NetBSD/crypto/external/bsd/openssh/dist/ssh-sk-helper.c

355 lines
9.8 KiB
C
Raw Normal View History

Import OpenSSH 9.3 + the fix from p2 for the PKCS#11 remote provider The previous version was OpenSSH 9.1 OpenSSH 9.3p2 (2023-07-19) OpenSSH 9.3p2 was released on 2023-07-19. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Changes since OpenSSH 9.3 ========================= This release fixes a security bug. Security ======== Fix CVE-2023-38408 - a condition where specific libaries loaded via ssh-agent(1)'s PKCS#11 support could be abused to achieve remote code execution via a forwarded agent socket if the following conditions are met: * Exploitation requires the presence of specific libraries on the victim system. * Remote exploitation requires that the agent was forwarded to an attacker-controlled system. Exploitation can also be prevented by starting ssh-agent(1) with an empty PKCS#11/FIDO allowlist (ssh-agent -P '') or by configuring an allowlist that contains only specific provider libraries. This vulnerability was discovered and demonstrated to be exploitable by the Qualys Security Advisory team. In addition to removing the main precondition for exploitation, this release removes the ability for remote ssh-agent(1) clients to load PKCS#11 modules by default (see below). Potentially-incompatible changes -------------------------------- * ssh-agent(8): the agent will now refuse requests to load PKCS#11 modules issued by remote clients by default. A flag has been added to restore the previous behaviour "-Oallow-remote-pkcs11". Note that ssh-agent(8) depends on the SSH client to identify requests that are remote. The OpenSSH >=8.9 ssh(1) client does this, but forwarding access to an agent socket using other tools may circumvent this restriction. Checksums: ========== - SHA1 (openssh-9.3p2.tar.gz) = 219cf700c317f400bb20b001c0406056f7188ea4 - SHA256 (openssh-9.3p2.tar.gz) = IA6+FH9ss/EB/QzfngJEKvfdyimN/9n0VoeOfMrGdug= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com OpenSSH 9.3/9.3p1 (2023-03-15) OpenSSH 9.3 was released on 2023-03-15. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Changes since OpenSSH 9.2 ========================= This release fixes a number of security bugs. Security ======== This release contains fixes for a security problem and a memory safety problem. The memory safety problem is not believed to be exploitable, but we report most network-reachable memory faults as security bugs. * ssh-add(1): when adding smartcard keys to ssh-agent(1) with the per-hop destination constraints (ssh-add -h ...) added in OpenSSH 8.9, a logic error prevented the constraints from being communicated to the agent. This resulted in the keys being added without constraints. The common cases of non-smartcard keys and keys without destination constraints are unaffected. This problem was reported by Luci Stanescu. * ssh(1): Portable OpenSSH provides an implementation of the getrrsetbyname(3) function if the standard library does not provide it, for use by the VerifyHostKeyDNS feature. A specifically crafted DNS response could cause this function to perform an out-of-bounds read of adjacent stack data, but this condition does not appear to be exploitable beyond denial-of- service to the ssh(1) client. The getrrsetbyname(3) replacement is only included if the system's standard library lacks this function and portable OpenSSH was not compiled with the ldns library (--with-ldns). getrrsetbyname(3) is only invoked if using VerifyHostKeyDNS to fetch SSHFP records. This problem was found by the Coverity static analyzer. New features ------------ * ssh-keygen(1), ssh-keyscan(1): accept -Ohashalg=sha1|sha256 when outputting SSHFP fingerprints to allow algorithm selection. bz3493 * sshd(8): add a `sshd -G` option that parses and prints the effective configuration without attempting to load private keys and perform other checks. This allows usage of the option before keys have been generated and for configuration evaluation and verification by unprivileged users. Bugfixes -------- * scp(1), sftp(1): fix progressmeter corruption on wide displays; bz3534 * ssh-add(1), ssh-keygen(1): use RSA/SHA256 when testing usability of private keys as some systems are starting to disable RSA/SHA1 in libcrypto. * sftp-server(8): fix a memory leak. GHPR363 * ssh(1), sshd(8), ssh-keyscan(1): remove vestigal protocol compatibility code and simplify what's left. * Fix a number of low-impact Coverity static analysis findings. These include several reported via bz2687 * ssh_config(5), sshd_config(5): mention that some options are not first-match-wins. * Rework logging for the regression tests. Regression tests will now capture separate logs for each ssh and sshd invocation in a test. * ssh(1): make `ssh -Q CASignatureAlgorithms` work as the manpage says it should; bz3532. * ssh(1): ensure that there is a terminating newline when adding a new entry to known_hosts; bz3529 Portability ----------- * sshd(8): harden Linux seccomp sandbox. Move to an allowlist of mmap(2), madvise(2) and futex(2) flags, removing some concerning kernel attack surface. * sshd(8): improve Linux seccomp-bpf sandbox for older systems; bz3537 Checksums: ========== - SHA1 (openssh-9.3.tar.gz) = 5f9d2f73ddfe94f3f0a78bdf46704b6ad7b66ec7 - SHA256 (openssh-9.3.tar.gz) = eRcXkFZByz70DUBUcyIdvU0pVxP2X280FrmV8pyUdrk= - SHA1 (openssh-9.3p1.tar.gz) = 610959871bf8d6baafc3525811948f85b5dd84ab - SHA256 (openssh-9.3p1.tar.gz) = 6bq6dwGnalHz2Fpiw4OjydzZf6kAuFm8fbEUwYaK+Kg= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com OpenSSH 9.2/9.2p1 (2023-02-02) OpenSSH 9.2 was released on 2023-02-02. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Changes since OpenSSH 9.1 ========================= This release fixes a number of security bugs. Security ======== This release contains fixes for two security problems and a memory safety problem. The memory safety problem is not believed to be exploitable, but we report most network-reachable memory faults as security bugs. * sshd(8): fix a pre-authentication double-free memory fault introduced in OpenSSH 9.1. This is not believed to be exploitable, and it occurs in the unprivileged pre-auth process that is subject to chroot(2) and is further sandboxed on most major platforms. * ssh(8): in OpenSSH releases after 8.7, the PermitRemoteOpen option would ignore its first argument unless it was one of the special keywords "any" or "none", causing the permission list to fail open if only one permission was specified. bz3515 * ssh(1): if the CanonicalizeHostname and CanonicalizePermittedCNAMEs options were enabled, and the system/libc resolver did not check that names in DNS responses were valid, then use of these options could allow an attacker with control of DNS to include invalid characters (possibly including wildcards) in names added to known_hosts files when they were updated. These names would still have to match the CanonicalizePermittedCNAMEs allow-list, so practical exploitation appears unlikely. Potentially-incompatible changes -------------------------------- * ssh(1): add a new EnableEscapeCommandline ssh_config(5) option that controls whether the client-side ~C escape sequence that provides a command-line is available. Among other things, the ~C command-line could be used to add additional port-forwards at runtime. This option defaults to "no", disabling the ~C command-line that was previously enabled by default. Turning off the command-line allows platforms that support sandboxing of the ssh(1) client (currently only OpenBSD) to use a stricter default sandbox policy. New features ------------ * sshd(8): add support for channel inactivity timeouts via a new sshd_config(5) ChannelTimeout directive. This allows channels that have not seen traffic in a configurable interval to be automatically closed. Different timeouts may be applied to session, X11, agent and TCP forwarding channels. * sshd(8): add a sshd_config UnusedConnectionTimeout option to terminate client connections that have no open channels for a length of time. This complements the ChannelTimeout option above. * sshd(8): add a -V (version) option to sshd like the ssh client has. * ssh(1): add a "Host" line to the output of ssh -G showing the original hostname argument. bz3343 * scp(1), sftp(1): add a -X option to both scp(1) and sftp(1) to allow control over some SFTP protocol parameters: the copy buffer length and the number of in-flight requests, both of which are used during upload/download. Previously these could be controlled in sftp(1) only. This makes them available in both SFTP protocol clients using the same option character sequence. * ssh-keyscan(1): allow scanning of complete CIDR address ranges, e.g. "ssh-keyscan 192.168.0.0/24". If a CIDR range is passed, then it will be expanded to all possible addresses in the range including the all-0s and all-1s addresses. bz#976 * ssh(1): support dynamic remote port forwarding in escape command-line's -R processing. bz#3499 Bugfixes -------- * ssh(1): when restoring non-blocking mode to stdio fds, restore exactly the flags that ssh started with and don't just clobber them with zero, as this could also remove the append flag from the set. bz3523 * ssh(1): avoid printf("%s", NULL) if using UserKnownHostsFile=none and a hostkey in one of the system known hosts file changes. * scp(1): switch scp from using pipes to a socket-pair for communication with its ssh sub-processes, matching how sftp(1) operates. * sshd(8): clear signal mask early in main(); sshd may have been started with one or more signals masked (sigprocmask(2) is not cleared on fork/exec) and this could interfere with various things, e.g. the login grace timer. Execution environments that fail to clear the signal mask before running sshd are clearly broken, but apparently they do exist. * ssh(1): warn if no host keys for hostbased auth can be loaded. * sshd(8): Add server debugging for hostbased auth that is queued and sent to the client after successful authentication, but also logged to assist in diagnosis of HostbasedAuthentication problems. bz3507 * ssh(1): document use of the IdentityFile option as being usable to list public keys as well as private keys. GHPR352 * sshd(8): check for and disallow MaxStartups values less than or equal to zero during config parsing, rather than failing later at runtime. bz3489 * ssh-keygen(1): fix parsing of hex cert expiry times specified on the command-line when acting as a CA. * scp(1): when scp(1) is using the SFTP protocol for transport (the default), better match scp/rcp's handling of globs that don't match the globbed characters but do match literally (e.g. trying to transfer a file named "foo.[1]"). Previously scp(1) in SFTP mode would not match these pathnames but legacy scp/rcp mode would. bz3488 * ssh-agent(1): document the "-O no-restrict-websafe" command-line option. * ssh(1): honour user's umask(2) if it is more restrictive then the ssh default (022). Portability ----------- * sshd(8): allow writev(2) in the Linux seccomp sandbox. This seems to be used by recent glibcs at least in some configurations during error conditions. bz3512. * sshd(8): simply handling of SSH_CONNECTION PAM env var, removing global variable and checking the return value from pam_putenv. bz3508 * sshd(8): disable SANDBOX_SECCOMP_FILTER_DEBUG that was mistakenly enabled during the OpenSSH 9.1 release cycle. * misc: update autotools and regenerate the config files using the latest autotools * all: use -fzero-call-used-regs=used on clang 15 instead of -fzero-call-used-reg=all, as some versions of clang 15 have miscompile code when it was enabled. bz3475 * sshd(8): defer PRNG seeding until after the initial closefrom(2) call. PRNG seeding will initialize OpenSSL, and some engine providers (e.g. Intel's QAT) will open descriptors for their own use that closefrom(2) could clobber. bz3483 * misc: in the poll(2)/ppoll(2) compatibility code, avoid assuming the layout of fd_set. * sftp-server(8), ssh-agent(1): fix ptrace(2) disabling on older FreeBSD kernels. Some versions do not support using id 0 to refer to the current PID for procctl, so try again with getpid() explicitly before failing. * configure.ac: fix -Wstrict-prototypes in configure test code. Clang 16 now warns on this and legacy prototypes will be removed in C23. GHPR355 * configure.ac: fix setres*id checks to work with clang-16. glibc has the prototypes for setresuid behind _GNU_SOURCE, and clang 16 will error out on implicit function definitions. bz3497 Checksums: ========== - SHA1 (openssh-9.2.tar.gz) = e4b806b7c81b87d6c90afe97b3d016ba6cf3ba1c - SHA256 (openssh-9.2.tar.gz) = yYe9uaaWSeetXGXOxuaaEiIsLnvITmGW+l5dgMZb9QU= - SHA1 (openssh-9.2p1.tar.gz) = 3b172b8e971773a7018bbf3231f6589ae539ca4b - SHA256 (openssh-9.2p1.tar.gz) = P2bb8WVftF9Q4cVtpiqwEhjCKIB7ITONY068351xz0Y= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2023-07-26 20:31:29 +03:00
/* $OpenBSD: ssh-sk-helper.c,v 1.14 2022/12/04 11:03:11 dtucker Exp $ */
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
/*
* Copyright (c) 2019 Google LLC
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This is a tiny program used to isolate the address space used for
* security key middleware signing operations from ssh-agent. It is similar
* to ssh-pkcs11-helper.c but considerably simpler as the operations for
* security keys are stateless.
