NetBSD/sys/netinet6/nd6_nbr.c

1550 lines
40 KiB
C
Raw Normal View History

/* $NetBSD: nd6_nbr.c,v 1.157 2018/11/29 09:51:21 ozaki-r Exp $ */
/* $KAME: nd6_nbr.c,v 1.61 2001/02/10 16:06:14 jinmei Exp $ */
1999-07-04 01:24:45 +04:00
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2001-11-13 03:56:55 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nd6_nbr.c,v 1.157 2018/11/29 09:51:21 ozaki-r Exp $");
2001-11-13 03:56:55 +03:00
2015-08-25 01:21:26 +03:00
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_net_mpsafe.h"
2015-08-25 01:21:26 +03:00
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/cprng.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet6/in6_var.h>
#include <netinet6/in6_ifattach.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet6/nd6.h>
#include <netinet/icmp6.h>
2008-04-15 07:57:04 +04:00
#include <netinet6/icmp6_private.h>
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
struct dadq;
static struct dadq *nd6_dad_find(struct ifaddr *, struct nd_opt_nonce *);
static void nd6_dad_starttimer(struct dadq *, int);
static void nd6_dad_destroytimer(struct dadq *);
static void nd6_dad_timer(struct dadq *);
static void nd6_dad_ns_output(struct dadq *, struct ifaddr *);
static void nd6_dad_ns_input(struct ifaddr *, struct nd_opt_nonce *);
static void nd6_dad_na_input(struct ifaddr *);
static void nd6_dad_duplicated(struct dadq *);
static int dad_maxtry = 15; /* max # of *tries* to transmit DAD packet */
/*
* Input a Neighbor Solicitation Message.
*
* Based on RFC 2461
* Based on RFC 2462 (duplicate address detection)
*/
void
nd6_ns_input(struct mbuf *m, int off, int icmp6len)
{
struct ifnet *ifp;
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
struct nd_neighbor_solicit *nd_ns;
struct in6_addr saddr6 = ip6->ip6_src;
struct in6_addr daddr6 = ip6->ip6_dst;
struct in6_addr taddr6;
struct in6_addr myaddr6;
char *lladdr = NULL;
struct ifaddr *ifa = NULL;
int lladdrlen = 0;
int anycast = 0, proxy = 0, tentative = 0;
int router = ip6_forwarding;
int tlladdr;
union nd_opts ndopts;
const struct sockaddr_dl *proxydl = NULL;
struct psref psref;
struct psref psref_ia;
char ip6buf[INET6_ADDRSTRLEN], ip6buf2[INET6_ADDRSTRLEN];
ifp = m_get_rcvif_psref(m, &psref);
if (ifp == NULL)
goto freeit;
IP6_EXTHDR_GET(nd_ns, struct nd_neighbor_solicit *, m, off, icmp6len);
if (nd_ns == NULL) {
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_TOOSHORT);
m_put_rcvif_psref(ifp, &psref);
return;
}
ip6 = mtod(m, struct ip6_hdr *); /* adjust pointer for safety */
taddr6 = nd_ns->nd_ns_target;
if (in6_setscope(&taddr6, ifp, NULL) != 0)
goto bad;
if (ip6->ip6_hlim != 255) {
nd6log(LOG_ERR, "invalid hlim (%d) from %s to %s on %s\n",
ip6->ip6_hlim, IN6_PRINT(ip6buf, &ip6->ip6_src),
IN6_PRINT(ip6buf2, &ip6->ip6_dst), if_name(ifp));
goto bad;
}
if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) {
/* dst has to be a solicited node multicast address. */
/* don't check ifindex portion */
if (daddr6.s6_addr16[0] == IPV6_ADDR_INT16_MLL &&
daddr6.s6_addr32[1] == 0 &&
daddr6.s6_addr32[2] == IPV6_ADDR_INT32_ONE &&
daddr6.s6_addr8[12] == 0xff) {
; /* good */
} else {
nd6log(LOG_INFO, "bad DAD packet (wrong ip6 dst)\n");
goto bad;
}
} else {
struct sockaddr_in6 ssin6;
/*
* Make sure the source address is from a neighbor's address.
*/
sockaddr_in6_init(&ssin6, &saddr6, 0, 0, 0);
if (nd6_is_addr_neighbor(&ssin6, ifp) == 0) {
nd6log(LOG_INFO,
"NS packet from non-neighbor %s on %s\n",
IN6_PRINT(ip6buf, &saddr6), if_name(ifp));
goto bad;
}
}
if (IN6_IS_ADDR_MULTICAST(&taddr6)) {
nd6log(LOG_INFO, "bad NS target (multicast)\n");
goto bad;
}
icmp6len -= sizeof(*nd_ns);
nd6_option_init(nd_ns + 1, icmp6len, &ndopts);
if (nd6_options(&ndopts) < 0) {
nd6log(LOG_INFO, "invalid ND option, ignored\n");
/* nd6_options have incremented stats */
goto freeit;
}
if (ndopts.nd_opts_src_lladdr) {
lladdr = (char *)(ndopts.nd_opts_src_lladdr + 1);
lladdrlen = ndopts.nd_opts_src_lladdr->nd_opt_len << 3;
}
2002-06-09 18:43:10 +04:00
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && lladdr) {
nd6log(LOG_INFO,
"bad DAD packet (link-layer address option)\n");
goto bad;
}
/*
* Attaching target link-layer address to the NA?
* (RFC 2461 7.2.4)
*
* NS IP dst is multicast MUST add
* Otherwise MAY be omitted
*
* In this implementation, we omit the target link-layer address
2018-05-19 11:22:58 +03:00
* in the "MAY" case.
*/
#if 0 /* too much! */
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp, &daddr6);
if (ifa && (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST))
tlladdr = 0;
else
#endif
if (!IN6_IS_ADDR_MULTICAST(&daddr6))
tlladdr = 0;
else
tlladdr = 1;
/*
* Target address (taddr6) must be either:
* (1) Valid unicast/anycast address for my receiving interface,
* (2) Unicast address for which I'm offering proxy service, or
* (3) "tentative" address on which DAD is being performed.
