NetBSD/sys/net/rtsock.c

1370 lines
36 KiB
C
Raw Normal View History

/* $NetBSD: rtsock.c,v 1.140 2012/01/30 20:02:55 christos Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
2005-02-27 01:45:09 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
2005-02-27 01:45:09 +03:00
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
1993-03-21 12:45:37 +03:00
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
1993-03-21 12:45:37 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
1993-03-21 12:45:37 +03:00
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
1998-03-01 05:20:01 +03:00
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
1993-03-21 12:45:37 +03:00
*/
2001-11-13 02:49:33 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.140 2012/01/30 20:02:55 christos Exp $");
2001-11-13 02:49:33 +03:00
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_mpls.h"
2009-01-11 05:45:45 +03:00
#include "opt_compat_netbsd.h"
#endif
1993-12-18 03:40:47 +03:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
1993-12-18 03:40:47 +03:00
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
1996-02-14 00:59:53 +03:00
#include <sys/sysctl.h>
2006-05-15 01:19:33 +04:00
#include <sys/kauth.h>
#include <sys/intr.h>
#ifdef RTSOCK_DEBUG
#include <netinet/in.h>
#endif /* RTSOCK_DEBUG */
1996-02-14 00:59:53 +03:00
1993-12-18 03:40:47 +03:00
#include <net/if.h>
#include <net/route.h>
#include <net/raw_cb.h>
1993-03-21 12:45:37 +03:00
#include <netmpls/mpls.h>
2009-01-11 05:45:45 +03:00
#if defined(COMPAT_14) || defined(COMPAT_50)
#include <compat/net/if.h>
#include <compat/net/route.h>
#endif
#ifdef COMPAT_RTSOCK
#define RTM_XVERSION RTM_OVERSION
#define RT_XADVANCE(a,b) RT_OADVANCE(a,b)
#define RT_XROUNDUP(n) RT_OROUNDUP(n)
#define PF_XROUTE PF_OROUTE
#define rt_xmsghdr rt_msghdr50
#define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */
#define ifa_xmsghdr ifa_msghdr50
#define if_xannouncemsghdr if_announcemsghdr50
#define COMPATNAME(x) compat_50_ ## x
#define DOMAINNAME "oroute"
CTASSERT(sizeof(struct ifa_xmsghdr) == 20);
DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */
#else
#define RTM_XVERSION RTM_VERSION
#define RT_XADVANCE(a,b) RT_ADVANCE(a,b)
#define RT_XROUNDUP(n) RT_ROUNDUP(n)
#define PF_XROUTE PF_ROUTE
#define rt_xmsghdr rt_msghdr
#define if_xmsghdr if_msghdr
#define ifa_xmsghdr ifa_msghdr
#define if_xannouncemsghdr if_announcemsghdr
#define COMPATNAME(x) x
#define DOMAINNAME "route"
CTASSERT(sizeof(struct ifa_xmsghdr) == 24);
#ifdef COMPAT_50
#define COMPATCALL(name, args) compat_50_ ## name args
#endif
DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
#undef COMPAT_50
#undef COMPAT_14
2009-01-11 05:45:45 +03:00
#endif
#ifndef COMPATCALL
#define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0)
#endif
1996-02-14 00:59:53 +03:00
struct route_info COMPATNAME(route_info) = {
.ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, },
.ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, },
.ri_maxqlen = IFQ_MAXLEN,
};
#define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
static void COMPATNAME(route_init)(void);
static int COMPATNAME(route_output)(struct mbuf *, ...);
static int COMPATNAME(route_usrreq)(struct socket *,
int, struct mbuf *, struct mbuf *, struct mbuf *, struct lwp *);
2009-01-11 05:45:45 +03:00
static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
struct rt_addrinfo *);
static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *);
static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *);
static void sysctl_net_route_setup(struct sysctllog **);
static int sysctl_dumpentry(struct rtentry *, void *);
2009-01-11 05:45:45 +03:00
static int sysctl_iflist(int, struct rt_walkarg *, int);
static int sysctl_rtable(SYSCTLFN_PROTO);
static void rt_adjustcount(int, int);
static void
rt_adjustcount(int af, int cnt)
{
struct route_cb * const cb = &COMPATNAME(route_info).ri_cb;