*
* Please crank SSH_SK_HELPER_VERSION in sshkey.h for any incompatible
* protocol changes.
*/
#include <limits.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include "xmalloc.h"
#include "log.h"
#include "sshkey.h"
#include "authfd.h"
#include "misc.h"
#include "sshbuf.h"
#include "msg.h"
#include "uidswap.h"
#include "ssherr.h"
#include "ssh-sk.h"
extern char *__progname;
static struct sshbuf *reply_error(int r, char *fmt, ...)
__attribute__((__format__ (printf, 2, 3)));
static struct sshbuf *
reply_error(int r, char *fmt, ...)
{
char *msg;
va_list ap;
struct sshbuf *resp;
va_start(ap, fmt);
xvasprintf(&msg, fmt, ap);
va_end(ap);
debug("%s: %s", __progname, msg);
free(msg);
if (r >= 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_f("invalid error code %d", r);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((resp = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if (sshbuf_put_u32(resp, SSH_SK_HELPER_ERROR) != 0 ||
sshbuf_put_u32(resp, (u_int)-r) != 0)
fatal("%s: buffer error", __progname);
return resp;
}
/* If the specified string is zero length, then free it and replace with NULL */
static void
null_empty(char **s)
{
if (s == NULL || *s == NULL || **s != '\0')
return;
free(*s);
*s = NULL;
}
static struct sshbuf *
process_sign(struct sshbuf *req)
{
int r = SSH_ERR_INTERNAL_ERROR;
struct sshbuf *resp, *kbuf;
OpenSSH 8.4 was released on 2020-09-27. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. We intend to enable UpdateHostKeys by default in the next OpenSSH release. This will assist the client by automatically migrating to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): restrict ssh-agent from signing web challenges for FIDO/U2F keys. When signing messages in ssh-agent using a FIDO key that has an application string that does not start with "ssh:", ensure that the message being signed is one of the forms expected for the SSH protocol (currently public key authentication and sshsig signatures). This prevents ssh-agent forwarding on a host that has FIDO keys attached granting the ability for the remote side to sign challenges for web authentication using those keys too. Note that the converse case of web browsers signing SSH challenges is already precluded because no web RP can have the "ssh:" prefix in the application string that we require. * ssh-keygen(1): Enable FIDO 2.1 credProtect extension when generating a FIDO resident key. The recent FIDO 2.1 Client to Authenticator Protocol introduced a "credProtect" feature to better protect resident keys. We use this option to require a PIN prior to all operations that may retrieve a resident key from a FIDO token. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * For FIDO/U2F support, OpenSSH recommends the use of libfido2 1.5.0 or greater. Older libraries have limited support at the expense of disabling particular features. These include resident keys, PIN- required keys and multiple attached tokens. * ssh-keygen(1): the format of the attestation information optionally recorded when a FIDO key is generated has changed. It now includes the authenticator data needed to validate attestation signatures. * The API between OpenSSH and the FIDO token middleware has changed and the SSH_SK_VERSION_MAJOR version has been incremented as a result. Third-party middleware libraries must support the current API version (7) to work with OpenSSH 8.4. * The portable OpenSSH distribution now requires automake to rebuild the configure script and supporting files. This is not required when simply building portable OpenSSH from a release tar file. Changes since OpenSSH 8.3 ========================= New features ------------ * ssh(1), ssh-keygen(1): support for FIDO keys that require a PIN for each use. These keys may be generated using ssh-keygen using a new "verify-required" option. When a PIN-required key is used, the user will be prompted for a PIN to complete the signature operation. * sshd(8): authorized_keys now supports a new "verify-required" option to require FIDO signatures assert that the token verified that the user was present before making the signature. The FIDO protocol supports multiple methods for user-verification, but currently OpenSSH only supports PIN verification. * sshd(8), ssh-keygen(1): add support for verifying FIDO webauthn signatures. Webauthn is a standard for using FIDO keys in web browsers. These signatures are a slightly different format to plain FIDO signatures and thus require explicit support. * ssh(1): allow some keywords to expand shell-style ${ENV} environment variables. The supported keywords are CertificateFile, ControlPath, IdentityAgent and IdentityFile, plus LocalForward and RemoteForward when used for Unix domain socket paths. bz#3140 * ssh(1), ssh-agent(1): allow some additional control over the use of ssh-askpass via a new $SSH_ASKPASS_REQUIRE environment variable, including forcibly enabling and disabling its use. bz#69 * ssh(1): allow ssh_config(5)'s AddKeysToAgent keyword accept a time limit for keys in addition to its current flag options. Time- limited keys will automatically be removed from ssh-agent after their expiry time has passed. * scp(1), sftp(1): allow the -A flag to explicitly enable agent forwarding in scp and sftp. The default remains to not forward an agent, even when ssh_config enables it. * ssh(1): add a '%k' TOKEN that expands to the effective HostKey of the destination. This allows, e.g., keeping host keys in individual files using "UserKnownHostsFile ~/.ssh/known_hosts.d/%k". bz#1654 * ssh(1): add %-TOKEN, environment variable and tilde expansion to the UserKnownHostsFile directive, allowing the path to be completed by the configuration (e.g. bz#1654) * ssh-keygen(1): allow "ssh-add -d -" to read keys to be deleted from stdin. bz#3180 * sshd(8): improve logging for MaxStartups connection throttling. sshd will now log when it starts and stops throttling and periodically while in this state. bz#3055 Bugfixes -------- * ssh(1), ssh-keygen(1): better support for multiple attached FIDO tokens. In cases where OpenSSH cannot unambiguously determine which token to direct a request to, the user is now required to select a token by touching it. In cases of operations that require a PIN to be verified, this avoids sending the wrong PIN to the wrong token and incrementing the token's PIN failure counter (tokens effectively erase their keys after too many PIN failures). * sshd(8): fix Include before Match in sshd_config; bz#3122 * ssh(1): close stdin/out/error when forking after authentication completes ("ssh -f ...") bz#3137 * ssh(1), sshd(8): limit the amount of channel input data buffered, avoiding peers that advertise large windows but are slow to read from causing high memory consumption. * ssh-agent(1): handle multiple requests sent in a single write() to the agent. * sshd(8): allow sshd_config longer than 256k * sshd(8): avoid spurious "Unable to load host key" message when sshd load a private key but no public counterpart * ssh(1): prefer the default hostkey algorithm list whenever we have a hostkey that matches its best-preference algorithm. * sshd(1): when ordering the hostkey algorithms to request from a server, prefer certificate types if the known_hosts files contain a key marked as a @cert-authority; bz#3157 * ssh(1): perform host key fingerprint comparisons for the "Are you sure you want to continue connecting (yes/no/[fingerprint])?" prompt with case sensitivity. * sshd(8): ensure that address/masklen mismatches in sshd_config yield fatal errors at daemon start time rather than later when they are evaluated. * ssh-keygen(1): ensure that certificate extensions are lexically sorted. Previously if the user specified a custom extension then the everything would be in order except the custom ones. bz#3198 * ssh(1): also compare username when checking for JumpHost loops. bz#3057 * ssh-keygen(1): preserve group/world read permission on known_hosts files across runs of "ssh-keygen -Rf /path". The old behaviour was to remove all rights for group/other. bz#3146 * ssh-keygen(1): Mention the [-a rounds] flag in the ssh-keygen manual page and usage(). * sshd(8): explicitly construct path to ~/.ssh/rc rather than relying on it being relative to the current directory, so that it can still be found if the shell startup changes its directory. bz#3185 * sshd(8): when redirecting sshd's log output to a file, undo this redirection after the session child process is forked(). Fixes missing log messages when using this feature under some circumstances. * sshd(8): start ClientAliveInterval bookkeeping before first pass through select() loop; fixed theoretical case where busy sshd may ignore timeouts from client. * ssh(1): only reset the ServerAliveInterval check when we receive traffic from the server and ignore traffic from a port forwarding client, preventing a client from keeping a connection alive when it should be terminated. bz#2265 * ssh-keygen(1): avoid spurious error message when ssh-keygen creates files outside ~/.ssh * sftp-client(1): fix off-by-one error that caused sftp downloads to make one more concurrent request that desired. This prevented using sftp(1) in unpipelined request/response mode, which is useful when debugging. bz#3054 * ssh(1), sshd(8): handle EINTR in waitfd() and timeout_connect() helpers. bz#3071 * ssh(1), ssh-keygen(1): defer creation of ~/.ssh until we attempt to write to it so we don't leave an empty .ssh directory when it's not needed. bz#3156 * ssh(1), sshd(8): fix multiplier when parsing time specifications when handling seconds after other units. bz#3171 Portability ----------- * sshd(8): always send any PAM account messages. If the PAM account stack returns any messages, always send them to the user and not just if the check succeeds. bz#2049 * Implement some backwards compatibility for libfido2 libraries older than 1.5.0. Note that use of an older library will result in the loss of certain features including resident key support, PIN support and support for multiple attached tokens. * configure fixes for XCode 12 * gnome-ssh-askpass3: ensure the "close" button is not focused by default for SSH_ASKPASS_PROMPT=none prompts. Avoids space/enter accidentally dismissing FIDO touch notifications. * gnome-ssh-askpass3: allow some control over textarea colour via $GNOME_SSH_ASKPASS_FG_COLOR and $GNOME_SSH_ASKPASS_BG_COLOR environment variables. * sshd(8): document another PAM spec problem in a frustrated comment * sshd(8): support NetBSD's utmpx.ut_ss address field. bz#960 * Add the ssh-sk-helper binary and its manpage to the RPM spec file * Detect the Frankenstein monster of Linux/X32 and allow the sandbox to function there. bz#3085
2020-12-04 21:40:04 +03:00
struct sshkey *key = NULL;
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
uint32_t compat;
const u_char *message;
OpenSSH 8.4 was released on 2020-09-27. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. We intend to enable UpdateHostKeys by default in the next OpenSSH release. This will assist the client by automatically migrating to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): restrict ssh-agent from signing web challenges for FIDO/U2F keys. When signing messages in ssh-agent using a FIDO key that has an application string that does not start with "ssh:", ensure that the message being signed is one of the forms expected for the SSH protocol (currently public key authentication and sshsig signatures). This prevents ssh-agent forwarding on a host that has FIDO keys attached granting the ability for the remote side to sign challenges for web authentication using those keys too. Note that the converse case of web browsers signing SSH challenges is already precluded because no web RP can have the "ssh:" prefix in the application string that we require. * ssh-keygen(1): Enable FIDO 2.1 credProtect extension when generating a FIDO resident key. The recent FIDO 2.1 Client to Authenticator Protocol introduced a "credProtect" feature to better protect resident keys. We use this option to require a PIN prior to all operations that may retrieve a resident key from a FIDO token. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * For FIDO/U2F support, OpenSSH recommends the use of libfido2 1.5.0 or greater. Older libraries have limited support at the expense of disabling particular features. These include resident keys, PIN- required keys and multiple attached tokens. * ssh-keygen(1): the format of the attestation information optionally recorded when a FIDO key is generated has changed. It now includes the authenticator data needed to validate attestation signatures. * The API between OpenSSH and the FIDO token middleware has changed and the SSH_SK_VERSION_MAJOR version has been incremented as a result. Third-party middleware libraries must support the current API version (7) to work with OpenSSH 8.4. * The portable OpenSSH distribution now requires automake to rebuild the configure script and supporting files. This is not required when simply building portable OpenSSH from a release tar file. Changes since OpenSSH 8.3 ========================= New features ------------ * ssh(1), ssh-keygen(1): support for FIDO keys that require a PIN for each use. These keys may be generated using ssh-keygen using a new "verify-required" option. When a PIN-required key is used, the user will be prompted for a PIN to complete the signature operation. * sshd(8): authorized_keys now supports a new "verify-required" option to require FIDO signatures assert that the token verified that the user was present before making the signature. The FIDO protocol supports multiple methods for user-verification, but currently OpenSSH only supports PIN verification. * sshd(8), ssh-keygen(1): add support for verifying FIDO webauthn signatures. Webauthn is a standard for using FIDO keys in web browsers. These signatures are a slightly different format to plain FIDO signatures and thus require explicit support. * ssh(1): allow some keywords to expand shell-style ${ENV} environment variables. The supported keywords are CertificateFile, ControlPath, IdentityAgent and IdentityFile, plus LocalForward and RemoteForward when used for Unix domain socket paths. bz#3140 * ssh(1), ssh-agent(1): allow some additional control over the use of ssh-askpass via a new $SSH_ASKPASS_REQUIRE environment variable, including forcibly enabling and disabling its use. bz#69 * ssh(1): allow ssh_config(5)'s AddKeysToAgent keyword accept a time limit for keys in addition to its current flag options. Time- limited keys will automatically be removed from ssh-agent after their expiry time has passed. * scp(1), sftp(1): allow the -A flag to explicitly enable agent forwarding in scp and sftp. The default remains to not forward an agent, even when ssh_config enables it. * ssh(1): add a '%k' TOKEN that expands to the effective HostKey of the destination. This allows, e.g., keeping host keys in individual files using "UserKnownHostsFile ~/.ssh/known_hosts.d/%k". bz#1654 * ssh(1): add %-TOKEN, environment variable and tilde expansion to the UserKnownHostsFile directive, allowing the path to be completed by the configuration (e.g. bz#1654) * ssh-keygen(1): allow "ssh-add -d -" to read keys to be deleted from stdin. bz#3180 * sshd(8): improve logging for MaxStartups connection throttling. sshd will now log when it starts and stops throttling and periodically while in this state. bz#3055 Bugfixes -------- * ssh(1), ssh-keygen(1): better support for multiple attached FIDO tokens. In cases where OpenSSH cannot unambiguously determine which token to direct a request to, the user is now required to select a token by touching it. In cases of operations that require a PIN to be verified, this avoids sending the wrong PIN to the wrong token and incrementing the token's PIN failure counter (tokens effectively erase their keys after too many PIN failures). * sshd(8): fix Include before Match in sshd_config; bz#3122 * ssh(1): close stdin/out/error when forking after authentication completes ("ssh -f ...") bz#3137 * ssh(1), sshd(8): limit the amount of channel input data buffered, avoiding peers that advertise large windows but are slow to read from causing high memory consumption. * ssh-agent(1): handle multiple requests sent in a single write() to the agent. * sshd(8): allow sshd_config longer than 256k * sshd(8): avoid spurious "Unable to load host key" message when sshd load a private key but no public counterpart * ssh(1): prefer the default hostkey algorithm list whenever we have a hostkey that matches its best-preference algorithm. * sshd(1): when ordering the hostkey algorithms to request from a server, prefer certificate types if the known_hosts files contain a key marked as a @cert-authority; bz#3157 * ssh(1): perform host key fingerprint comparisons for the "Are you sure you want to continue connecting (yes/no/[fingerprint])?" prompt with case sensitivity. * sshd(8): ensure that address/masklen mismatches in sshd_config yield fatal errors at daemon start time rather than later when they are evaluated. * ssh-keygen(1): ensure that certificate extensions are lexically sorted. Previously if the user specified a custom extension then the everything would be in order except the custom ones. bz#3198 * ssh(1): also compare username when checking for JumpHost loops. bz#3057 * ssh-keygen(1): preserve group/world read permission on known_hosts files across runs of "ssh-keygen -Rf /path". The old behaviour was to remove all rights for group/other. bz#3146 * ssh-keygen(1): Mention the [-a rounds] flag in the ssh-keygen manual page and usage(). * sshd(8): explicitly construct path to ~/.ssh/rc rather than relying on it being relative to the current directory, so that it can still be found if the shell startup changes its directory. bz#3185 * sshd(8): when redirecting sshd's log output to a file, undo this redirection after the session child process is forked(). Fixes missing log messages when using this feature under some circumstances. * sshd(8): start ClientAliveInterval bookkeeping before first pass through select() loop; fixed theoretical case where busy sshd may ignore timeouts from client. * ssh(1): only reset the ServerAliveInterval check when we receive traffic from the server and ignore traffic from a port forwarding client, preventing a client from keeping a connection alive when it should be terminated. bz#2265 * ssh-keygen(1): avoid spurious error message when ssh-keygen creates files outside ~/.ssh * sftp-client(1): fix off-by-one error that caused sftp downloads to make one more concurrent request that desired. This prevented using sftp(1) in unpipelined request/response mode, which is useful when debugging. bz#3054 * ssh(1), sshd(8): handle EINTR in waitfd() and timeout_connect() helpers. bz#3071 * ssh(1), ssh-keygen(1): defer creation of ~/.ssh until we attempt to write to it so we don't leave an empty .ssh directory when it's not needed. bz#3156 * ssh(1), sshd(8): fix multiplier when parsing time specifications when handling seconds after other units. bz#3171 Portability ----------- * sshd(8): always send any PAM account messages. If the PAM account stack returns any messages, always send them to the user and not just if the check succeeds. bz#2049 * Implement some backwards compatibility for libfido2 libraries older than 1.5.0. Note that use of an older library will result in the loss of certain features including resident key support, PIN support and support for multiple attached tokens. * configure fixes for XCode 12 * gnome-ssh-askpass3: ensure the "close" button is not focused by default for SSH_ASKPASS_PROMPT=none prompts. Avoids space/enter accidentally dismissing FIDO touch notifications. * gnome-ssh-askpass3: allow some control over textarea colour via $GNOME_SSH_ASKPASS_FG_COLOR and $GNOME_SSH_ASKPASS_BG_COLOR environment variables. * sshd(8): document another PAM spec problem in a frustrated comment * sshd(8): support NetBSD's utmpx.ut_ss address field. bz#960 * Add the ssh-sk-helper binary and its manpage to the RPM spec file * Detect the Frankenstein monster of Linux/X32 and allow the sandbox to function there. bz#3085
2020-12-04 21:40:04 +03:00
u_char *sig = NULL;
size_t msglen, siglen = 0;
char *provider = NULL, *pin = NULL;
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((r = sshbuf_froms(req, &kbuf)) != 0 ||
(r = sshbuf_get_cstring(req, &provider, NULL)) != 0 ||
(r = sshbuf_get_string_direct(req, &message, &msglen)) != 0 ||
(r = sshbuf_get_cstring(req, NULL, NULL)) != 0 || /* alg */
(r = sshbuf_get_u32(req, &compat)) != 0 ||
(r = sshbuf_get_cstring(req, &pin, NULL)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: parse", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (sshbuf_len(req) != 0)
fatal("%s: trailing data in request", __progname);
if ((r = sshkey_private_deserialize(kbuf, &key)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: Unable to parse private key", __progname);
if (!sshkey_is_sk(key)) {
fatal("%s: Unsupported key type %s",
__progname, sshkey_ssh_name(key));
}
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
debug_f("ready to sign with key %s, provider %s: "
"msg len %zu, compat 0x%lx", sshkey_type(key),
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
provider, msglen, (u_long)compat);
null_empty(&pin);
if ((r = sshsk_sign(provider, key, &sig, &siglen,
message, msglen, compat, pin)) != 0) {
resp = reply_error(r, "Signing failed: %s", ssh_err(r));
goto out;
}
if ((resp = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if ((r = sshbuf_put_u32(resp, SSH_SK_HELPER_SIGN)) != 0 ||
(r = sshbuf_put_string(resp, sig, siglen)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: compose", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
out:
OpenSSH 8.4 was released on 2020-09-27. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. We intend to enable UpdateHostKeys by default in the next OpenSSH release. This will assist the client by automatically migrating to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): restrict ssh-agent from signing web challenges for FIDO/U2F keys. When signing messages in ssh-agent using a FIDO key that has an application string that does not start with "ssh:", ensure that the message being signed is one of the forms expected for the SSH protocol (currently public key authentication and sshsig signatures). This prevents ssh-agent forwarding on a host that has FIDO keys attached granting the ability for the remote side to sign challenges for web authentication using those keys too. Note that the converse case of web browsers signing SSH challenges is already precluded because no web RP can have the "ssh:" prefix in the application string that we require. * ssh-keygen(1): Enable FIDO 2.1 credProtect extension when generating a FIDO resident key. The recent FIDO 2.1 Client to Authenticator Protocol introduced a "credProtect" feature to better protect resident keys. We use this option to require a PIN prior to all operations that may retrieve a resident key from a FIDO token. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * For FIDO/U2F support, OpenSSH recommends the use of libfido2 1.5.0 or greater. Older libraries have limited support at the expense of disabling particular features. These include resident keys, PIN- required keys and multiple attached tokens. * ssh-keygen(1): the format of the attestation information optionally recorded when a FIDO key is generated has changed. It now includes the authenticator data needed to validate attestation signatures. * The API between OpenSSH and the FIDO token middleware has changed and the SSH_SK_VERSION_MAJOR version has been incremented as a result. Third-party middleware libraries must support the current API version (7) to work with OpenSSH 8.4. * The portable OpenSSH distribution now requires automake to rebuild the configure script and supporting files. This is not required when simply building portable OpenSSH from a release tar file. Changes since OpenSSH 8.3 ========================= New features ------------ * ssh(1), ssh-keygen(1): support for FIDO keys that require a PIN for each use. These keys may be generated using ssh-keygen using a new "verify-required" option. When a PIN-required key is used, the user will be prompted for a PIN to complete the signature operation. * sshd(8): authorized_keys now supports a new "verify-required" option to require FIDO signatures assert that the token verified that the user was present before making the signature. The FIDO protocol supports multiple methods for user-verification, but currently OpenSSH only supports PIN verification. * sshd(8), ssh-keygen(1): add support for verifying FIDO webauthn signatures. Webauthn is a standard for using FIDO keys in web browsers. These signatures are a slightly different format to plain FIDO signatures and thus require explicit support. * ssh(1): allow some keywords to expand shell-style ${ENV} environment variables. The supported keywords are CertificateFile, ControlPath, IdentityAgent and IdentityFile, plus LocalForward and RemoteForward when used for Unix domain socket paths. bz#3140 * ssh(1), ssh-agent(1): allow some additional control over the use of ssh-askpass via a new $SSH_ASKPASS_REQUIRE environment variable, including forcibly enabling and disabling its use. bz#69 * ssh(1): allow ssh_config(5)'s AddKeysToAgent keyword accept a time limit for keys in addition to its current flag options. Time- limited keys will automatically be removed from ssh-agent after their expiry time has passed. * scp(1), sftp(1): allow the -A flag to explicitly enable agent forwarding in scp and sftp. The default remains to not forward an agent, even when ssh_config enables it. * ssh(1): add a '%k' TOKEN that expands to the effective HostKey of the destination. This allows, e.g., keeping host keys in individual files using "UserKnownHostsFile ~/.ssh/known_hosts.d/%k". bz#1654 * ssh(1): add %-TOKEN, environment variable and tilde expansion to the UserKnownHostsFile directive, allowing the path to be completed by the configuration (e.g. bz#1654) * ssh-keygen(1): allow "ssh-add -d -" to read keys to be deleted from stdin. bz#3180 * sshd(8): improve logging for MaxStartups connection throttling. sshd will now log when it starts and stops throttling and periodically while in this state. bz#3055 Bugfixes -------- * ssh(1), ssh-keygen(1): better support for multiple attached FIDO tokens. In cases where OpenSSH cannot unambiguously determine which token to direct a request to, the user is now required to select a token by touching it. In cases of operations that require a PIN to be verified, this avoids sending the wrong PIN to the wrong token and incrementing the token's PIN failure counter (tokens effectively erase their keys after too many PIN failures). * sshd(8): fix Include before Match in sshd_config; bz#3122 * ssh(1): close stdin/out/error when forking after authentication completes ("ssh -f ...") bz#3137 * ssh(1), sshd(8): limit the amount of channel input data buffered, avoiding peers that advertise large windows but are slow to read from causing high memory consumption. * ssh-agent(1): handle multiple requests sent in a single write() to the agent. * sshd(8): allow sshd_config longer than 