*/
/* (1) and (3) check. */
#if NCARP > 0
if (ifp->if_carp && ifp->if_type != IFT_CARP) {
int s = pserialize_read_enter();
ifa = carp_iamatch6(ifp->if_carp, &taddr6);
if (ifa != NULL)
ifa_acquire(ifa, &psref_ia);
pserialize_read_exit(s);
} else
ifa = NULL;
if (!ifa)
ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, &taddr6,
&psref_ia);
#else
ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, &taddr6,
&psref_ia);
#endif
/* (2) check. */
if (ifa == NULL) {
struct rtentry *rt;
struct sockaddr_in6 tsin6;
2007-11-10 03:14:31 +03:00
sockaddr_in6_init(&tsin6, &taddr6, 0, 0, 0);
rt = rtalloc1(sin6tosa(&tsin6), 0);
if (rt && (rt->rt_flags & RTF_ANNOUNCE) != 0 &&
rt->rt_gateway->sa_family == AF_LINK) {
/*
* proxy NDP for single entry
*/
ifa = (struct ifaddr *)in6ifa_ifpforlinklocal_psref(ifp,
IN6_IFF_NOTREADY|IN6_IFF_ANYCAST, &psref_ia);
if (ifa) {
proxy = 1;
proxydl = satocsdl(rt->rt_gateway);
router = 0; /* XXX */
}
}
if (rt)
Make the routing table and rtcaches MP-safe See the following descriptions for details. Proposed on tech-kern and tech-net Overview -------- We protect the routing table with a rwock and protect rtcaches with another rwlock. Each rtentry is protected from being freed or updated via reference counting and psref. Global rwlocks -------------- There are two rwlocks; one for the routing table (rt_lock) and the other for rtcaches (rtcache_lock). rtcache_lock covers all existing rtcaches; there may have room for optimizations (future work). The locking order is rtcache_lock first and rt_lock is next. rtentry references ------------------ References to an rtentry is managed with reference counting and psref. Either of the two mechanisms is used depending on where a rtentry is obtained. Reference counting is used when we obtain a rtentry from the routing table directly via rtalloc1 and rtrequest{,1} while psref is used when we obtain a rtentry from a rtcache via rtcache_* APIs. In both cases, a caller can sleep/block with holding an obtained rtentry. The reasons why we use two different mechanisms are (i) only using reference counting hurts the performance due to atomic instructions (rtcache case) (ii) ease of implementation; applying psref to APIs such rtaloc1 and rtrequest{,1} requires additional works (adding a local variable and an argument). We will finally migrate to use only psref but we can do it when we have a lockless routing table alternative. Reference counting for rtentry ------------------------------ rt_refcnt now doesn't count permanent references such as for rt_timers and rtcaches, instead it is used only for temporal references when obtaining a rtentry via rtalloc1 and rtrequest{,1}. We can do so because destroying a rtentry always involves removing references of rt_timers and rtcaches to the rtentry and we don't need to track such references. This also makes it easy to wait for readers to release references on deleting or updating a rtentry, i.e., we can simply wait until the reference counter is 0 or 1. (If there are permanent references the counter can be arbitrary.) rt_ref increments a reference counter of a rtentry and rt_unref decrements it. rt_ref is called inside APIs (rtalloc1 and rtrequest{,1} so users don't need to care about it while users must call rt_unref to an obtained rtentry after using it. rtfree is removed and we use rt_unref and rt_free instead. rt_unref now just decrements the counter of a given rtentry and rt_free just tries to destroy a given rtentry. See the next section for destructions of rtentries by rt_free. Destructions of rtentries ------------------------- We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE); the original implementation can destroy in any rtfree where it's the last reference. If we use reference counting or psref, it's easy to understand if the place that a rtentry is destroyed is fixed. rt_free waits for references to a given rtentry to be released before actually destroying the rtentry. rt_free uses a condition variable (cv_wait) (and psref_target_destroy for psref) to wait. Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint that we cannot use cv_wait. In that case, we have to defer the destruction to a workqueue. rtentry#rt_cv, rtentry#rt_psref and global variables (see rt_free_global) are added to conduct the procedure. Updates of rtentries -------------------- One difficulty to use refcnt/psref instead of rwlock for rtentry is updates of rtentries. We need an additional mechanism to prevent readers from seeing inconsistency of a rtentry being updated. We introduce RTF_UPDATING flag to rtentries that are updating. While the flag is set to a rtentry, users cannot acquire the rtentry. By doing so, we avoid users to see inconsistent rtentries. There are two options when a user tries to acquire a rtentry with the RTF_UPDATING flag; if a user runs in softint context the user fails to acquire a rtentry (NULL is returned). Otherwise a user waits until the update completes by waiting on cv. The procedure of a updater is simpler to destruction of a rtentry. Wait on cv (and psref) and after all readers left, proceed with the update. Global variables (see rt_update_global) are added to conduct the procedure. Currently we apply the mechanism to only RTM_CHANGE in rtsock.c. We would have to apply other codes. See "Known issues" section. psref for rtentry ----------------- When we obtain a rtentry from a rtcache via rtcache_* APIs, psref is used to reference to the rtentry. rtcache_ref acquires a reference to a rtentry with psref and rtcache_unref releases the reference after using it. rtcache_ref is called inside rtcache_* APIs and users don't need to take care of it while users must call rtcache_unref to release the reference. struct psref and int bound that is needed for psref is embedded into struct route. By doing so we don't need to add local variables and additional argument to APIs. However this adds another constraint to psref other than reference counting one's; holding a reference of an rtentry via a rtcache is allowed by just one caller at the same time. So we must not acquire a rtentry via a rtcache twice and avoid a recursive use of a rtcache. And also a rtcache must be arranged to be used by a LWP/softint at the same time somehow. For IP forwarding case, we have per-CPU rtcaches used in softint so the constraint is guaranteed. For a h rtcache of a PCB case, the constraint is guaranteed by the solock of each PCB. Any other cases (pf, ipf, stf and ipsec) are currently guaranteed by only the existence of the global locks (softnet_lock and/or KERNEL_LOCK). If we've found the cases that we cannot guarantee the constraint, we would need to introduce other rtcache APIs that use simple reference counting. psref of rtcache is created with IPL_SOFTNET and so rtcache shouldn't used at an IPL higher than IPL_SOFTNET. Note that rtcache_free is used to invalidate a given rtcache. We don't need another care by my change; just keep them as they are. Performance impact ------------------ When NET_MPSAFE is disabled the performance drop is 3% while when it's enabled the drop is increased to 11%. The difference comes from that currently we don't take any global locks and don't use psref if NET_MPSAFE is disabled. We can optimize the performance of the case of NET_MPSAFE on by reducing lookups of rtcache that uses psref; currently we do two lookups but we should be able to trim one of two. This is a future work. Known issues ------------ There are two known issues to be solved; one is that a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit). We need to prevent new references during the update. Or we may be able to remove the code (perhaps, need more investigations). The other is rtredirect that updates a rtentry. We need to apply our update mechanism, however it's not easy because rtredirect is called in softint and we cannot apply our mechanism simply. One solution is to defer rtredirect to a workqueue but it requires some code restructuring.
2016-12-12 06:55:57 +03:00
rt_unref(rt);
}
if (ifa == NULL) {
/*
* We've got an NS packet, and we don't have that address
* assigned for us. We MUST silently ignore it.
* See RFC2461 7.2.3.
*/
goto freeit;
}
myaddr6 = *IFA_IN6(ifa);
anycast = ((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST;
tentative = ((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_TENTATIVE;
if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DUPLICATED)
goto freeit;
if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) {
nd6log(LOG_INFO, "lladdrlen mismatch for %s "
"(if %d, NS packet %d)\n",
IN6_PRINT(ip6buf, &taddr6),
ifp->if_addrlen, lladdrlen - 2);
goto bad;
}
if (IN6_ARE_ADDR_EQUAL(&myaddr6, &saddr6)) {
nd6log(LOG_INFO, "duplicate IP6 address %s\n",
IN6_PRINT(ip6buf, &saddr6));
goto freeit;
}
/*
* We have neighbor solicitation packet, with target address equals to
* one of my tentative address.
