during suspension. Get rid of driver-private flags (e.g., RTW_F_ENABLED, ath_softc->sc_invalid); use device_is_active()/device_has_power() calls, instead. In the network-class suspend handler, call if_stop(, 0) instead of if_stop(, 1), because the latter is superfluous (bus- and driver-suspension hooks will 'disable' the NIC), and it may cause recursion. In the network-class resume handler, prevent infinite recursion through if_init() by getting out early if we are self-suspending (PMF_F_SELF). rtw(4) improvements: Destroy rtw(4) callouts when we detach it. Make rtw at pci detachable. Print some more information with the "rx frame too long" warning. Remove activate() methods: Get rid of rtw_activate() and ath_activate(). The device activate() methods are not good for much these days. Make ath at cardbus resume with crypto functions intact: Introduce a boolean device property, "pmf-powerdown". If pmf-powerdown is present and false, it indicates that a bus back-end should not remove power from a device. Honor this property in cardbus_child_suspend(). Set this property to 'false' in ath_attach(), since removing power from an ath at cardbus seems to lobotomize the WPA crypto engine. XXX Should the pmf-powerdown property propagate toward the root of the device tree? Miscellaneous ath(4) changes: Warn if ath(4) tries to write crypto keys to suspended hardware. Reduce differences between FreeBSD and NetBSD in ath(4) multicast filter setup. Make ath_printrxbuf() print an rx descriptor's status & key index, to help debug crypto errors. Shorten a staircase in ath_ioctl(). Don't check for ieee80211_ioctl() return code ERESTART, it never happens.
2008-03-12 21:02:21 +03:00
void
device_pmf_self_resume(device_t dev PMF_FN_ARGS)
{
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
}
bool
device_is_self_suspended(device_t dev)
{
return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
}
void
device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
{
bool self = (flags & PMF_F_SELF) != 0;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
if (!self)
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
else if (device_is_active(dev))
dev->dv_flags |= DVF_SELF_SUSPENDED;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
}
static void
pmflock_debug(device_t dev, const char *func, int line)
{
pmf_private_t *pp = device_pmf_private(dev);
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
dev->dv_flags);
}
static void
pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
"flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
}
static bool
device_pmf_lock1(device_t dev PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
while (pp->pp_nlock > 0 && pp->pp_holder != curlwp &&
device_pmf_is_registered(dev)) {
pp->pp_nwait++;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
cv_wait(&pp->pp_cv, &pp->pp_mtx);
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
pp->pp_nwait--;
}
if (!device_pmf_is_registered(dev)) {
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
/* We could not acquire the lock, but some other thread may
* wait for it, also. Wake that thread.
*/
cv_signal(&pp->pp_cv);
return false;
}
pp->pp_nlock++;
pp->pp_holder = curlwp;
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
return true;
}
bool
device_pmf_lock(device_t dev PMF_FN_ARGS)
{
bool rc;
pmf_private_t *pp = device_pmf_private(dev);
mutex_enter(&pp->pp_mtx);
rc = device_pmf_lock1(dev PMF_FN_CALL);
mutex_exit(&pp->pp_mtx);
return rc;
}
void
device_pmf_unlock(device_t dev PMF_FN_ARGS)
{
pmf_private_t *pp = device_pmf_private(dev);
KASSERT(pp->pp_nlock > 0);
mutex_enter(&pp->pp_mtx);
if (--pp->pp_nlock == 0)
pp->pp_holder = NULL;
cv_signal(&pp->pp_cv);
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
mutex_exit(&pp->pp_mtx);
}
void *
device_pmf_private(device_t dev)
{
return dev->dv_pmf_private;
}
2007-12-09 23:27:42 +03:00
void *
device_pmf_bus_private(device_t dev)
{
return dev->dv_bus_private;
}
bool
device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return false;
if (*dev->dv_bus_suspend != NULL &&
!(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags |= DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
return true;
Use device_t and its accessors throughout. Use aprint_*_dev(). Improve PMF-ability. Add a 'flags' argument to suspend/resume handlers and callers such as pmf_system_suspend(). Define a flag, PMF_F_SELF, which indicates to PMF that a device is suspending/resuming itself. Add helper routines, pmf_device_suspend_self(dev) and pmf_device_resume_self(dev), that call pmf_device_suspend(dev, PMF_F_SELF) and pmf_device_resume(dev, PMF_F_SELF), respectively. Use PMF_F_SELF to suspend/resume self in ath(4), audio(4), rtw(4), and sip(4). In ath(4) and in rtw(4), replace the icky sc_enable/sc_disable callbacks, provided by the bus front-end, with self-suspension/resumption. Also, clean up the bus front-ends. Make sure that the interrupt handler is disestablished during suspension. Get rid of driver-private flags (e.g., RTW_F_ENABLED, ath_softc->sc_invalid); use device_is_active()/device_has_power() calls, instead. In the network-class suspend handler, call if_stop(, 0) instead of if_stop(, 1), because the latter is superfluous (bus- and driver-suspension hooks will 'disable' the NIC), and it may cause recursion. In the network-class resume handler, prevent infinite recursion through if_init() by getting out early if we are self-suspending (PMF_F_SELF). rtw(4) improvements: Destroy rtw(4) callouts when we detach it. Make rtw at pci detachable. Print some more information with the "rx frame too long" warning. Remove activate() methods: Get rid of rtw_activate() and ath_activate(). The device activate() methods are not good for much these days. Make ath at cardbus resume with crypto functions intact: Introduce a boolean device property, "pmf-powerdown". If pmf-powerdown is present and false, it indicates that a bus back-end should not remove power from a device. Honor this property in cardbus_child_suspend(). Set this property to 'false' in ath_attach(), since removing power from an ath at cardbus seems to lobotomize the WPA crypto engine. XXX Should the pmf-powerdown property propagate toward the root of the device tree? Miscellaneous ath(4) changes: Warn if ath(4) tries to write crypto keys to suspended hardware. Reduce differences between FreeBSD and NetBSD in ath(4) multicast filter setup. Make ath_printrxbuf() print an rx descriptor's status & key index, to help debug crypto errors. Shorten a staircase in ath_ioctl(). Don't check for ieee80211_ioctl() return code ERESTART, it never happens.