cb->any_count += cnt;
switch (af) {
case AF_INET:
cb->ip_count += cnt;
return;
#ifdef INET6
case AF_INET6:
cb->ip6_count += cnt;
return;
#endif
case AF_ISO:
cb->iso_count += cnt;
return;
case AF_MPLS:
cb->mpls_count += cnt;
return;
}
}
1993-03-21 12:45:37 +03:00
/*ARGSUSED*/
int
COMPATNAME(route_usrreq)(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
2005-12-11 15:16:03 +03:00
struct mbuf *control, struct lwp *l)
1993-03-21 12:45:37 +03:00
{
2000-03-30 13:45:33 +04:00
int error = 0;
struct rawcb *rp = sotorawcb(so);
1993-03-21 12:45:37 +03:00
int s;
1993-03-21 12:45:37 +03:00
if (req == PRU_ATTACH) {
sosetlock(so);
2008-12-17 23:51:31 +03:00
rp = malloc(sizeof(*rp), M_PCB, M_WAITOK|M_ZERO);
so->so_pcb = rp;
1993-03-21 12:45:37 +03:00
}
if (req == PRU_DETACH && rp)
rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
1995-08-13 03:59:09 +04:00
s = splsoftnet();
/*
* Don't call raw_usrreq() in the attach case, because
* we want to allow non-privileged processes to listen on
* and send "safe" commands to the routing socket.
*/
if (req == PRU_ATTACH) {
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (l == NULL)
error = EACCES;
else
error = raw_attach(so, (int)(long)nam);
} else
2005-12-11 15:16:03 +03:00
error = raw_usrreq(so, req, m, nam, control, l);
1993-03-21 12:45:37 +03:00
rp = sotorawcb(so);
if (req == PRU_ATTACH && rp) {
if (error) {
free(rp, M_PCB);
1993-03-21 12:45:37 +03:00
splx(s);
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
1993-03-21 12:45:37 +03:00
}
rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
rp->rcb_laddr = &COMPATNAME(route_info).ri_src;
rp->rcb_faddr = &COMPATNAME(route_info).ri_dst;
1993-03-21 12:45:37 +03:00
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
}
splx(s);
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
}
1993-03-21 12:45:37 +03:00
/*ARGSUSED*/
int
COMPATNAME(route_output)(struct mbuf *m, ...)
1993-03-21 12:45:37 +03:00
{
struct sockproto proto = { .sp_family = PF_XROUTE, };
struct rt_xmsghdr *rtm = NULL;
struct rt_xmsghdr *old_rtm = NULL;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
struct rtentry *rt = NULL;
struct rtentry *saved_nrt = NULL;
struct rt_addrinfo info;
int len, error = 0;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
struct ifnet *ifp = NULL;
struct ifaddr *ifa = NULL;
1996-02-14 00:59:53 +03:00
struct socket *so;
va_list ap;
sa_family_t family;
1996-02-14 00:59:53 +03:00
va_start(ap, m);
so = va_arg(ap, struct socket *);
va_end(ap);
2002-11-02 10:20:42 +03:00
#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
(m = m_pullup(m, sizeof(int32_t))) == NULL))
return ENOBUFS;
1993-03-21 12:45:37 +03:00
if ((m->m_flags & M_PKTHDR) == 0)
panic("%s", __func__);
1993-03-21 12:45:37 +03:00
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
1993-03-21 12:45:37 +03:00
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_xmsghdr *, len);
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
1993-03-21 12:45:37 +03:00
senderr(ENOBUFS);
}
m_copydata(m, 0, len, rtm);
if (rtm->rtm_version != RTM_XVERSION) {
info.rti_info[RTAX_DST] = NULL;
1993-03-21 12:45:37 +03:00
senderr(EPROTONOSUPPORT);
}
1993-03-21 12:45:37 +03:00
rtm->rtm_pid = curproc->p_pid;
2001-07-18 20:43:09 +04:00
memset(&info, 0, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
&info)) {
senderr(EINVAL);
}
info.rti_flags = rtm->rtm_flags;
#ifdef RTSOCK_DEBUG
if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
inet_ntoa(((const struct sockaddr_in *)
info.rti_info[RTAX_DST])->sin_addr));
}
#endif /* RTSOCK_DEBUG */
if (info.rti_info[RTAX_DST] == NULL ||
(info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) {
1998-03-01 05:20:01 +03:00
senderr(EINVAL);
}
if (info.rti_info[RTAX_GATEWAY] != NULL &&
(info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
1993-03-21 12:45:37 +03:00
senderr(EINVAL);
}