256k * sshd(8): avoid spurious "Unable to load host key" message when sshd load a private key but no public counterpart * ssh(1): prefer the default hostkey algorithm list whenever we have a hostkey that matches its best-preference algorithm. * sshd(1): when ordering the hostkey algorithms to request from a server, prefer certificate types if the known_hosts files contain a key marked as a @cert-authority; bz#3157 * ssh(1): perform host key fingerprint comparisons for the "Are you sure you want to continue connecting (yes/no/[fingerprint])?" prompt with case sensitivity. * sshd(8): ensure that address/masklen mismatches in sshd_config yield fatal errors at daemon start time rather than later when they are evaluated. * ssh-keygen(1): ensure that certificate extensions are lexically sorted. Previously if the user specified a custom extension then the everything would be in order except the custom ones. bz#3198 * ssh(1): also compare username when checking for JumpHost loops. bz#3057 * ssh-keygen(1): preserve group/world read permission on known_hosts files across runs of "ssh-keygen -Rf /path". The old behaviour was to remove all rights for group/other. bz#3146 * ssh-keygen(1): Mention the [-a rounds] flag in the ssh-keygen manual page and usage(). * sshd(8): explicitly construct path to ~/.ssh/rc rather than relying on it being relative to the current directory, so that it can still be found if the shell startup changes its directory. bz#3185 * sshd(8): when redirecting sshd's log output to a file, undo this redirection after the session child process is forked(). Fixes missing log messages when using this feature under some circumstances. * sshd(8): start ClientAliveInterval bookkeeping before first pass through select() loop; fixed theoretical case where busy sshd may ignore timeouts from client. * ssh(1): only reset the ServerAliveInterval check when we receive traffic from the server and ignore traffic from a port forwarding client, preventing a client from keeping a connection alive when it should be terminated. bz#2265 * ssh-keygen(1): avoid spurious error message when ssh-keygen creates files outside ~/.ssh * sftp-client(1): fix off-by-one error that caused sftp downloads to make one more concurrent request that desired. This prevented using sftp(1) in unpipelined request/response mode, which is useful when debugging. bz#3054 * ssh(1), sshd(8): handle EINTR in waitfd() and timeout_connect() helpers. bz#3071 * ssh(1), ssh-keygen(1): defer creation of ~/.ssh until we attempt to write to it so we don't leave an empty .ssh directory when it's not needed. bz#3156 * ssh(1), sshd(8): fix multiplier when parsing time specifications when handling seconds after other units. bz#3171 Portability ----------- * sshd(8): always send any PAM account messages. If the PAM account stack returns any messages, always send them to the user and not just if the check succeeds. bz#2049 * Implement some backwards compatibility for libfido2 libraries older than 1.5.0. Note that use of an older library will result in the loss of certain features including resident key support, PIN support and support for multiple attached tokens. * configure fixes for XCode 12 * gnome-ssh-askpass3: ensure the "close" button is not focused by default for SSH_ASKPASS_PROMPT=none prompts. Avoids space/enter accidentally dismissing FIDO touch notifications. * gnome-ssh-askpass3: allow some control over textarea colour via $GNOME_SSH_ASKPASS_FG_COLOR and $GNOME_SSH_ASKPASS_BG_COLOR environment variables. * sshd(8): document another PAM spec problem in a frustrated comment * sshd(8): support NetBSD's utmpx.ut_ss address field. bz#960 * Add the ssh-sk-helper binary and its manpage to the RPM spec file * Detect the Frankenstein monster of Linux/X32 and allow the sandbox to function there. bz#3085
2020-12-04 21:40:04 +03:00
sshkey_free(key);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
sshbuf_free(kbuf);
free(provider);
OpenSSH 8.4 was released on 2020-09-27. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. We intend to enable UpdateHostKeys by default in the next OpenSSH release. This will assist the client by automatically migrating to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): restrict ssh-agent from signing web challenges for FIDO/U2F keys. When signing messages in ssh-agent using a FIDO key that has an application string that does not start with "ssh:", ensure that the message being signed is one of the forms expected for the SSH protocol (currently public key authentication and sshsig signatures). This prevents ssh-agent forwarding on a host that has FIDO keys attached granting the ability for the remote side to sign challenges for web authentication using those keys too. Note that the converse case of web browsers signing SSH challenges is already precluded because no web RP can have the "ssh:" prefix in the application string that we require. * ssh-keygen(1): Enable FIDO 2.1 credProtect extension when generating a FIDO resident key. The recent FIDO 2.1 Client to Authenticator Protocol introduced a "credProtect" feature to better protect resident keys. We use this option to require a PIN prior to all operations that may retrieve a resident key from a FIDO token. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * For FIDO/U2F support, OpenSSH recommends the use of libfido2 1.5.0 or greater. Older libraries have limited support at the expense of disabling particular features. These include resident keys, PIN- required keys and multiple attached tokens. * ssh-keygen(1): the format of the attestation information optionally recorded when a FIDO key is generated has changed. It now includes the authenticator data needed to validate attestation signatures. * The API between OpenSSH and the FIDO token middleware has changed and the SSH_SK_VERSION_MAJOR version has been incremented as a result. Third-party middleware libraries must support the current API version (7) to work with OpenSSH 8.4. * The portable OpenSSH distribution now requires automake to rebuild the configure script and supporting files. This is not required when simply building portable OpenSSH from a release tar file. Changes since OpenSSH 8.3 ========================= New features ------------ * ssh(1), ssh-keygen(1): support for FIDO keys that require a PIN for each use. These keys may be generated using ssh-keygen using a new "verify-required" option. When a PIN-required key is used, the user will be prompted for a PIN to complete the signature operation. * sshd(8): authorized_keys now supports a new "verify-required" option to require FIDO signatures assert that the token verified that the user was present before making the signature. The FIDO protocol supports multiple methods for user-verification, but currently OpenSSH only supports PIN verification. * sshd(8), ssh-keygen(1): add support for verifying FIDO webauthn signatures. Webauthn is a standard for using FIDO keys in web browsers. These signatures are a slightly different format to plain FIDO signatures and thus require explicit support. * ssh(1): allow some keywords to expand shell-style ${ENV} environment variables. The supported keywords are CertificateFile, ControlPath, IdentityAgent and IdentityFile, plus LocalForward and RemoteForward when used for Unix domain socket paths. bz#3140 * ssh(1), ssh-agent(1): allow some additional control over the use of ssh-askpass via a new $SSH_ASKPASS_REQUIRE environment variable, including forcibly enabling and disabling its use. bz#69 * ssh(1): allow ssh_config(5)'s AddKeysToAgent keyword accept a time limit for keys in addition to its current flag options. Time- limited keys will automatically be removed from ssh-agent after their expiry time has passed. * scp(1), sftp(1): allow the -A flag to explicitly enable agent forwarding in scp and sftp. The default remains to not forward an agent, even when ssh_config enables it. * ssh(1): add a '%k' TOKEN that expands to the effective HostKey of the destination. This allows, e.g., keeping host keys in individual files using "UserKnownHostsFile ~/.ssh/known_hosts.d/%k". bz#1654 * ssh(1): add %-TOKEN, environment variable and tilde expansion to the UserKnownHostsFile directive, allowing the path to be completed by the configuration (e.g. bz#1654) * ssh-keygen(1): allow "ssh-add -d -" to read keys to be deleted from stdin. bz#3180 * sshd(8): improve logging for MaxStartups connection throttling. sshd will now log when it starts and stops throttling and periodically while in this state. bz#3055 Bugfixes -------- * ssh(1), ssh-keygen(1): better support for multiple attached FIDO tokens. In cases where OpenSSH cannot unambiguously determine which token to direct a request to, the user is now required to select a token by touching it. In cases of operations that require a PIN to be verified, this avoids sending the wrong PIN to the wrong token and incrementing the token's PIN failure counter (tokens effectively erase their keys after too many PIN failures). * sshd(8): fix Include before Match in sshd_config; bz#3122 * ssh(1): close stdin/out/error when forking after authentication completes ("ssh -f ...") bz#3137 * ssh(1), sshd(8): limit the amount of channel input data buffered, avoiding peers that advertise large windows but are slow to read from causing high memory consumption. * ssh-agent(1): handle multiple requests sent in a single write() to the agent. * sshd(8): allow sshd_config longer than 256k * sshd(8): avoid spurious "Unable to load host key" message when sshd load a private key but no public counterpart * ssh(1): prefer the default hostkey algorithm list whenever we have a hostkey that matches its best-preference algorithm. * sshd(1): when ordering the hostkey algorithms to request from a server, prefer certificate types if the known_hosts files contain a key marked as a @cert-authority; bz#3157 * ssh(1): perform host key fingerprint comparisons for the "Are you sure you want to continue connecting (yes/no/[fingerprint])?" prompt with case sensitivity. * sshd(8): ensure that address/masklen mismatches in sshd_config yield fatal errors at daemon start time rather than later when they are evaluated. * ssh-keygen(1): ensure that certificate extensions are lexically sorted. Previously if the user specified a custom extension then the everything would be in order except the custom ones. bz#3198 * ssh(1): also compare username when checking for JumpHost loops. bz#3057 * ssh-keygen(1): preserve group/world read permission on known_hosts files across runs of "ssh-keygen -Rf /path". The old behaviour was to remove all rights for group/other. bz#3146 * ssh-keygen(1): Mention the [-a rounds] flag in the ssh-keygen manual page and usage(). * sshd(8): explicitly construct path to ~/.ssh/rc rather than relying on it being relative to the current directory, so that it can still be found if the shell startup changes its directory. bz#3185 * sshd(8): when redirecting sshd's log output to a file, undo this redirection after the session child process is forked(). Fixes missing log messages when using this feature under some circumstances. * sshd(8): start ClientAliveInterval bookkeeping before first pass through select() loop; fixed theoretical case where busy sshd may ignore timeouts from client. * ssh(1): only reset the ServerAliveInterval check when we receive traffic from the server and ignore traffic from a port forwarding client, preventing a client from keeping a connection alive when it should be terminated. bz#2265 * ssh-keygen(1): avoid spurious error message when ssh-keygen creates files outside ~/.ssh * sftp-client(1): fix off-by-one error that caused sftp downloads to make one more concurrent request that desired. This prevented using sftp(1) in unpipelined request/response mode, which is useful when debugging. bz#3054 * ssh(1), sshd(8): handle EINTR in waitfd() and timeout_connect() helpers. bz#3071 * ssh(1), ssh-keygen(1): defer creation of ~/.ssh until we attempt to write to it so we don't leave an empty .ssh directory when it's not needed. bz#3156 * ssh(1), sshd(8): fix multiplier when parsing time specifications when handling seconds after other units. bz#3171 Portability ----------- * sshd(8): always send any PAM account messages. If the PAM account stack returns any messages, always send them to the user and not just if the check succeeds. bz#2049 * Implement some backwards compatibility for libfido2 libraries older than 1.5.0. Note that use of an older library will result in the loss of certain features including resident key support, PIN support and support for multiple attached tokens. * configure fixes for XCode 12 * gnome-ssh-askpass3: ensure the "close" button is not focused by default for SSH_ASKPASS_PROMPT=none prompts. Avoids space/enter accidentally dismissing FIDO touch notifications. * gnome-ssh-askpass3: allow some control over textarea colour via $GNOME_SSH_ASKPASS_FG_COLOR and $GNOME_SSH_ASKPASS_BG_COLOR environment variables. * sshd(8): document another PAM spec problem in a frustrated comment * sshd(8): support NetBSD's utmpx.ut_ss address field. bz#960 * Add the ssh-sk-helper binary and its manpage to the RPM spec file * Detect the Frankenstein monster of Linux/X32 and allow the sandbox to function there. bz#3085
2020-12-04 21:40:04 +03:00
if (sig != NULL)
freezero(sig, siglen);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (pin != NULL)
freezero(pin, strlen(pin));
return resp;
}
static struct sshbuf *
process_enroll(struct sshbuf *req)
{
int r;
u_int type;
char *provider, *application, *pin, *device, *userid;
uint8_t flags;
struct sshbuf *challenge, *attest, *kbuf, *resp;