*
* src addr how to process?
* --- ---
* multicast of course, invalid (rejected in ip6_input)
* unicast somebody is doing address resolution -> ignore
* unspec dup address detection
*
* The processing is defined in RFC 2462.
*/
if (tentative) {
/*
* If source address is unspecified address, it is for
* duplicate address detection.
*
* If not, the packet is for addess resolution;
* silently ignore it.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&saddr6))
nd6_dad_ns_input(ifa, ndopts.nd_opts_nonce);
ifa_release(ifa, &psref_ia);
ifa = NULL;
goto freeit;
}
ifa_release(ifa, &psref_ia);
ifa = NULL;
/*
* If the source address is unspecified address, entries must not
* be created or updated.
* It looks that sender is performing DAD. Output NA toward
* all-node multicast address, to tell the sender that I'm using
* the address.
* S bit ("solicited") must be zero.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&saddr6)) {
struct in6_addr in6_all;
in6_all = in6addr_linklocal_allnodes;
if (in6_setscope(&in6_all, ifp, NULL) != 0)
goto bad;
nd6_na_output(ifp, &in6_all, &taddr6,
((anycast || proxy || !tlladdr) ? 0 : ND_NA_FLAG_OVERRIDE) |
(ip6_forwarding ? ND_NA_FLAG_ROUTER : 0),
tlladdr, (const struct sockaddr *)proxydl);
goto freeit;
}
nd6_cache_lladdr(ifp, &saddr6, lladdr, lladdrlen, ND_NEIGHBOR_SOLICIT, 0);
nd6_na_output(ifp, &saddr6, &taddr6,
((anycast || proxy || !tlladdr) ? 0 : ND_NA_FLAG_OVERRIDE) |
(router ? ND_NA_FLAG_ROUTER : 0) | ND_NA_FLAG_SOLICITED,
tlladdr, (const struct sockaddr *)proxydl);
freeit:
ifa_release(ifa, &psref_ia);
m_put_rcvif_psref(ifp, &psref);
m_freem(m);
return;
bad:
nd6log(LOG_ERR, "src=%s\n", IN6_PRINT(ip6buf, &saddr6));
nd6log(LOG_ERR, "dst=%s\n", IN6_PRINT(ip6buf, &daddr6));
nd6log(LOG_ERR, "tgt=%s\n", IN6_PRINT(ip6buf, &taddr6));
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_BADNS);
ifa_release(ifa, &psref_ia);
m_put_rcvif_psref(ifp, &psref);
m_freem(m);
}
/*
* Output a Neighbor Solicitation Message. Caller specifies:
* - ICMP6 header source IP6 address
* - ND6 header target IP6 address
* - ND6 header source datalink address
*
* Based on RFC 2461
* Based on RFC 2462 (duplicate address detection)
*/
void
nd6_ns_output(struct ifnet *ifp, const struct in6_addr *daddr6,
const struct in6_addr *taddr6,
struct in6_addr *hsrc,
uint8_t *nonce /* duplicate address detection */)
{
struct mbuf *m;
struct ip6_hdr *ip6;
struct nd_neighbor_solicit *nd_ns;
struct in6_addr *src, src_in;
struct ip6_moptions im6o;
int icmp6len;
int maxlen;
const void *mac;
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
struct route ro;
if (IN6_IS_ADDR_MULTICAST(taddr6))
return;
memset(&ro, 0, sizeof(ro));
/* estimate the size of message */
maxlen = sizeof(*ip6) + sizeof(*nd_ns);
maxlen += (sizeof(struct nd_opt_hdr) + ifp->if_addrlen + 7) & ~7;
KASSERTMSG(max_linkhdr + maxlen <= MCLBYTES,
"max_linkhdr + maxlen > MCLBYTES (%d + %d > %d)",
max_linkhdr, maxlen, MCLBYTES);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m && max_linkhdr + maxlen >= MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == NULL)
return;
m_reset_rcvif(m);
if (daddr6 == NULL || IN6_IS_ADDR_MULTICAST(daddr6)) {
m->m_flags |= M_MCAST;
im6o.im6o_multicast_if_index = if_get_index(ifp);
im6o.im6o_multicast_hlim = 255;
im6o.im6o_multicast_loop = 0;
}
icmp6len = sizeof(*nd_ns);
m->m_pkthdr.len = m->m_len = sizeof(*ip6) + icmp6len;
m->m_data += max_linkhdr; /* or MH_ALIGN() equivalent? */
/* fill neighbor solicitation packet */
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_flow = 0;
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
/* ip6->ip6_plen will be set later */
ip6->ip6_nxt = IPPROTO_ICMPV6;
ip6->ip6_hlim = 255;
if (daddr6)
ip6->ip6_dst = *daddr6;
else {
ip6->ip6_dst.s6_addr16[0] = IPV6_ADDR_INT16_MLL;
ip6->ip6_dst.s6_addr16[1] = 0;
ip6->ip6_dst.s6_addr32[1] = 0;
ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_ONE;
ip6->ip6_dst.s6_addr32[3] = taddr6->s6_addr32[3];
ip6->ip6_dst.s6_addr8[12] = 0xff;
if (in6_setscope(&ip6->ip6_dst, ifp, NULL) != 0)
goto bad;
}
if (nonce == NULL) {
int s;
/*
* RFC2461 7.2.2:
* "If the source address of the packet prompting the
* solicitation is the same as one of the addresses assigned
* to the outgoing interface, that address SHOULD be placed
* in the IP Source Address of the outgoing solicitation.
* Otherwise, any one of the addresses assigned to the
* interface should be used."
*
* We use the source address for the prompting packet
* (hsrc), if:
* - hsrc is given from the caller (by giving "ln"), and
* - hsrc belongs to the outgoing interface.
* Otherwise, we perform the source address selection as usual.
*/
s = pserialize_read_enter();
if (hsrc && in6ifa_ifpwithaddr(ifp, hsrc)) {
pserialize_read_exit(s);
src = hsrc;
} else {
int error;
struct sockaddr_in6 dst_sa;
pserialize_read_exit(s);
2007-11-10 03:14:31 +03:00
sockaddr_in6_init(&dst_sa, &ip6->ip6_dst, 0, 0, 0);
error = in6_selectsrc(&dst_sa, NULL,
NULL, &ro, NULL, NULL, NULL, &src_in);
if (error != 0) {
char ip6buf[INET6_ADDRSTRLEN];
nd6log(LOG_DEBUG, "source can't be "
"determined: dst=%s, error=%d\n",
IN6_PRINT(ip6buf, &dst_sa.sin6_addr),
error);
pserialize_read_exit(s);
goto bad;
}
src = &src_in;
}
} else {
/*
* Source address for DAD packet must always be IPv6
* unspecified address. (0::0)
* We actually don't have to 0-clear the address (we did it
* above), but we do so here explicitly to make the intention
* clearer.
*/
2009-03-18 19:00:08 +03:00
memset(&src_in, 0, sizeof(src_in));
src = &src_in;
}
ip6->ip6_src = *src;
nd_ns = (struct nd_neighbor_solicit *)(ip6 + 1);
nd_ns->nd_ns_type = ND_NEIGHBOR_SOLICIT;
nd_ns->nd_ns_code = 0;
nd_ns->nd_ns_reserved = 0;
nd_ns->nd_ns_target = *taddr6;
in6_clearscope(&nd_ns->nd_ns_target); /* XXX */
/*
* Add source link-layer address option.