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
First take at security model abstraction. - Add a few scopes to the kernel: system, network, and machdep. - Add a few more actions/sub-actions (requests), and start using them as opposed to the KAUTH_GENERIC_ISSUSER place-holders. - Introduce a basic set of listeners that implement our "traditional" security model, called "bsd44". This is the default (and only) model we have at the moment. - Update all relevant documentation. - Add some code and docs to help folks who want to actually use this stuff: * There's a sample overlay model, sitting on-top of "bsd44", for fast experimenting with tweaking just a subset of an existing model. This is pretty cool because it's *really* straightforward to do stuff you had to use ugly hacks for until now... * And of course, documentation describing how to do the above for quick reference, including code samples. All of these changes were tested for regressions using a Python-based testsuite that will be (I hope) available soon via pkgsrc. Information about the tests, and how to write new ones, can be found on: http://kauth.linbsd.org/kauthwiki NOTE FOR DEVELOPERS: *PLEASE* don't add any code that does any of the following: - Uses a KAUTH_GENERIC_ISSUSER kauth(9) request, - Checks 'securelevel' directly, - Checks a uid/gid directly. (or if you feel you have to, contact me first) This is still work in progress; It's far from being done, but now it'll be a lot easier. Relevant mailing list threads: http://mail-index.netbsd.org/tech-security/2006/01/25/0011.html http://mail-index.netbsd.org/tech-security/2006/03/24/0001.html http://mail-index.netbsd.org/tech-security/2006/04/18/0000.html http://mail-index.netbsd.org/tech-security/2006/05/15/0000.html http://mail-index.netbsd.org/tech-security/2006/08/01/0000.html http://mail-index.netbsd.org/tech-security/2006/08/25/0000.html Many thanks to YAMAMOTO Takashi, Matt Thomas, and Christos Zoulas for help stablizing kauth(9). Full credit for the regression tests, making sure these changes didn't break anything, goes to Matt Fleming and Jaime Fournier. Happy birthday Randi! :)
2006-09-09 00:58:56 +04:00
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
0, rtm, NULL, NULL) != 0)
senderr(EACCES);
1993-03-21 12:45:37 +03:00
switch (rtm->rtm_type) {
1993-03-21 12:45:37 +03:00
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL) {
1993-03-21 12:45:37 +03:00
senderr(EINVAL);
}
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
1993-03-21 12:45:37 +03:00
if (error == 0 && saved_nrt) {
rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt);
1993-03-21 12:45:37 +03:00
saved_nrt->rt_refcnt--;
}
break;
case RTM_DELETE:
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
1995-08-19 11:48:14 +04:00
if (error == 0) {
(rt = saved_nrt)->rt_refcnt++;
goto report;
}
1993-03-21 12:45:37 +03:00
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
/* XXX This will mask info.rti_info[RTAX_DST] with
* info.rti_info[RTAX_NETMASK] before
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
* searching. It did not used to do that. --dyoung
*/
error = rtrequest1(RTM_GET, &info, &rt);
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (error != 0)
senderr(error);
if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
info.rti_info[RTAX_DST]->sa_len) != 0)
senderr(ESRCH);
if (info.rti_info[RTAX_NETMASK] == NULL &&
rt_mask(rt) != NULL)
senderr(ETOOMANYREFS);
}
2003-05-02 07:15:23 +04:00
switch (rtm->rtm_type) {
1993-03-21 12:45:37 +03:00
case RTM_GET:
1995-08-19 11:48:14 +04:00
report:
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
2011-10-31 16:50:50 +04:00
info.rti_info[RTAX_TAG] = rt_gettag(rt);
if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
;
else if ((ifp = rt->rt_ifp) != NULL) {
const struct ifaddr *rtifa;
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa.