struct sshkey *key;
if ((attest = sshbuf_new()) == NULL ||
(kbuf = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if ((r = sshbuf_get_u32(req, &type)) != 0 ||
(r = sshbuf_get_cstring(req, &provider, NULL)) != 0 ||
(r = sshbuf_get_cstring(req, &device, NULL)) != 0 ||
(r = sshbuf_get_cstring(req, &application, NULL)) != 0 ||
(r = sshbuf_get_cstring(req, &userid, NULL)) != 0 ||
(r = sshbuf_get_u8(req, &flags)) != 0 ||
(r = sshbuf_get_cstring(req, &pin, NULL)) != 0 ||
(r = sshbuf_froms(req, &challenge)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: parse", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (sshbuf_len(req) != 0)
fatal("%s: trailing data in request", __progname);
if (type > INT_MAX)
fatal("%s: bad type %u", __progname, type);
if (sshbuf_len(challenge) == 0) {
sshbuf_free(challenge);
challenge = NULL;
}
null_empty(&device);
null_empty(&userid);
null_empty(&pin);
if ((r = sshsk_enroll((int)type, provider, device, application, userid,
flags, pin, challenge, &key, attest)) != 0) {
resp = reply_error(r, "Enrollment failed: %s", ssh_err(r));
goto out;
}
if ((resp = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if ((r = sshkey_private_serialize(key, kbuf)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: encode key", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((r = sshbuf_put_u32(resp, SSH_SK_HELPER_ENROLL)) != 0 ||
(r = sshbuf_put_stringb(resp, kbuf)) != 0 ||
(r = sshbuf_put_stringb(resp, attest)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: compose", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
out:
sshkey_free(key);
sshbuf_free(kbuf);
sshbuf_free(attest);
sshbuf_free(challenge);
free(provider);
free(application);
if (pin != NULL)
freezero(pin, strlen(pin));
return resp;
}
static struct sshbuf *
process_load_resident(struct sshbuf *req)
{
int r;
char *provider, *pin, *device;
struct sshbuf *kbuf, *resp;
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
struct sshsk_resident_key **srks = NULL;
size_t nsrks = 0, i;
u_int flags;
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((kbuf = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if ((r = sshbuf_get_cstring(req, &provider, NULL)) != 0 ||
(r = sshbuf_get_cstring(req, &device, NULL)) != 0 ||
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
(r = sshbuf_get_cstring(req, &pin, NULL)) != 0 ||
(r = sshbuf_get_u32(req, &flags)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: parse", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (sshbuf_len(req) != 0)
fatal("%s: trailing data in request", __progname);
null_empty(&device);
null_empty(&pin);
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
if ((r = sshsk_load_resident(provider, device, pin, flags,
&srks, &nsrks)) != 0) {
resp = reply_error(r, "sshsk_load_resident failed: %s",
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
ssh_err(r));
goto out;
}
if ((resp = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if ((r = sshbuf_put_u32(resp, SSH_SK_HELPER_LOAD_RESIDENT)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: compose", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
for (i = 0; i < nsrks; i++) {
debug_f("key %zu %s %s uidlen %zu", i,
sshkey_type(srks[i]->key), srks[i]->key->sk_application,
srks[i]->user_id_len);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
sshbuf_reset(kbuf);
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
if ((r = sshkey_private_serialize(srks[i]->key, kbuf)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: encode key", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((r = sshbuf_put_stringb(resp, kbuf)) != 0 ||
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
(r = sshbuf_put_cstring(resp, "")) != 0 || /* comment */
(r = sshbuf_put_string(resp, srks[i]->user_id,
srks[i]->user_id_len)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: compose key", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
}
out:
Import OpenSSH 8.9. Future deprecation notice ========================= A near-future release of OpenSSH will switch scp(1) from using the legacy scp/rcp protocol to using SFTP by default. Legacy scp/rcp performs wildcard expansion of remote filenames (e.g. "scp host:* .") through the remote shell. This has the side effect of requiring double quoting of shell meta-characters in file names included on scp(1) command-lines, otherwise they could be interpreted as shell commands on the remote side. This creates one area of potential incompatibility: scp(1) when using the SFTP protocol no longer requires this finicky and brittle quoting, and attempts to use it may cause transfers to fail. We consider the removal of the need for double-quoting shell characters in file names to be a benefit and do not intend to introduce bug-compatibility for legacy scp/rcp in scp(1) when using the SFTP protocol. Another area of potential incompatibility relates to the use of remote paths relative to other user's home directories, for example - "scp host:~user/file /tmp". The SFTP protocol has no native way to expand a ~user path. However, sftp-server(8) in OpenSSH 8.7 and later support a protocol extension "expand-path@openssh.com" to support this. Security Near Miss ================== * sshd(8): fix an integer overflow in the user authentication path that, in conjunction with other logic errors, could have yielded unauthenticated access under difficult to exploit conditions. This situation is not exploitable because of independent checks in the privilege separation monitor. Privilege separation has been enabled by default in since openssh-3.2.2 (released in 2002) and has been mandatory since openssh-7.5 (released in 2017). Moreover, portable OpenSSH has used toolchain features available in most modern compilers to abort on signed integer overflow since openssh-6.5 (released in 2014). Thanks to Malcolm Stagg for finding and reporting this bug. Potentially-incompatible changes ================================ * sshd(8), portable OpenSSH only: this release removes in-built support for MD5-hashed passwords. If you require these on your system then we recommend linking against libxcrypt or similar. * This release modifies the FIDO security key middleware interface and increments SSH_SK_VERSION_MAJOR. Changes since OpenSSH 8.8 ========================= This release includes a number of new features. New features ------------ * ssh(1), sshd(8), ssh-add(1), ssh-agent(1): add a system for restricting forwarding and use of keys added to ssh-agent(1) A detailed description of the feature is available at https://www.openssh.com/agent-restrict.html and the protocol extensions are documented in the PROTOCOL and PROTOCOL.agent files in the source release. * ssh(1), sshd(8): add the sntrup761x25519-sha512@openssh.com hybrid ECDH/x25519 + Streamlined NTRU Prime post-quantum KEX to the default KEXAlgorithms list (after the ECDH methods but before the prime-group DH ones). The next release of OpenSSH is likely to make this key exchange the default method. * ssh-keygen(1): when downloading resident keys from a FIDO token, pass back the user ID that was used when the key was created and append it to the filename the key is written to (if it is not the default). Avoids keys being clobbered if the user created multiple resident keys with the same application string but different user IDs. * ssh-keygen(1), ssh(1), ssh-agent(1): better handling for FIDO keys on tokens that provide user verification (UV) on the device itself, including biometric keys, avoiding unnecessary PIN prompts. * ssh-keygen(1): add "ssh-keygen -Y match-principals" operation to perform matching of principals names against an allowed signers file. To be used towards a TOFU model for SSH signatures in git. * ssh-add(1), ssh-agent(1): allow pin-required FIDO keys to be added to ssh-agent(1). $SSH_ASKPASS will be used to request the PIN at authentication time. * ssh-keygen(1): allow selection of hash at sshsig signing time (either sha512 (default) or sha256). * ssh(1), sshd(8): read network data directly to the packet input buffer instead indirectly via a small stack buffer. Provides a modest performance improvement. * ssh(1), sshd(8): read data directly to the channel input buffer, providing a similar modest performance improvement. * ssh(1): extend the PubkeyAuthentication configuration directive to accept yes|no|unbound|host-bound to allow control over one of the protocol extensions used to implement agent-restricted keys. Bugfixes -------- * sshd(8): document that CASignatureAlgorithms, ExposeAuthInfo and PubkeyAuthOptions can be used in a Match block. PR#277. * sshd(8): fix possible string truncation when constructing paths to .rhosts/.shosts files with very long user home directory names. * ssh-keysign(1): unbreak for KEX algorithms that use SHA384/512 exchange hashes * ssh(1): don't put the TTY into raw mode when SessionType=none, avoids ^C being unable to kill such a session. bz3360 * scp(1): fix some corner-case bugs in SFTP-mode handling of ~-prefixed paths. * ssh(1): unbreak hostbased auth using RSA keys. Allow ssh(1) to select RSA keys when only RSA/SHA2 signature algorithms are configured (this is the default case). Previously RSA keys were not being considered in the default case. * ssh-keysign(1): make ssh-keysign use the requested signature algorithm and not the default for the key type. Part of unbreaking hostbased auth for RSA/SHA2 keys. * ssh(1): stricter UpdateHostkey signature verification logic on the client- side. Require RSA/SHA2 signatures for RSA hostkeys except when RSA/SHA1 was explicitly negotiated during initial KEX; bz3375 * ssh(1), sshd(8): fix signature algorithm selection logic for UpdateHostkeys on the server side. The previous code tried to prefer RSA/SHA2 for hostkey proofs of RSA keys, but missed some cases. This will use RSA/SHA2 signatures for RSA keys if the client proposed these algorithms in initial KEX. bz3375 * All: convert all uses of select(2)/pselect(2) to poll(2)/ppoll(2). This includes the mainloops in ssh(1), ssh-agent(1), ssh-agent(1) and sftp-server(8), as well as the sshd(8) listen loop and all other FD read/writability checks. On platforms with missing or broken poll(2)/ppoll(2) syscalls a select(2)-based compat shim is available. * ssh-keygen(1): the "-Y find-principals" command was verifying key validity when using ca certs but not with simple key lifetimes within the allowed signers file. * ssh-keygen(1): make sshsig verify-time argument parsing optional * sshd(8): fix truncation in rhosts/shosts path construction. * ssh(1), ssh-agent(1): avoid xmalloc(0) for PKCS#11 keyid for ECDSA keys (we already did this for RSA keys). Avoids fatal errors for PKCS#11 libraries that return empty keyid, e.g. Microchip ATECC608B "cryptoauthlib"; bz#3364 * ssh(1), ssh-agent(1): improve the testing of credentials against inserted FIDO: ask the token whether a particular key belongs to it in cases where the token supports on-token user-verification (e.g. biometrics) rather than just assuming that it will accept it. Will reduce spurious "Confirm user presence" notifications for key handles that relate to FIDO keys that are not currently inserted in at least some cases. bz3366 * ssh(1), sshd(8): correct value for IPTOS_DSCP_LE. It needs to allow for the preceding two ECN bits. bz#3373 * ssh-keygen(1): add missing -O option to usage() for the "-Y sign" option. * ssh-keygen(1): fix a NULL deref when using the find-principals function, when matching an allowed_signers line that contains a namespace restriction, but no restriction specified on the command-line * ssh-agent(1): fix memleak in process_extension(); oss-fuzz issue #42719 * ssh(1): suppress "Connection to xxx closed" messages when LogLevel is set to "error" or above. bz3378 * ssh(1), sshd(8): use correct zlib flags when inflate(3)-ing compressed packet data. bz3372 * scp(1): when recursively transferring files in SFTP mode, create the destination directory if it doesn't already exist to match scp(1) in legacy RCP mode behaviour. * scp(1): many improvements in error message consistency between scp(1) in SFTP mode vs legacy RCP mode. * sshd(8): fix potential race in SIGTERM handling PR#289 * ssh(1), ssh(8): since DSA keys are deprecated, move them to the end of the default list of public keys so that they will be tried last. PR#295 * ssh-keygen(1): allow 'ssh-keygen -Y find-principals' to match wildcard principals in allowed_signers files Portability ----------- * ssh(1), sshd(8): don't trust closefrom(2) on Linux. glibc's implementation does not work in a chroot when the kernel does not have close_range(2). It tries to read from /proc/self/fd and when that fails dies with an assertion of sorts. Instead, call close_range(2) directly from our compat code and fall back if that fails. bz#3349, * OS X poll(2) is broken; use compat replacement. For character- special devices like /dev/null, Darwin's poll(2) returns POLLNVAL when polled with POLLIN. Apparently this is Apple bug 3710161 - not public but a websearch will find other OSS projects rediscovering it periodically since it was first identified in 2005. * Correct handling of exceptfds/POLLPRI in our select(2)-based poll(2)/ppoll(2) compat implementation. * Cygwin: correct checking of mbstowcs() return value. * Add a basic SECURITY.md that refers people to the openssh.com website. * Enable additional compiler warnings and toolchain hardening flags, including -Wbitwise-instead-of-logical, -Wmisleading-indentation, -fzero-call-used-regs and -ftrivial-auto-var-init. * HP/UX. Use compat getline(3) on HP-UX 10.x, where the libc version is not reliable.