*
* spec implementation
* --- ---
* DAD packet MUST NOT do not add the option
* there's no link layer address:
* impossible do not add the option
* there's link layer address:
* Multicast NS MUST add one add the option
* Unicast NS SHOULD add one add the option
*/
if (nonce == NULL && (mac = nd6_ifptomac(ifp))) {
int optlen = sizeof(struct nd_opt_hdr) + ifp->if_addrlen;
struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_ns + 1);
/* 8 byte alignments... */
optlen = (optlen + 7) & ~7;
2002-06-09 18:43:10 +04:00
m->m_pkthdr.len += optlen;
m->m_len += optlen;
icmp6len += optlen;
2009-03-18 19:00:08 +03:00
memset((void *)nd_opt, 0, optlen);
nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
nd_opt->nd_opt_len = optlen >> 3;
memcpy((void *)(nd_opt + 1), mac, ifp->if_addrlen);
}
/* Add a nonce option (RFC 3971) to detect looped back NS messages.
* This behavior is documented in RFC 7527. */
if (nonce != NULL) {
int optlen = sizeof(struct nd_opt_hdr) + ND_OPT_NONCE_LEN;
struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_ns + 1);
/* 8-byte alignment is required. */
optlen = (optlen + 7) & ~7;
m->m_pkthdr.len += optlen;
m->m_len += optlen;
icmp6len += optlen;
memset(nd_opt, 0, optlen);
nd_opt->nd_opt_type = ND_OPT_NONCE;
nd_opt->nd_opt_len = optlen >> 3;
memcpy(nd_opt + 1, nonce, ND_OPT_NONCE_LEN);
}
ip6->ip6_plen = htons((u_int16_t)icmp6len);
nd_ns->nd_ns_cksum = 0;
nd_ns->nd_ns_cksum =
in6_cksum(m, IPPROTO_ICMPV6, sizeof(*ip6), icmp6len);
ip6_output(m, NULL, &ro, nonce != NULL ? IPV6_UNSPECSRC : 0,
&im6o, NULL, NULL);
icmp6_ifstat_inc(ifp, ifs6_out_msg);
icmp6_ifstat_inc(ifp, ifs6_out_neighborsolicit);
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_OUTHIST + ND_NEIGHBOR_SOLICIT);
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
rtcache_free(&ro);
return;
bad:
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
rtcache_free(&ro);
m_freem(m);
return;
}
/*
* Neighbor advertisement input handling.
*
* Based on RFC 2461
* Based on RFC 2462 (duplicate address detection)
*
* the following items are not implemented yet:
* - proxy advertisement delay rule (RFC2461 7.2.8, last paragraph, SHOULD)
* - anycast advertisement delay rule (RFC2461 7.2.7, SHOULD)
*/
void
nd6_na_input(struct mbuf *m, int off, int icmp6len)
{
struct ifnet *ifp;
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
struct nd_neighbor_advert *nd_na;
struct in6_addr saddr6 = ip6->ip6_src;
struct in6_addr daddr6 = ip6->ip6_dst;
struct in6_addr taddr6;
int flags;
int is_router;
int is_solicited;
int is_override;
char *lladdr = NULL;
int lladdrlen = 0;
struct ifaddr *ifa;
2016-04-04 10:37:07 +03:00
struct llentry *ln = NULL;
union nd_opts ndopts;
struct sockaddr_in6 ssin6;
int rt_announce;
bool checklink = false;
struct psref psref;
struct psref psref_ia;
char ip6buf[INET6_ADDRSTRLEN], ip6buf2[INET6_ADDRSTRLEN];
ifp = m_get_rcvif_psref(m, &psref);
if (ifp == NULL)
goto freeit;
if (ip6->ip6_hlim != 255) {
nd6log(LOG_ERR,
"invalid hlim (%d) from %s to %s on %s\n",
ip6->ip6_hlim, IN6_PRINT(ip6buf, &ip6->ip6_src),
IN6_PRINT(ip6buf2, &ip6->ip6_dst), if_name(ifp));
goto bad;
}
IP6_EXTHDR_GET(nd_na, struct nd_neighbor_advert *, m, off, icmp6len);
if (nd_na == NULL) {
m_put_rcvif_psref(ifp, &psref);
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_TOOSHORT);
return;
}
flags = nd_na->nd_na_flags_reserved;
is_router = ((flags & ND_NA_FLAG_ROUTER) != 0);
is_solicited = ((flags & ND_NA_FLAG_SOLICITED) != 0);
is_override = ((flags & ND_NA_FLAG_OVERRIDE) != 0);
taddr6 = nd_na->nd_na_target;
if (in6_setscope(&taddr6, ifp, NULL)) {
goto bad;
}
if (IN6_IS_ADDR_MULTICAST(&taddr6)) {
nd6log(LOG_ERR, "invalid target address %s\n",
IN6_PRINT(ip6buf, &taddr6));
goto bad;
}
if (is_solicited && IN6_IS_ADDR_MULTICAST(&daddr6)) {
nd6log(LOG_ERR, "a solicited adv is multicasted\n");
goto bad;
}
icmp6len -= sizeof(*nd_na);
nd6_option_init(nd_na + 1, icmp6len, &ndopts);
if (nd6_options(&ndopts) < 0) {
nd6log(LOG_INFO, "invalid ND option, ignored\n");
/* nd6_options have incremented stats */
goto freeit;
}
if (ndopts.nd_opts_tgt_lladdr) {
lladdr = (char *)(ndopts.nd_opts_tgt_lladdr + 1);
lladdrlen = ndopts.nd_opts_tgt_lladdr->nd_opt_len << 3;
}
ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp, &taddr6, &psref_ia);
/*
* Target address matches one of my interface address.
*
* If my address is tentative, this means that there's somebody
* already using the same address as mine. This indicates DAD failure.
* This is defined in RFC 2462.
*
* Otherwise, process as defined in RFC 2461.
*/
if (ifa
&& (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_TENTATIVE)) {
nd6_dad_na_input(ifa);
ifa_release(ifa, &psref_ia);
ifa = NULL;
goto freeit;
}
/* Just for safety, maybe unnecessary. */
if (ifa) {
log(LOG_ERR,
"nd6_na_input: duplicate IP6 address %s\n",
IN6_PRINT(ip6buf, &taddr6));
ifa_release(ifa, &psref_ia);
ifa = NULL;
goto freeit;
}
/*
* Make sure the source address is from a neighbor's address.
*/
sockaddr_in6_init(&ssin6, &saddr6, 0, 0, 0);
if (nd6_is_addr_neighbor(&ssin6, ifp) == 0) {
nd6log(LOG_INFO, "ND packet from non-neighbor %s on %s\n",
IN6_PRINT(ip6buf, &saddr6), if_name(ifp));
goto bad;
}
if (lladdr && ((ifp->if_addrlen + 2 + 7) & ~7) != lladdrlen) {
nd6log(LOG_INFO, "lladdrlen mismatch for %s "
"(if %d, NA packet %d)\n", IN6_PRINT(ip6buf, &taddr6),
ifp->if_addrlen, lladdrlen - 2);
goto bad;
}
/*
* If no neighbor cache entry is found, NA SHOULD silently be
* discarded.