2008-03-12 21:02:21 +03:00
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
return false;
2007-12-09 23:27:42 +03:00
if (*dev->dv_bus_resume != NULL &&
!(*dev->dv_bus_resume)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags &= ~DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_shutdown(device_t dev, int how)
{
if (*dev->dv_bus_shutdown != NULL &&
!(*dev->dv_bus_shutdown)(dev, how))
return false;
return true;
}
2007-12-09 23:27:42 +03:00
void
device_pmf_bus_register(device_t dev, void *priv,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
bool (*shutdown)(device_t, int), void (*deregister)(device_t))
2007-12-09 23:27:42 +03:00
{
dev->dv_bus_private = priv;
dev->dv_bus_resume = resume;
dev->dv_bus_suspend = suspend;
dev->dv_bus_shutdown = shutdown;
2007-12-09 23:27:42 +03:00
dev->dv_bus_deregister = deregister;
}
void
device_pmf_bus_deregister(device_t dev)
{
if (dev->dv_bus_deregister == NULL)
return;
(*dev->dv_bus_deregister)(dev);
dev->dv_bus_private = NULL;
dev->dv_bus_suspend = NULL;
dev->dv_bus_resume = NULL;
dev->dv_bus_deregister = NULL;
}
void *
device_pmf_class_private(device_t dev)
{
return dev->dv_class_private;
}
bool
device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
return true;
if (*dev->dv_class_suspend != NULL &&
!(*dev->dv_class_suspend)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags |= DVF_CLASS_SUSPENDED;
return true;
}
bool
device_pmf_class_resume(device_t dev PMF_FN_ARGS)
2007-12-09 23:27:42 +03:00
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return false;
if (*dev->dv_class_resume != NULL &&
!(*dev->dv_class_resume)(dev PMF_FN_CALL))
2007-12-09 23:27:42 +03:00
return false;
dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
return true;
}
void
device_pmf_class_register(device_t dev, void *priv,
bool (*suspend)(device_t PMF_FN_PROTO),
bool (*resume)(device_t PMF_FN_PROTO),
2007-12-09 23:27:42 +03:00
void (*deregister)(device_t))
{
dev->dv_class_private = priv;
dev->dv_class_suspend = suspend;
dev->dv_class_resume = resume;
dev->dv_class_deregister = deregister;
}
void
device_pmf_class_deregister(device_t dev)
{
if (dev->dv_class_deregister == NULL)
return;
(*dev->dv_class_deregister)(dev);
dev->dv_class_private = NULL;
dev->dv_class_suspend = NULL;
dev->dv_class_resume = NULL;
dev->dv_class_deregister = NULL;
}
bool
device_active(device_t dev, devactive_t type)
{
size_t i;
if (dev->dv_activity_count == 0)
return false;
for (i = 0; i < dev->dv_activity_count; ++i)
(*dev->dv_activity_handlers[i])(dev, type);
return true;
}
bool
device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**new_handlers)(device_t, devactive_t);
void (**old_handlers)(device_t, devactive_t);
size_t i, new_size;
int s;
old_handlers = dev->dv_activity_handlers;
for (i = 0; i < dev->dv_activity_count; ++i) {
if (old_handlers[i] == handler)
panic("Double registering of idle handlers");
}
new_size = dev->dv_activity_count + 1;
new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF, M_WAITOK);
memcpy(new_handlers, old_handlers,
sizeof(void *) * dev->dv_activity_count);
new_handlers[new_size - 1] = handler;
s = splhigh();
dev->dv_activity_count = new_size;
dev->dv_activity_handlers = new_handlers;
splx(s);
if (old_handlers != NULL)
free(old_handlers, M_DEVBUF);
return true;
}
void
device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**new_handlers)(device_t, devactive_t);
void (**old_handlers)(device_t, devactive_t);
size_t i, new_size;
int s;
old_handlers = dev->dv_activity_handlers;
for (i = 0; i < dev->dv_activity_count; ++i) {
if (old_handlers[i] == handler)
break;
}
if (i == dev->dv_activity_count)
return; /* XXX panic? */
new_size = dev->dv_activity_count - 1;
if (new_size == 0) {
new_handlers = NULL;
} else {
new_handlers = malloc(sizeof(void *) * new_size, M_DEVBUF,
M_WAITOK);
memcpy(new_handlers, old_handlers, sizeof(void *) * i);
memcpy(new_handlers + i, old_handlers + i + 1,
sizeof(void *) * (new_size - i));
}
s = splhigh();
dev->dv_activity_count = new_size;
dev->dv_activity_handlers = new_handlers;
splx(s);
free(old_handlers, M_DEVBUF);
}
/*
* Device Iteration
*
* deviter_t: a device iterator. Holds state for a "walk" visiting
* each device_t's in the device tree.