2022-02-23 22:04:25 +03:00
sshsk_free_resident_keys(srks, nsrks);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
sshbuf_free(kbuf);
free(provider);
Import OpenSSH-9.1 (previously we were on OpenSSH-9.0) This release is focused on bug fixing. Security ======== This release contains fixes for three minor memory safety problems. None are believed to be exploitable, but we report most memory safety problems as potential security vulnerabilities out of caution. * ssh-keyscan(1): fix a one-byte overflow in SSH- banner processing. Reported by Qualys * ssh-keygen(1): double free() in error path of file hashing step in signing/verify code; GHPR333 * ssh-keysign(8): double-free in error path introduced in openssh-8.9 Potentially-incompatible changes -------------------------------- * The portable OpenSSH project now signs commits and release tags using git's recent SSH signature support. The list of developer signing keys is included in the repository as .git_allowed_signers and is cross-signed using the PGP key that is still used to sign release artifacts: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc * ssh(1), sshd(8): SetEnv directives in ssh_config and sshd_config are now first-match-wins to match other directives. Previously if an environment variable was multiply specified the last set value would have been used. bz3438 * ssh-keygen(8): ssh-keygen -A (generate all default host key types) will no longer generate DSA keys, as these are insecure and have not been used by default for some years. New features ------------ * ssh(1), sshd(8): add a RequiredRSASize directive to set a minimum RSA key length. Keys below this length will be ignored for user authentication and for host authentication in sshd(8). ssh(1) will terminate a connection if the server offers an RSA key that falls below this limit, as the SSH protocol does not include the ability to retry a failed key exchange. * sftp-server(8): add a "users-groups-by-id@openssh.com" extension request that allows the client to obtain user/group names that correspond to a set of uids/gids. * sftp(1): use "users-groups-by-id@openssh.com" sftp-server extension (when available) to fill in user/group names for directory listings. * sftp-server(8): support the "home-directory" extension request defined in draft-ietf-secsh-filexfer-extensions-00. This overlaps a bit with the existing "expand-path@openssh.com", but some other clients support it. * ssh-keygen(1), sshd(8): allow certificate validity intervals, sshsig verification times and authorized_keys expiry-time options to accept dates in the UTC time zone in addition to the default of interpreting them in the system time zone. YYYYMMDD and YYMMDDHHMM[SS] dates/times will be interpreted as UTC if suffixed with a 'Z' character. Also allow certificate validity intervals to be specified in raw seconds-since-epoch as hex value, e.g. -V 0x1234:0x4567890. This is intended for use by regress tests and other tools that call ssh-keygen as part of a CA workflow. bz3468 * sftp(1): allow arguments to the sftp -D option, e.g. sftp -D "/usr/libexec/sftp-server -el debug3" * ssh-keygen(1): allow the existing -U (use agent) flag to work with "-Y sign" operations, where it will be interpreted to require that the private keys is hosted in an agent; bz3429 Bugfixes -------- * ssh-keygen(1): implement the "verify-required" certificate option. This was already documented when support for user-verified FIDO keys was added, but the ssh-keygen(1) code was missing. * ssh-agent(1): hook up the restrict_websafe command-line flag; previously the flag was accepted but never actually used. * sftp(1): improve filename tab completions: never try to complete names to non-existent commands, and better match the completion type (local or remote filename) against the argument position being completed. * ssh-keygen(1), ssh(1), ssh-agent(1): several fixes to FIDO key handling, especially relating to keys that request user-verification. These should reduce the number of unnecessary PIN prompts for keys that support intrinsic user verification. GHPR302, GHPR329 * ssh-keygen(1): when enrolling a FIDO resident key, check if a credential with matching application and user ID strings already exists and, if so, prompt the user for confirmation before overwriting the credential. GHPR329 * sshd(8): improve logging of errors when opening authorized_keys files. bz2042 * ssh(1): avoid multiplexing operations that could cause SIGPIPE from causing the client to exit early. bz3454 * ssh_config(5), sshd_config(5): clarify that the RekeyLimit directive applies to both transmitted and received data. GHPR328 * ssh-keygen(1): avoid double fclose() in error path. * sshd(8): log an error if pipe() fails while accepting a connection. bz3447 * ssh(1), ssh-keygen(1): fix possible NULL deref when built without FIDO support. bz3443 * ssh-keyscan(1): add missing *-sk types to ssh-keyscan manpage. GHPR294. * sshd(8): ensure that authentication passwords are cleared from memory in error paths. GHPR286 * ssh(1), ssh-agent(1): avoid possibility of notifier code executing kill(-1). GHPR286 * ssh_config(5): note that the ProxyJump directive also accepts the same tokens as ProxyCommand. GHPR305. * scp(1): do not not ftruncate(3) files early when in sftp mode. The previous behaviour of unconditionally truncating the destination file would cause "scp ~/foo localhost:foo" and the reverse "scp localhost:foo ~/foo" to delete all the contents of their destination. bz3431 * ssh-keygen(1): improve error message when 'ssh-keygen -Y sign' is unable to load a private key; bz3429 * sftp(1), scp(1): when performing operations that glob(3) a remote path, ensure that the implicit working directory used to construct that path escapes glob(3) characters. This prevents glob characters from being processed in places they shouldn't, e.g. "cd /tmp/a*/", "get *.txt" should have the get operation treat the path "/tmp/a*" literally and not attempt to expand it. * ssh(1), sshd(8): be stricter in which characters will be accepted in specifying a mask length; allow only 0-9. GHPR278 * ssh-keygen(1): avoid printing hash algorithm twice when dumping a KRL * ssh(1), sshd(8): continue running local I/O for open channels during SSH transport rekeying. This should make ~-escapes work in the client (e.g. to exit) if the connection happened to have stalled during a rekey event. * ssh(1), sshd(8): avoid potential poll() spin during rekeying * Further hardening for sshbuf internals: disallow "reparenting" a hierarchical sshbuf and zero the entire buffer if reallocation fails. GHPR287 Portability ----------- * ssh(1), ssh-keygen(1), sshd(8): automatically enable the built-in FIDO security key support if libfido2 is found and usable, unless --without-security-key-builtin was requested. * ssh(1), ssh-keygen(1), sshd(8): many fixes to make the WinHello FIDO device usable on Cygwin. The windows://hello FIDO device will be automatically used by default on this platform unless requested otherwise, or when probing resident FIDO credentials (an operation not currently supported by WinHello). * Portable OpenSSH: remove workarounds for obsolete and unsupported versions of OpenSSL libcrypto. In particular, this release removes fallback support for OpenSSL that lacks AES-CTR or AES-GCM. Those AES cipher modes were added to OpenSSL prior to the minimum version currently supported by OpenSSH, so this is not expected to impact any currently supported configurations. * sshd(8): fix SANDBOX_SECCOMP_FILTER_DEBUG on current Linux/glibc * All: resync and clean up internal CSPRNG code. * scp(1), sftp(1), sftp-server(8): avoid linking these programs with unnecessary libraries. They are no longer linked against libz and libcrypto. This may be of benefit to space constrained systems using any of those components in isolation. * sshd(8): add AUDIT_ARCH_PPC to supported seccomp sandbox architectures. * configure: remove special casing of crypt(). configure will no longer search for crypt() in libcrypto, as it was removed from there years ago. configure will now only search libc and libcrypt. * configure: refuse to use OpenSSL 3.0.4 due to potential RCE in its RSA implementation (CVE-2022-2274) on x86_64. * All: request 1.1x API compatibility for OpenSSL >=3.x; GHPR322 * ssh(1), ssh-keygen(1), sshd(8): fix a number of missing includes required by the XMSS code on some platforms. * sshd(8): cache timezone data in capsicum sandbox.
2022-10-06 01:35:32 +03:00
free(device);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (pin != NULL)
freezero(pin, strlen(pin));
return resp;
}
int
main(int argc, char **argv)
{
SyslogFacility log_facility = SYSLOG_FACILITY_AUTH;
LogLevel log_level = SYSLOG_LEVEL_ERROR;
struct sshbuf *req, *resp;
int in, out, ch, r, vflag = 0;
u_int rtype, ll = 0;
uint8_t version, log_stderr = 0;
sanitise_stdfd();
log_init(__progname, log_level, log_facility, log_stderr);
while ((ch = getopt(argc, argv, "v")) != -1) {
switch (ch) {
case 'v':
vflag = 1;
if (log_level == SYSLOG_LEVEL_ERROR)
log_level = SYSLOG_LEVEL_DEBUG1;
else if (log_level < SYSLOG_LEVEL_DEBUG3)
log_level++;
break;
default:
fprintf(stderr, "usage: %s [-v]\n", __progname);
exit(1);
}
}
log_init(__progname, log_level, log_facility, vflag);
/*
* Rearrange our file descriptors a little; we don't trust the
* providers not to fiddle with stdin/out.