*/
2016-04-04 10:37:07 +03:00
ln = nd6_lookup(&taddr6, ifp, true);
if (ln == NULL)
goto freeit;
rt_announce = 0;
if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
/*
* If the link-layer has address, and no lladdr option came,
* discard the packet.
*/
if (ifp->if_addrlen && !lladdr)
goto freeit;
/*
* Record link-layer address, and update the state.
*/
2016-04-04 10:37:07 +03:00
memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
ln->la_flags |= LLE_VALID;
rt_announce = 1;
if (is_solicited) {
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
if (!ND6_LLINFO_PERMANENT(ln)) {
nd6_llinfo_settimer(ln,
ND_IFINFO(ln->lle_tbl->llt_ifp)->reachable * hz);
}
} else {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
}
if ((ln->ln_router = is_router) != 0) {
/*
* This means a router's state has changed from
* non-reachable to probably reachable, and might
* affect the status of associated prefixes..
*/
checklink = true;
}
} else {
int llchange;
/*
* Check if the link-layer address has changed or not.
*/
if (lladdr == NULL)
llchange = 0;
else {
2016-04-04 10:37:07 +03:00
if (ln->la_flags & LLE_VALID) {
if (memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen))
llchange = rt_announce = 1;
else
llchange = 0;
} else
llchange = rt_announce = 1;
}
/*
* This is VERY complex. Look at it with care.
*
* override solicit lladdr llchange action
* (L: record lladdr)
*
* 0 0 n -- (2c)
* 0 0 y n (2b) L
* 0 0 y y (1) REACHABLE->STALE
* 0 1 n -- (2c) *->REACHABLE
* 0 1 y n (2b) L *->REACHABLE
* 0 1 y y (1) REACHABLE->STALE
* 1 0 n -- (2a)
* 1 0 y n (2a) L
* 1 0 y y (2a) L *->STALE
* 1 1 n -- (2a) *->REACHABLE
* 1 1 y n (2a) L *->REACHABLE
* 1 1 y y (2a) L *->REACHABLE
*/
if (!is_override && lladdr != NULL && llchange) { /* (1) */
/*
* If state is REACHABLE, make it STALE.
* no other updates should be done.
*/
if (ln->ln_state == ND6_LLINFO_REACHABLE) {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
}
goto freeit;
} else if (is_override /* (2a) */
|| (!is_override && lladdr != NULL && !llchange) /* (2b) */
|| lladdr == NULL) { /* (2c) */
/*
* Update link-local address, if any.
*/
if (lladdr != NULL) {
2016-04-04 10:37:07 +03:00
memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
ln->la_flags |= LLE_VALID;
}
/*
* If solicited, make the state REACHABLE.
* If not solicited and the link-layer address was
* changed, make it STALE.
*/
if (is_solicited) {
ln->ln_state = ND6_LLINFO_REACHABLE;
ln->ln_byhint = 0;
if (!ND6_LLINFO_PERMANENT(ln)) {
nd6_llinfo_settimer(ln,
ND_IFINFO(ifp)->reachable * hz);
}
} else {
if (lladdr && llchange) {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer(ln,
nd6_gctimer * hz);
}
}
}
if (ln->ln_router && !is_router) {
/*
* The peer dropped the router flag.
* Remove the sender from the Default Router List and
* update the Destination Cache entries.
*/
struct nd_defrouter *dr;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
const struct in6_addr *in6;
2016-04-04 10:37:07 +03:00
in6 = &ln->r_l3addr.addr6;
2001-10-16 10:24:44 +04:00
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
dr = nd6_defrouter_lookup(in6, ln->lle_tbl->llt_ifp);
if (dr)
2016-12-11 10:38:50 +03:00
nd6_defrtrlist_del(dr, NULL);
else if (!ip6_forwarding) {
/*
* Even if the neighbor is not in the default
* router list, the neighbor may be used
* as a next hop for some destinations
* (e.g. redirect case). So we must
2016-12-11 10:38:50 +03:00
* call nd6_rt_flush explicitly.
*/
2016-12-11 10:38:50 +03:00
nd6_rt_flush(&ip6->ip6_src, ln->lle_tbl->llt_ifp);
}
ND6_UNLOCK();
}
ln->ln_router = is_router;
}
2016-04-04 10:37:07 +03:00
/*
* XXX: does this matter?
* rt->rt_flags &= ~RTF_REJECT;
*/
ln->ln_asked = 0;
2016-04-04 10:37:07 +03:00
nd6_llinfo_release_pkts(ln, ifp);
/* FIXME */
#if 0
if (rt_announce) /* tell user process about any new lladdr */
rt_newmsg(RTM_CHANGE, rt);
2016-04-04 10:37:07 +03:00
#endif
freeit:
2016-04-04 10:37:07 +03:00
if (ln != NULL)
LLE_WUNLOCK(ln);
if (checklink) {
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
nd6_pfxlist_onlink_check();
ND6_UNLOCK();
}
m_put_rcvif_psref(ifp, &psref);
m_freem(m);
return;
bad:
2016-04-04 10:37:07 +03:00
if (ln != NULL)
LLE_WUNLOCK(ln);
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_BADNA);
m_put_rcvif_psref(ifp, &psref);
m_freem(m);
}
/*
* Neighbor advertisement output handling.
*
* Based on RFC 2461
*
* the following items are not implemented yet:
* - proxy advertisement delay rule (RFC2461 7.2.8, last paragraph, SHOULD)
* - anycast advertisement delay rule (RFC2461 7.2.7, SHOULD)
*/
void
nd6_na_output(
struct ifnet *ifp,
const struct in6_addr *daddr6_0,
const struct in6_addr *taddr6,
u_long flags,
int tlladdr, /* 1 if include target link-layer address */
const struct sockaddr *sdl0) /* sockaddr_dl (= proxy NA) or NULL */
{
struct mbuf *m;
struct ip6_hdr *ip6;
struct nd_neighbor_advert *nd_na;
struct ip6_moptions im6o;
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
struct sockaddr *dst;
union {
struct sockaddr dst;
struct sockaddr_in6 dst6;
} u;
struct in6_addr daddr6;
int icmp6len, maxlen, error;
const void *mac;
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
struct route ro;
mac = NULL;
memset(&ro, 0, sizeof(ro));
daddr6 = *daddr6_0; /* make a local copy for modification */
/* estimate the size of message */
maxlen = sizeof(*ip6) + sizeof(*nd_na);
maxlen += (sizeof(struct nd_opt_hdr) + ifp->if_addrlen + 7) & ~7;
KASSERTMSG(max_linkhdr + maxlen <= MCLBYTES,
"max_linkhdr + maxlen > MCLBYTES (%d + %d > %d)",
max_linkhdr, maxlen, MCLBYTES);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m && max_linkhdr + maxlen >= MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == NULL)
return;
m_reset_rcvif(m);
if (IN6_IS_ADDR_MULTICAST(&daddr6)) {
m->m_flags |= M_MCAST;
im6o.im6o_multicast_if_index = if_get_index(ifp);
im6o.im6o_multicast_hlim = 255;
im6o.im6o_multicast_loop = 0;
}
icmp6len = sizeof(*nd_na);
m->m_pkthdr.len = m->m_len = sizeof(struct ip6_hdr) + icmp6len;
m->m_data += max_linkhdr; /* or MH_ALIGN() equivalent? */
/* fill neighbor advertisement packet */
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_flow = 0;
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
ip6->ip6_nxt = IPPROTO_ICMPV6;
ip6->ip6_hlim = 255;
if (IN6_IS_ADDR_UNSPECIFIED(&daddr6)) {
/* reply to DAD */
daddr6.s6_addr16[0] = IPV6_ADDR_INT16_MLL;
daddr6.s6_addr16[1] = 0;
daddr6.s6_addr32[1] = 0;
daddr6.s6_addr32[2] = 0;
daddr6.s6_addr32[3] = IPV6_ADDR_INT32_ONE;
if (in6_setscope(&daddr6, ifp, NULL))
goto bad;
flags &= ~ND_NA_FLAG_SOLICITED;
}
ip6->ip6_dst = daddr6;
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
sockaddr_in6_init(&u.dst6, &daddr6, 0, 0, 0);
dst = &u.dst;
if (rtcache_setdst(&ro, dst) != 0)
goto bad;
/*
* Select a source whose scope is the same as that of the dest.