*
* deviter_init(di, flags): initialize the device iterator `di'
* to "walk" the device tree. deviter_next(di) will return
* the first device_t in the device tree, or NULL if there are
* no devices.
*
* `flags' is one or more of DEVITER_F_RW, indicating that the
* caller intends to modify the device tree by calling
* config_detach(9) on devices in the order that the iterator
* returns them; DEVITER_F_ROOT_FIRST, asking for the devices
* nearest the "root" of the device tree to be returned, first;
* DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
* the root of the device tree, first; and DEVITER_F_SHUTDOWN,
* indicating both that deviter_init() should not respect any
* locks on the device tree, and that deviter_next(di) may run
* in more than one LWP before the walk has finished.
*
* Only one DEVITER_F_RW iterator may be in the device tree at
* once.
*
* DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
*
* Results are undefined if the flags DEVITER_F_ROOT_FIRST and
* DEVITER_F_LEAVES_FIRST are used in combination.
*
* deviter_first(di, flags): initialize the device iterator `di'
* and return the first device_t in the device tree, or NULL
* if there are no devices. The statement
*
* dv = deviter_first(di);
*
* is shorthand for
*
* deviter_init(di);
* dv = deviter_next(di);
*
* deviter_next(di): return the next device_t in the device tree,
* or NULL if there are no more devices. deviter_next(di)
* is undefined if `di' was not initialized with deviter_init() or
* deviter_first().
*
* deviter_release(di): stops iteration (subsequent calls to
* deviter_next() will return NULL), releases any locks and
* resources held by the device iterator.
*
* Device iteration does not return device_t's in any particular
* order. An iterator will never return the same device_t twice.
* Device iteration is guaranteed to complete---i.e., if deviter_next(di)
* is called repeatedly on the same `di', it will eventually return
* NULL. It is ok to attach/detach devices during device iteration.
*/
void
deviter_init(deviter_t *di, deviter_flags_t flags)
{
device_t dv;
bool rw;
mutex_enter(&alldevs_mtx);
if ((flags & DEVITER_F_SHUTDOWN) != 0) {
flags |= DEVITER_F_RW;
alldevs_nwrite++;
alldevs_writer = NULL;
alldevs_nread = 0;
} else {
rw = (flags & DEVITER_F_RW) != 0;
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
;
else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
(rw && alldevs_nread != 0))
cv_wait(&alldevs_cv, &alldevs_mtx);
if (rw) {
if (alldevs_nwrite++ == 0)
alldevs_writer = curlwp;
} else
alldevs_nread++;
}
mutex_exit(&alldevs_mtx);
memset(di, 0, sizeof(*di));
di->di_flags = flags;
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case DEVITER_F_LEAVES_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list)
di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
break;
case DEVITER_F_ROOT_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list)
di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
break;
default:
break;
}
deviter_reinit(di);
}
static void
deviter_reinit(deviter_t *di)
{
if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_LAST(&alldevs, devicelist);
else
di->di_prev = TAILQ_FIRST(&alldevs);
}
device_t
deviter_first(deviter_t *di, deviter_flags_t flags)
{
deviter_init(di, flags);
return deviter_next(di);
}
static device_t
deviter_next1(deviter_t *di)
{
device_t dv;
dv = di->di_prev;
if (dv == NULL)
;
else if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
else
di->di_prev = TAILQ_NEXT(dv, dv_list);
return dv;
}
device_t
deviter_next(deviter_t *di)
{
device_t dv = NULL;
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case 0:
return deviter_next1(di);
case DEVITER_F_LEAVES_FIRST:
while (di->di_curdepth >= 0) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth--;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
return dv;
case DEVITER_F_ROOT_FIRST:
while (di->di_curdepth <= di->di_maxdepth) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth++;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
return dv;
default:
return NULL;
}
}
void
deviter_release(deviter_t *di)
{
bool rw = (di->di_flags & DEVITER_F_RW) != 0;
mutex_enter(&alldevs_mtx);
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
--alldevs_nwrite;
else {
if (rw) {
if (--alldevs_nwrite == 0)
alldevs_writer = NULL;
} else
--alldevs_nread;
cv_signal(&alldevs_cv);
}
mutex_exit(&alldevs_mtx);
}