*/
closefrom(STDERR_FILENO + 1);
if ((in = dup(STDIN_FILENO)) == -1 || (out = dup(STDOUT_FILENO)) == -1)
fatal("%s: dup: %s", __progname, strerror(errno));
close(STDIN_FILENO);
close(STDOUT_FILENO);
sanitise_stdfd(); /* resets to /dev/null */
if ((req = sshbuf_new()) == NULL)
fatal("%s: sshbuf_new failed", __progname);
if (ssh_msg_recv(in, req) < 0)
fatal("ssh_msg_recv failed");
close(in);
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
debug_f("received message len %zu", sshbuf_len(req));
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if ((r = sshbuf_get_u8(req, &version)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: parse version", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (version != SSH_SK_HELPER_VERSION) {
fatal("unsupported version: received %d, expected %d",
version, SSH_SK_HELPER_VERSION);
}
if ((r = sshbuf_get_u32(req, &rtype)) != 0 ||
(r = sshbuf_get_u8(req, &log_stderr)) != 0 ||
(r = sshbuf_get_u32(req, &ll)) != 0)
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
fatal_r(r, "%s: parse", __progname);
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (!vflag && log_level_name((LogLevel)ll) != NULL)
log_init(__progname, (LogLevel)ll, log_facility, log_stderr);
switch (rtype) {
case SSH_SK_HELPER_SIGN:
resp = process_sign(req);
break;
case SSH_SK_HELPER_ENROLL:
resp = process_enroll(req);
break;
case SSH_SK_HELPER_LOAD_RESIDENT:
resp = process_load_resident(req);
break;
default:
fatal("%s: unsupported request type %u", __progname, rtype);
}
sshbuf_free(req);
OpenSSH 8.5/8.5p1 (2021-03-03) OpenSSH 8.5 was released on 2021-03-03. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 algorithm for less than USD$50K. In the SSH protocol, the "ssh-rsa" signature scheme uses the SHA-1 hash algorithm in conjunction with the RSA public key algorithm. OpenSSH will disable this signature scheme by default in the near future. Note that the deactivation of "ssh-rsa" signatures does not necessarily require cessation of use for RSA keys. In the SSH protocol, keys may be capable of signing using multiple algorithms. In particular, "ssh-rsa" keys are capable of signing using "rsa-sha2-256" (RSA/SHA256), "rsa-sha2-512" (RSA/SHA512) and "ssh-rsa" (RSA/SHA1). Only the last of these is being turned off by default. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs that is still enabled by default. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The RFC8709 ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm, for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. This release enables the UpdateHostKeys option by default to assist the client by automatically migrating to better algorithms. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh-agent(1): fixed a double-free memory corruption that was introduced in OpenSSH 8.2 . We treat all such memory faults as potentially exploitable. This bug could be reached by an attacker with access to the agent socket. On modern operating systems where the OS can provide information about the user identity connected to a socket, OpenSSH ssh-agent and sshd limit agent socket access only to the originating user and root. Additional mitigation may be afforded by the system's malloc(3)/free(3) implementation, if it detects double-free conditions. The most likely scenario for exploitation is a user forwarding an agent either to an account shared with a malicious user or to a host with an attacker holding root access. * Portable sshd(8): Prevent excessively long username going to PAM. This is a mitigation for a buffer overflow in Solaris' PAM username handling (CVE-2020-14871), and is only enabled for Sun-derived PAM implementations. This is not a problem in sshd itself, it only prevents sshd from being used as a vector to attack Solaris' PAM. It does not prevent the bug in PAM from being exploited via some other PAM application. GHPR212 Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): this release changes the first-preference signature algorithm from ECDSA to ED25519. * ssh(1), sshd(8): set the TOS/DSCP specified in the configuration for interactive use prior to TCP connect. The connection phase of the SSH session is time-sensitive and often explicitly interactive. The ultimate interactive/bulk TOS/DSCP will be set after authentication completes. * ssh(1), sshd(8): remove the pre-standardization cipher rijndael-cbc@lysator.liu.se. It is an alias for aes256-cbc before it was standardized in RFC4253 (2006), has been deprecated and disabled by default since OpenSSH 7.2 (2016) and was only briefly documented in ssh.1 in 2001. * ssh(1), sshd(8): update/replace the experimental post-quantum hybrid key exchange method based on Streamlined NTRU Prime coupled with X25519. The previous sntrup4591761x25519-sha512@tinyssh.org method is replaced with sntrup761x25519-sha512@openssh.com. Per its designers, the sntrup4591761 algorithm was superseded almost two years ago by sntrup761. (note this both the updated method and the one that it replaced are disabled by default) * ssh(1): disable CheckHostIP by default. It provides insignificant benefits while making key rotation significantly more difficult, especially for hosts behind IP-based load-balancers. Changes since OpenSSH 8.4 ========================= New features ------------ * ssh(1): this release enables UpdateHostkeys by default subject to some conservative preconditions: - The key was matched in the UserKnownHostsFile (and not in the GlobalKnownHostsFile). - The same key does not exist under another name. - A certificate host key is not in use. - known_hosts contains no matching wildcard hostname pattern. - VerifyHostKeyDNS is not enabled. - The default UserKnownHostsFile is in use. We expect some of these conditions will be modified or relaxed in future. * ssh(1), sshd(8): add a new LogVerbose configuration directive for that allows forcing maximum debug logging by file/function/line pattern-lists. * ssh(1): when prompting the user to accept a new hostkey, display any other host names/addresses already associated with the key. * ssh(1): allow UserKnownHostsFile=none to indicate that no known_hosts file should be used to identify host keys. * ssh(1): add a ssh_config KnownHostsCommand option that allows the client to obtain known_hosts data from a command in addition to the usual files. * ssh(1): add a ssh_config PermitRemoteOpen option that allows the client to restrict the destination when RemoteForward is used with SOCKS. * ssh(1): for FIDO keys, if a signature operation fails with a "incorrect PIN" reason and no PIN was initially requested from the user, then request a PIN and retry the operation. This supports some biometric devices that fall back to requiring PIN when reading of the biometric failed, and devices that require PINs for all hosted credentials. * sshd(8): implement client address-based rate-limiting via new sshd_config(5) PerSourceMaxStartups and PerSourceNetBlockSize directives that provide more fine-grained control on a per-origin address basis than the global MaxStartups limit. Bugfixes -------- * ssh(1): Prefix keyboard interactive prompts with "(user@host)" to make it easier to determine which connection they are associated with in cases like scp -3, ProxyJump, etc. bz#3224 * sshd(8): fix sshd_config SetEnv directives located inside Match blocks. GHPR201 * ssh(1): when requesting a FIDO token touch on stderr, inform the user once the touch has been recorded. * ssh(1): prevent integer overflow when ridiculously large ConnectTimeout values are specified, capping the effective value (for most platforms) at 24 days. bz#3229 * ssh(1): consider the ECDSA key subtype when ordering host key algorithms in the client. * ssh(1), sshd(8): rename the PubkeyAcceptedKeyTypes keyword to PubkeyAcceptedAlgorithms. The previous name incorrectly suggested that it control allowed key algorithms, when this option actually specifies the signature algorithms that are accepted. The previous name remains available as an alias. bz#3253 * ssh(1), sshd(8): similarly, rename HostbasedKeyTypes (ssh) and HostbasedAcceptedKeyTypes (sshd) to HostbasedAcceptedAlgorithms. * sftp-server(8): add missing lsetstat@openssh.com documentation and advertisement in the server's SSH2_FXP_VERSION hello packet. * ssh(1), sshd(8): more strictly enforce KEX state-machine by banning packet types once they are received. Fixes memleak caused by duplicate SSH2_MSG_KEX_DH_GEX_REQUEST (oss-fuzz #30078). * sftp(1): allow the full range of UIDs/GIDs for chown/chgrp on 32bit platforms instead of being limited by LONG_MAX. bz#3206 * Minor man page fixes (capitalization, commas, etc.) bz#3223 * sftp(1): when doing an sftp recursive upload or download of a read-only directory, ensure that the directory is created with write and execute permissions in the interim so that the transfer can actually complete, then set the directory permission as the final step. bz#3222 * ssh-keygen(1): document the -Z, check the validity of its argument earlier and provide a better error message if it's not correct. bz#2879 * ssh(1): ignore comments at the end of config lines in ssh_config, similar to what we already do for sshd_config. bz#2320 * sshd_config(5): mention that DisableForwarding is valid in a sshd_config Match block. bz3239 * sftp(1): fix incorrect sorting of "ls -ltr" under some circumstances. bz3248. * ssh(1), sshd(8): fix potential integer truncation of (unlikely) timeout values. bz#3250 * ssh(1): make hostbased authentication send the signature algorithm in its SSH2_MSG_USERAUTH_REQUEST packets instead of the key type. This make HostbasedAcceptedAlgorithms do what it is supposed to - filter on signature algorithm and not key type. Portability ----------- * sshd(8): add a number of platform-specific syscalls to the Linux seccomp-bpf sandbox. bz#3232 bz#3260 * sshd(8): remove debug message from sigchld handler that could cause deadlock on some platforms. bz#3259 * Sync contrib/ssh-copy-id with upstream. * unittests: add a hostname function for systems that don't have it. Some systems don't have a hostname command (it's not required by POSIX). The do have uname -n (which is), but not all of those have it report the FQDN. Checksums: ========== - SHA1 (openssh-8.5.tar.gz) = 04cae43c389fb411227c01219e4eb46e3113f34e - SHA256 (openssh-8.5.tar.gz) = 5qB2CgzNG4io4DmChTjHgCWqRWvEOvCKJskLdJCz+SU= - SHA1 (openssh-8.5p1.tar.gz) = 72eadcbe313b07b1dd3b693e41d3cd56d354e24e - SHA256 (openssh-8.5p1.tar.gz) = 9S8/QdQpqpkY44zyAK8iXM3Y5m8FLaVyhwyJc3ZG7CU= Please note that the SHA256 signatures are base64 encoded and not hexadecimal (which is the default for most checksum tools). The PGP key used to sign the releases is available from the mirror sites: https://cdn.openbsd.org/pub/OpenBSD/OpenSSH/RELEASE_KEY.asc Please note that the OpenPGP key used to sign releases has been rotated for this release. The new key has been signed by the previous key to provide continuity. Reporting Bugs: =============== - Please read https://www.openssh.com/report.html Security bugs should be reported directly to openssh@openssh.com
2021-03-05 20:45:24 +03:00
debug_f("reply len %zu", sshbuf_len(resp));