*/
error = in6_selectsrc(satosin6(dst), NULL, NULL, &ro, NULL, NULL, NULL,
&ip6->ip6_src);
if (error != 0) {
char ip6buf[INET6_ADDRSTRLEN];
nd6log(LOG_DEBUG, "source can't be "
"determined: dst=%s, error=%d\n",
IN6_PRINT(ip6buf, &satocsin6(dst)->sin6_addr), error);
goto bad;
}
nd_na = (struct nd_neighbor_advert *)(ip6 + 1);
nd_na->nd_na_type = ND_NEIGHBOR_ADVERT;
nd_na->nd_na_code = 0;
nd_na->nd_na_target = *taddr6;
in6_clearscope(&nd_na->nd_na_target); /* XXX */
/*
* "tlladdr" indicates NS's condition for adding tlladdr or not.
* see nd6_ns_input() for details.
* Basically, if NS packet is sent to unicast/anycast addr,
* target lladdr option SHOULD NOT be included.
*/
if (tlladdr) {
/*
* sdl0 != NULL indicates proxy NA. If we do proxy, use
* lladdr in sdl0. If we are not proxying (sending NA for
* my address) use lladdr configured for the interface.
*/
if (sdl0 == NULL)
mac = nd6_ifptomac(ifp);
else if (sdl0->sa_family == AF_LINK) {
const struct sockaddr_dl *sdl;
sdl = satocsdl(sdl0);
if (sdl->sdl_alen == ifp->if_addrlen)
mac = CLLADDR(sdl);
}
}
if (tlladdr && mac) {
int optlen = sizeof(struct nd_opt_hdr) + ifp->if_addrlen;
struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd_na + 1);
2002-06-09 18:43:10 +04:00
/* roundup to 8 bytes alignment! */
optlen = (optlen + 7) & ~7;
m->m_pkthdr.len += optlen;
m->m_len += optlen;
icmp6len += optlen;
2009-03-18 19:00:08 +03:00
memset((void *)nd_opt, 0, optlen);
nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
nd_opt->nd_opt_len = optlen >> 3;
memcpy((void *)(nd_opt + 1), mac, ifp->if_addrlen);
} else
flags &= ~ND_NA_FLAG_OVERRIDE;
ip6->ip6_plen = htons((u_int16_t)icmp6len);
nd_na->nd_na_flags_reserved = flags;
nd_na->nd_na_cksum = 0;
nd_na->nd_na_cksum =
in6_cksum(m, IPPROTO_ICMPV6, sizeof(struct ip6_hdr), icmp6len);
ip6_output(m, NULL, NULL, 0, &im6o, NULL, NULL);
icmp6_ifstat_inc(ifp, ifs6_out_msg);
icmp6_ifstat_inc(ifp, ifs6_out_neighboradvert);
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_OUTHIST + ND_NEIGHBOR_ADVERT);
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
rtcache_free(&ro);
return;
bad:
Eliminate address family-specific route caches (struct route, struct route_in6, struct route_iso), replacing all caches with a struct route. The principle benefit of this change is that all of the protocol families can benefit from route cache-invalidation, which is necessary for correct routing. Route-cache invalidation fixes an ancient PR, kern/3508, at long last; it fixes various other PRs, also. Discussions with and ideas from Joerg Sonnenberger influenced this work tremendously. Of course, all design oversights and bugs are mine. DETAILS 1 I added to each address family a pool of sockaddrs. I have introduced routines for allocating, copying, and duplicating, and freeing sockaddrs: struct sockaddr *sockaddr_alloc(sa_family_t af, int flags); struct sockaddr *sockaddr_copy(struct sockaddr *dst, const struct sockaddr *src); struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags); void sockaddr_free(struct sockaddr *sa); sockaddr_alloc() returns either a sockaddr from the pool belonging to the specified family, or NULL if the pool is exhausted. The returned sockaddr has the right size for that family; sa_family and sa_len fields are initialized to the family and sockaddr length---e.g., sa_family = AF_INET and sa_len = sizeof(struct sockaddr_in). sockaddr_free() puts the given sockaddr back into its family's pool. sockaddr_dup() and sockaddr_copy() work analogously to strdup() and strcpy(), respectively. sockaddr_copy() KASSERTs that the family of the destination and source sockaddrs are alike. The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is passed directly to pool_get(9). 2 I added routines for initializing sockaddrs in each address family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(), etc. They are fairly self-explanatory. 3 structs route_in6 and route_iso are no more. All protocol families use struct route. I have changed the route cache, 'struct route', so that it does not contain storage space for a sockaddr. Instead, struct route points to a sockaddr coming from the pool the sockaddr belongs to. I added a new method to struct route, rtcache_setdst(), for setting the cache destination: int rtcache_setdst(struct route *, const struct sockaddr *); rtcache_setdst() returns 0 on success, or ENOMEM if no memory is available to create the sockaddr storage. It is now possible for rtcache_getdst() to return NULL if, say, rtcache_setdst() failed. I check the return value for NULL everywhere in the kernel. 4 Each routing domain (struct domain) has a list of live route caches, dom_rtcache. rtflushall(sa_family_t af) looks up the domain indicated by 'af', walks the domain's list of route caches and invalidates each one.
2007-05-03 00:40:22 +04:00
rtcache_free(&ro);
m_freem(m);
return;
}
const void *
nd6_ifptomac(const struct ifnet *ifp)
{
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
case IFT_IEEE1394:
case IFT_PROPVIRTUAL:
case IFT_CARP:
case IFT_L2VLAN:
case IFT_IEEE80211:
return CLLADDR(ifp->if_sadl);
default:
return NULL;
}
}
TAILQ_HEAD(dadq_head, dadq);
struct dadq {
TAILQ_ENTRY(dadq) dad_list;
struct ifaddr *dad_ifa;
int dad_count; /* max NS to send */
int dad_ns_tcount; /* # of trials to send NS */
int dad_ns_ocount; /* NS sent so far */
int dad_ns_icount;
int dad_na_icount;
int dad_ns_lcount; /* looped back NS */
struct callout dad_timer_ch;
#define ND_OPT_NONCE_STORE 3 /* dad_count should not exceed this */
/*
* The default ip6_dad_count is 1 as specified by RFC 4862 and
* practically must users won't exceed this.
* A storage of 3 is defaulted to here, in-case the administrator wants
* to match the equivalent behaviour in our ARP implementation.
* This constraint could be removed by sending the on wire nonce as
* hmac(key, dad_ns_ocount), but that would increase the nonce size
* sent on the wire.
*/
uint8_t dad_nonce[ND_OPT_NONCE_STORE][ND_OPT_NONCE_LEN];
};
static struct dadq_head dadq;
static int dad_init = 0;
static kmutex_t nd6_dad_lock;
static struct dadq *
nd6_dad_find(struct ifaddr *ifa, struct nd_opt_nonce *nonce)
{
struct dadq *dp;
int i, nonce_max;
KASSERT(mutex_owned(&nd6_dad_lock));
TAILQ_FOREACH(dp, &dadq, dad_list) {
if (dp->dad_ifa != ifa)
continue;
if (nonce == NULL ||
nonce->nd_opt_nonce_len != (ND_OPT_NONCE_LEN + 2) / 8)
break;
nonce_max = MIN(dp->dad_ns_ocount, ND_OPT_NONCE_STORE);
for (i = 0; i < nonce_max; i++) {
if (memcmp(nonce->nd_opt_nonce,
dp->dad_nonce[i],
ND_OPT_NONCE_LEN) == 0)
break;
}
if (i < nonce_max) {
char ip6buf[INET6_ADDRSTRLEN];
log(LOG_DEBUG,
"%s: detected a looped back NS message for %s\n",
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???",
IN6_PRINT(ip6buf, IFA_IN6(ifa)));
dp->dad_ns_lcount++;
continue;
}
break;
}
return dp;
}
static void
nd6_dad_starttimer(struct dadq *dp, int ticks)
{
callout_reset(&dp->dad_timer_ch, ticks,
(void (*)(void *))nd6_dad_timer, dp);
}
static void
nd6_dad_stoptimer(struct dadq *dp)
{
KASSERT(mutex_owned(&nd6_dad_lock));
TAILQ_REMOVE(&dadq, dp, dad_list);
/* Tell the timer that dp is being destroyed. */
dp->dad_ifa = NULL;
callout_halt(&dp->dad_timer_ch, &nd6_dad_lock);
}
static void
nd6_dad_destroytimer(struct dadq *dp)
{
KASSERT(dp->dad_ifa == NULL);
callout_destroy(&dp->dad_timer_ch);
kmem_intr_free(dp, sizeof(*dp));
}
/*
* Start Duplicate Address Detection (DAD) for specified interface address.
*
* Note that callout is used when xtick > 0 and not when xtick == 0.
*
* xtick: minimum delay ticks for IFF_UP event
*/
void
nd6_dad_start(struct ifaddr *ifa, int xtick)
{
struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa;
struct dadq *dp;
char ip6buf[INET6_ADDRSTRLEN];
if (!dad_init) {
TAILQ_INIT(&dadq);
mutex_init(&nd6_dad_lock, MUTEX_DEFAULT, IPL_NONE);
dad_init++;
}
/*
* If we don't need DAD, don't do it.
* There are several cases:
* - DAD is disabled
* - the interface address is anycast
*/
if (!(ia->ia6_flags & IN6_IFF_TENTATIVE)) {
log(LOG_DEBUG,
"nd6_dad_start: called with non-tentative address "
"%s(%s)\n",
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
return;
}
if (ia->ia6_flags & IN6_IFF_ANYCAST || !ip6_dad_enabled()) {
ia->ia6_flags &= ~IN6_IFF_TENTATIVE;
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
return;
}
KASSERT(ifa->ifa_ifp != NULL);
if (!(ifa->ifa_ifp->if_flags & IFF_UP))
return;
dp = kmem_intr_alloc(sizeof(*dp), KM_NOSLEEP);
mutex_enter(&nd6_dad_lock);
if (nd6_dad_find(ifa, NULL) != NULL) {
mutex_exit(&nd6_dad_lock);
/* DAD already in progress */
if (dp != NULL)
kmem_intr_free(dp, sizeof(*dp));
return;
}
if (dp == NULL) {
mutex_exit(&nd6_dad_lock);
log(LOG_ERR, "nd6_dad_start: memory allocation failed for "
"%s(%s)\n",
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
return;
}
/*
* Send NS packet for DAD, ip6_dad_count times.
* Note that we must delay the first transmission, if this is the
* first packet to be sent from the interface after interface
* (re)initialization.
*/
callout_init(&dp->dad_timer_ch, CALLOUT_MPSAFE);
dp->dad_ifa = ifa;
ifaref(ifa); /* just for safety */
dp->dad_count = ip6_dad_count;
dp->dad_ns_icount = dp->dad_na_icount = 0;
dp->dad_ns_ocount = dp->dad_ns_tcount = 0;
dp->dad_ns_lcount = 0;
TAILQ_INSERT_TAIL(&dadq, (struct dadq *)dp, dad_list);
nd6log(LOG_DEBUG, "%s: starting DAD for %s\n", if_name(ifa->ifa_ifp),
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr));
if (xtick == 0) {
nd6_dad_ns_output(dp, ifa);
2002-06-07 11:38:51 +04:00
nd6_dad_starttimer(dp,
(long)ND_IFINFO(ifa->ifa_ifp)->retrans * hz / 1000);
} else
nd6_dad_starttimer(dp, xtick);
mutex_exit(&nd6_dad_lock);
}
/*
* terminate DAD unconditionally. used for address removals.