OpenSSH 8.2/8.2p1 (2020-02-14) OpenSSH 8.2 was released on 2020-02-14. It is available from the mirrors listed at https://www.openssh.com/. OpenSSH is a 100% complete SSH protocol 2.0 implementation and includes sftp client and server support. Once again, we would like to thank the OpenSSH community for their continued support of the project, especially those who contributed code or patches, reported bugs, tested snapshots or donated to the project. More information on donations may be found at: https://www.openssh.com/donations.html Future deprecation notice ========================= It is now possible[1] to perform chosen-prefix attacks against the SHA-1 hash algorithm for less than USD$50K. For this reason, we will be disabling the "ssh-rsa" public key signature algorithm that depends on SHA-1 by default in a near-future release. This algorithm is unfortunately still used widely despite the existence of better alternatives, being the only remaining public key signature algorithm specified by the original SSH RFCs. The better alternatives include: * The RFC8332 RSA SHA-2 signature algorithms rsa-sha2-256/512. These algorithms have the advantage of using the same key type as "ssh-rsa" but use the safe SHA-2 hash algorithms. These have been supported since OpenSSH 7.2 and are already used by default if the client and server support them. * The ssh-ed25519 signature algorithm. It has been supported in OpenSSH since release 6.5. * The RFC5656 ECDSA algorithms: ecdsa-sha2-nistp256/384/521. These have been supported by OpenSSH since release 5.7. To check whether a server is using the weak ssh-rsa public key algorithm for host authentication, try to connect to it after removing the ssh-rsa algorithm from ssh(1)'s allowed list: ssh -oHostKeyAlgorithms=-ssh-rsa user@host If the host key verification fails and no other supported host key types are available, the server software on that host should be upgraded. A future release of OpenSSH will enable UpdateHostKeys by default to allow the client to automatically migrate to better algorithms. Users may consider enabling this option manually. [1] "SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust" Leurent, G and Peyrin, T (2020) https://eprint.iacr.org/2020/014.pdf Security ======== * ssh(1), sshd(8), ssh-keygen(1): this release removes the "ssh-rsa" (RSA/SHA1) algorithm from those accepted for certificate signatures (i.e. the client and server CASignatureAlgorithms option) and will use the rsa-sha2-512 signature algorithm by default when the ssh-keygen(1) CA signs new certificates. Certificates are at special risk to the aforementioned SHA1 collision vulnerability as an attacker has effectively unlimited time in which to craft a collision that yields them a valid certificate, far more than the relatively brief LoginGraceTime window that they have to forge a host key signature. The OpenSSH certificate format includes a CA-specified (typically random) nonce value near the start of the certificate that should make exploitation of chosen-prefix collisions in this context challenging, as the attacker does not have full control over the prefix that actually gets signed. Nonetheless, SHA1 is now a demonstrably broken algorithm and futher improvements in attacks are highly likely. OpenSSH releases prior to 7.2 do not support the newer RSA/SHA2 algorithms and will refuse to accept certificates signed by an OpenSSH 8.2+ CA using RSA keys unless the unsafe algorithm is explicitly selected during signing ("ssh-keygen -t ssh-rsa"). Older clients/servers may use another CA key type such as ssh-ed25519 (supported since OpenSSH 6.5) or one of the ecdsa-sha2-nistp256/384/521 types (supported since OpenSSH 5.7) instead if they cannot be upgraded. Potentially-incompatible changes ================================ This release includes a number of changes that may affect existing configurations: * ssh(1), sshd(8): the above removal of "ssh-rsa" from the accepted CASignatureAlgorithms list. * ssh(1), sshd(8): this release removes diffie-hellman-group14-sha1 from the default key exchange proposal for both the client and server. * ssh-keygen(1): the command-line options related to the generation and screening of safe prime numbers used by the diffie-hellman-group-exchange-* key exchange algorithms have changed. Most options have been folded under the -O flag. * sshd(8): the sshd listener process title visible to ps(1) has changed to include information about the number of connections that are currently attempting authentication and the limits configured by MaxStartups. * ssh-sk-helper(8): this is a new binary. It is used by the FIDO/U2F support to provide address-space isolation for token middleware libraries (including the internal one). It needs to be installed in the expected path, typically under /usr/libexec or similar. Changes since OpenSSH 8.1 ========================= This release contains some significant new features. FIDO/U2F Support ---------------- This release adds support for FIDO/U2F hardware authenticators to OpenSSH. U2F/FIDO are open standards for inexpensive two-factor authentication hardware that are widely used for website authentication. In OpenSSH FIDO devices are supported by new public key types "ecdsa-sk" and "ed25519-sk", along with corresponding certificate types. ssh-keygen(1) may be used to generate a FIDO token-backed key, after which they may be used much like any other key type supported by OpenSSH, so long as the hardware token is attached when the keys are used. FIDO tokens also generally require the user explicitly authorise operations by touching or tapping them. Generating a FIDO key requires the token be attached, and will usually require the user tap the token to confirm the operation: $ ssh-keygen -t ecdsa-sk -f ~/.ssh/id_ecdsa_sk Generating public/private ecdsa-sk key pair. You may need to touch your security key to authorize key generation. Enter file in which to save the key (/home/djm/.ssh/id_ecdsa_sk): Enter passphrase (empty for no passphrase): Enter same passphrase again: Your identification has been saved in /home/djm/.ssh/id_ecdsa_sk Your public key has been saved in /home/djm/.ssh/id_ecdsa_sk.pub This will yield a public and private key-pair. The private key file should be useless to an attacker who does not have access to the physical token. After generation, this key may be used like any other supported key in OpenSSH and may be listed in authorized_keys, added to ssh-agent(1), etc. The only additional stipulation is that the FIDO token that the key belongs to must be attached when the key is used. FIDO tokens are most commonly connected via USB but may be attached via other means such as Bluetooth or NFC. In OpenSSH, communication with the token is managed via a middleware library, specified by the SecurityKeyProvider directive in ssh/sshd_config(5) or the $SSH_SK_PROVIDER environment variable for ssh-keygen(1) and ssh-add(1). The API for this middleware is documented in the sk-api.h and PROTOCOL.u2f files in the source distribution. OpenSSH includes a middleware ("SecurityKeyProvider=internal") with support for USB tokens. It is automatically enabled in OpenBSD and may be enabled in portable OpenSSH via the configure flag --with-security-key-builtin. If the internal middleware is enabled then it is automatically used by default. This internal middleware requires that libfido2 (https://github.com/Yubico/libfido2) and its dependencies be installed. We recommend that packagers of portable OpenSSH enable the built-in middleware, as it provides the lowest-friction experience for users. Note: FIDO/U2F tokens are required to implement the ECDSA-P256 "ecdsa-sk" key type, but hardware support for Ed25519 "ed25519-sk" is less common. Similarly, not all hardware tokens support some of the optional features such as resident keys. The protocol-level changes to support FIDO/U2F keys in SSH are documented in the PROTOCOL.u2f file in the OpenSSH source distribution. There are a number of supporting changes to this feature: * ssh-keygen(1): add a "no-touch-required" option when generating FIDO-hosted keys, that disables their default behaviour of requiring a physical touch/tap on the token during authentication. Note: not all tokens support disabling the touch requirement. * sshd(8): add a sshd_config PubkeyAuthOptions directive that collects miscellaneous public key authentication-related options for sshd(8). At present it supports only a single option "no-touch-required". This causes sshd to skip its default check for FIDO/U2F keys that the signature was authorised by a touch or press event on the token hardware. * ssh(1), sshd(8), ssh-keygen(1): add a "no-touch-required" option for authorized_keys and a similar extension for certificates. This option disables the default requirement that FIDO key signatures attest that the user touched their key to authorize them, mirroring the similar PubkeyAuthOptions sshd_config option. * ssh-keygen(1): add support for the writing the FIDO attestation information that is returned when new keys are generated via the "-O write-attestation=/path" option. FIDO attestation certificates may be used to verify that a FIDO key is hosted in trusted hardware. OpenSSH does not currently make use of this information, beyond optionally writing it to disk. FIDO2 resident keys ------------------- FIDO/U2F OpenSSH keys consist of two parts: a "key handle" part stored in the private key file on disk, and a per-device private key that is unique to each FIDO/U2F token and that cannot be exported from the token hardware. These are combined by the hardware at authentication time to derive the real key that is used to sign authentication challenges. For tokens that are required to move between computers, it can be cumbersome to have to move the private key file first. To avoid this requirement, tokens implementing the newer FIDO2 standard support "resident keys", where it is possible to effectively retrieve the key handle part of the key from the hardware. OpenSSH supports this feature, allowing resident keys to be generated using the ssh-keygen(1) "-O resident" flag. This will produce a public/private key pair as usual, but it will be possible to retrieve the private key part from the token later. This may be done using "ssh-keygen -K", which will download all available resident keys from the tokens attached to the host and write public/private key files for them. It is also possible to download and add resident keys directly to ssh-agent(1) without writing files to the file-system using "ssh-add -K". Resident keys are indexed on the token by the application string and user ID. By default, OpenSSH uses an application string of "ssh:" and an empty user ID. If multiple resident keys on a single token are desired then it may be necessary to override one or both of these defaults using the ssh-keygen(1) "-O application=" or "-O user=" options. Note: OpenSSH will only download and use resident keys whose application string begins with "ssh:" Storing both parts of a key on a FIDO token increases the likelihood of an attacker being able to use a stolen token device. For this reason, tokens should enforce PIN authentication before allowing download of keys, and users should set a PIN on their tokens before creating any resident keys. Other New Features ------------------ * sshd(8): add an Include sshd_config keyword that allows including additional configuration files via glob(3) patterns. bz2468 * ssh(1)/sshd(8): make the LE (low effort) DSCP code point available via the IPQoS directive; bz2986, * ssh(1): when AddKeysToAgent=yes is set and the key contains no comment, add the key to the agent with the key's path as the comment. bz2564 * ssh-keygen(1), ssh-agent(1): expose PKCS#11 key labels and X.509 subjects as key comments, rather than simply listing the PKCS#11 provider library path. PR138 * ssh-keygen(1): allow PEM export of DSA and ECDSA keys; bz3091 * ssh(1), sshd(8): make zlib compile-time optional, available via the Makefile.inc ZLIB flag on OpenBSD or via the --with-zlib configure option for OpenSSH portable. * sshd(8): when clients get denied by MaxStartups, send a notification prior to the SSH2 protocol banner according to RFC4253 section 4.2. * ssh(1), ssh-agent(1): when invoking the $SSH_ASKPASS prompt program, pass a hint to the program to describe the type of desired prompt. The possible values are "confirm" (indicating that a yes/no confirmation dialog with no text entry should be shown), "none" (to indicate an informational message only), or blank for the original ssh-askpass behaviour of requesting a password/phrase. * ssh(1): allow forwarding a different agent socket to the path specified by $SSH_AUTH_SOCK, by extending the existing ForwardAgent option to accepting an explicit path or the name of an environment variable in addition to yes/no. * ssh-keygen(1): add a new signature operations "find-principals" to look up the principal associated with a signature from an allowed- signers file. * sshd(8): expose the number of currently-authenticating connections along with the MaxStartups limit in the process title visible to "ps". Bugfixes -------- * sshd(8): make ClientAliveCountMax=0 have sensible semantics: it will now disable connection killing entirely rather than the current behaviour of instantly killing the connection after the first liveness test regardless of success. bz2627 * sshd(8): clarify order of AllowUsers / DenyUsers vs AllowGroups / DenyGroups in the sshd(8) manual page. bz1690 * sshd(8): better describe HashKnownHosts in the manual page. bz2560 * sshd(8): clarify that that permitopen=/PermitOpen do no name or address translation in the manual page. bz3099 * sshd(8): allow the UpdateHostKeys feature to function when multiple known_hosts files are in use. When updating host keys, ssh will now search subsequent known_hosts files, but will add updated host keys to the first specified file only. bz2738 * All: replace all calls to signal(2) with a wrapper around sigaction(2). This wrapper blocks all other signals during the handler preventing races between handlers, and sets SA_RESTART which should reduce the potential for short read/write operations. * sftp(1): fix a race condition in the SIGCHILD handler that could turn in to a kill(-1); bz3084 * sshd(8): fix a case where valid (but extremely large) SSH channel IDs were being incorrectly rejected. bz3098 * ssh(1): when checking host key fingerprints as answers to new hostkey prompts, ignore whitespace surrounding the fingerprint itself. * All: wait for file descriptors to be readable or writeable during non-blocking connect, not just readable. Prevents a timeout when the server doesn't immediately send a banner (e.g. multiplexers like sslh) * sshd_config(5): document the sntrup4591761x25519-sha512@tinyssh.org key exchange algorithm. PR#151
2020-02-27 03:21:35 +03:00
if (ssh_msg_send(out, SSH_SK_HELPER_VERSION, resp) == -1)
fatal("ssh_msg_send failed");
sshbuf_free(resp);
close(out);
return (0);
}