*/
void
nd6_dad_stop(struct ifaddr *ifa)
{
struct dadq *dp;
if (!dad_init)
return;
mutex_enter(&nd6_dad_lock);
dp = nd6_dad_find(ifa, NULL);
if (dp == NULL) {
mutex_exit(&nd6_dad_lock);
/* DAD wasn't started yet */
return;
}
/* Prevent the timer from running anymore. */
nd6_dad_stoptimer(dp);
mutex_exit(&nd6_dad_lock);
nd6_dad_destroytimer(dp);
ifafree(ifa);
}
static void
nd6_dad_timer(struct dadq *dp)
{
struct ifaddr *ifa;
struct in6_ifaddr *ia;
int duplicate = 0;
char ip6buf[INET6_ADDRSTRLEN];
bool need_free = false;
KERNEL_LOCK_UNLESS_NET_MPSAFE();
mutex_enter(&nd6_dad_lock);
ifa = dp->dad_ifa;
if (ifa == NULL) {
/* dp is being destroyed by someone. Do nothing. */
goto done;
}
ia = (struct in6_ifaddr *)ifa;
if (ia->ia6_flags & IN6_IFF_DUPLICATED) {
log(LOG_ERR, "nd6_dad_timer: called with duplicate address "
"%s(%s)\n",
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
goto done;
}
if ((ia->ia6_flags & IN6_IFF_TENTATIVE) == 0) {
log(LOG_ERR, "nd6_dad_timer: called with non-tentative address "
"%s(%s)\n",
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr),
ifa->ifa_ifp ? if_name(ifa->ifa_ifp) : "???");
goto done;
}
/* timeouted with IFF_{RUNNING,UP} check */
if (dp->dad_ns_tcount > dad_maxtry) {
nd6log(LOG_INFO, "%s: could not run DAD, driver problem?\n",
if_name(ifa->ifa_ifp));
nd6_dad_stoptimer(dp);
need_free = true;
goto done;
}
/* Need more checks? */
if (dp->dad_ns_ocount < dp->dad_count) {
/*
* We have more NS to go. Send NS packet for DAD.
*/
nd6_dad_ns_output(dp, ifa);
2002-06-07 11:38:51 +04:00
nd6_dad_starttimer(dp,
(long)ND_IFINFO(ifa->ifa_ifp)->retrans * hz / 1000);
} else {
/*
* We have transmitted sufficient number of DAD packets.
* See what we've got.
*/
if (dp->dad_na_icount) {
/*
* the check is in nd6_dad_na_input(),
* but just in case
*/
duplicate++;
}
if (dp->dad_ns_icount) {
/* We've seen NS, means DAD has failed. */
duplicate++;
}
if (duplicate) {
nd6_dad_duplicated(dp);
nd6_dad_stoptimer(dp);
need_free = true;
} else {
/*
* We are done with DAD. No NA came, no NS came.
* No duplicate address found.
*/
ia->ia6_flags &= ~IN6_IFF_TENTATIVE;
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
nd6log(LOG_DEBUG,
"%s: DAD complete for %s - no duplicates found\n",
if_name(ifa->ifa_ifp),
IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr));
nd6_dad_stoptimer(dp);
need_free = true;
}
}
done:
mutex_exit(&nd6_dad_lock);
if (need_free) {
nd6_dad_destroytimer(dp);
KASSERT(ifa != NULL);
ifafree(ifa);
}
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
}
2016-12-14 07:05:11 +03:00
static void
nd6_dad_duplicated(struct dadq *dp)
{
struct ifaddr *ifa = dp->dad_ifa;
struct in6_ifaddr *ia;
struct ifnet *ifp;
char ip6buf[INET6_ADDRSTRLEN];
KASSERT(mutex_owned(&nd6_dad_lock));
KASSERT(ifa != NULL);
ifp = ifa->ifa_ifp;
ia = (struct in6_ifaddr *)ifa;
log(LOG_ERR, "%s: DAD detected duplicate IPv6 address %s: "
"NS in/out/loopback=%d/%d/%d, NA in=%d\n",
if_name(ifp), IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr),
dp->dad_ns_icount, dp->dad_ns_ocount, dp->dad_ns_lcount,
dp->dad_na_icount);
ia->ia6_flags &= ~IN6_IFF_TENTATIVE;
ia->ia6_flags |= IN6_IFF_DUPLICATED;
log(LOG_ERR, "%s: DAD complete for %s - duplicate found\n",
if_name(ifp), IN6_PRINT(ip6buf, &ia->ia_addr.sin6_addr));
log(LOG_ERR, "%s: manual intervention required\n",
if_name(ifp));
/* Inform the routing socket that DAD has completed */
rt_newaddrmsg(RTM_NEWADDR, ifa, 0, NULL);
/*
* If the address is a link-local address formed from an interface
* identifier based on the hardware address which is supposed to be
* uniquely assigned (e.g., EUI-64 for an Ethernet interface), IP
* operation on the interface SHOULD be disabled.
* [rfc2462bis-03 Section 5.4.5]
*/
if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr)) {
struct in6_addr in6;
/*
* To avoid over-reaction, we only apply this logic when we are
* very sure that hardware addresses are supposed to be unique.
*/
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
case IFT_ATM:
case IFT_IEEE1394:
case IFT_IEEE80211:
in6 = ia->ia_addr.sin6_addr;
if (in6_get_hw_ifid(ifp, &in6) == 0 &&
IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr, &in6)) {
ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
log(LOG_ERR, "%s: possible hardware address "
"duplication detected, disable IPv6\n",
if_name(ifp));
}
break;
}
}
}
static void
nd6_dad_ns_output(struct dadq *dp, struct ifaddr *ifa)
{
struct in6_ifaddr *ia = (struct in6_ifaddr *)ifa;
struct ifnet *ifp = ifa->ifa_ifp;
uint8_t *nonce;
dp->dad_ns_tcount++;
if ((ifp->if_flags & IFF_UP) == 0) {
#if 0
printf("%s: interface down?\n", if_name(ifp));
#endif
return;
}
if ((ifp->if_flags & IFF_RUNNING) == 0) {
#if 0
printf("%s: interface not running?\n", if_name(ifp));
#endif
return;
}
dp->dad_ns_tcount = 0;
nonce = dp->dad_nonce[dp->dad_ns_ocount % ND_OPT_NONCE_STORE];
cprng_fast(nonce, ND_OPT_NONCE_LEN);
dp->dad_ns_ocount++;
nd6_ns_output(ifp, NULL, &ia->ia_addr.sin6_addr, NULL, nonce);
}
static void
nd6_dad_ns_input(struct ifaddr *ifa, struct nd_opt_nonce *nonce)
{
struct dadq *dp;
int duplicate;
if (ifa == NULL)
panic("ifa == NULL in nd6_dad_ns_input");
duplicate = 0;
mutex_enter(&nd6_dad_lock);
dp = nd6_dad_find(ifa, nonce);
/*
* if I'm yet to start DAD, someone else started using this address
* first. I have a duplicate and you win.
*/
if (dp == NULL || dp->dad_ns_ocount == 0)
duplicate++;
/* XXX more checks for loopback situation - see nd6_dad_timer too */
if (duplicate) {
if (dp) {
nd6_dad_duplicated(dp);
nd6_dad_stoptimer(dp);
}
} else {
/*
* not sure if I got a duplicate.
* increment ns count and see what happens.
*/
if (dp)
dp->dad_ns_icount++;
}
mutex_exit(&nd6_dad_lock);
if (duplicate && dp) {
nd6_dad_destroytimer(dp);
ifafree(ifa);
}
}
static void
nd6_dad_na_input(struct ifaddr *ifa)
{
struct dadq *dp;
KASSERT(ifa != NULL);
mutex_enter(&nd6_dad_lock);
dp = nd6_dad_find(ifa, NULL);
if (dp == NULL) {
mutex_exit(&nd6_dad_lock);
return;
}
dp->dad_na_icount++;
/* remove the address. */
nd6_dad_duplicated(dp);
nd6_dad_stoptimer(dp);
mutex_exit(&nd6_dad_lock);
nd6_dad_destroytimer(dp);
ifafree(ifa);
}