* If rt->rt_ifa != NULL, then
* rt_get_ifa() != NULL. So this
* ought to still be safe. --dyoung
*/
rtifa = rt_get_ifa(rt);
info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
#ifdef RTSOCK_DEBUG
if (info.rti_info[RTAX_IFA]->sa_family ==
AF_INET) {
printf("%s: copying out RTAX_IFA %s ",
__func__, inet_ntoa(
((const struct sockaddr_in *)
info.rti_info[RTAX_IFA])->sin_addr)
);
printf("for info.rti_info[RTAX_DST] %s "
"ifa_getifa %p ifa_seqno %p\n",
inet_ntoa(
((const struct sockaddr_in *)
info.rti_info[RTAX_DST])->sin_addr),
(void *)rtifa->ifa_getifa,
rtifa->ifa_seqno);
}
#endif /* RTSOCK_DEBUG */
if (ifp->if_flags & IFF_POINTOPOINT) {
info.rti_info[RTAX_BRD] =
rtifa->ifa_dstaddr;
} else
info.rti_info[RTAX_BRD] = NULL;
rtm->rtm_index = ifp->if_index;
} else {
info.rti_info[RTAX_IFP] = NULL;
info.rti_info[RTAX_IFA] = NULL;
1993-03-21 12:45:37 +03:00
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
(void)rt_msg2(rtm->rtm_type, &info, NULL, NULL, &len);
1993-03-21 12:45:37 +03:00
if (len > rtm->rtm_msglen) {
old_rtm = rtm;
R_Malloc(rtm, struct rt_xmsghdr *, len);
if (rtm == NULL)
1993-03-21 12:45:37 +03:00
senderr(ENOBUFS);
(void)memcpy(rtm, old_rtm, old_rtm->rtm_msglen);
1993-03-21 12:45:37 +03:00
}
(void)rt_msg2(rtm->rtm_type, &info, rtm, NULL, 0);
1993-03-21 12:45:37 +03:00
rtm->rtm_flags = rt->rt_flags;
rtm_setmetrics(rt, rtm);
rtm->rtm_addrs = info.rti_addrs;
1993-03-21 12:45:37 +03:00
break;
case RTM_CHANGE:
/*
* new gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
if ((error = rt_getifa(&info)) != 0)
senderr(error);
if (info.rti_info[RTAX_GATEWAY] &&
rt_setgate(rt, info.rti_info[RTAX_GATEWAY]))
1993-03-21 12:45:37 +03:00
senderr(EDQUOT);
if (info.rti_info[RTAX_TAG])
rt_settag(rt, info.rti_info[RTAX_TAG]);
/* new gateway could require new ifaddr, ifp;
flags may also be different; ifp may be specified
by ll sockaddr when protocol address is ambiguous */
if (info.rti_info[RTAX_IFP] &&
(ifa = ifa_ifwithnet(info.rti_info[RTAX_IFP])) &&
(ifp = ifa->ifa_ifp) && (info.rti_info[RTAX_IFA] ||
info.rti_info[RTAX_GATEWAY])) {
if (info.rti_info[RTAX_IFA] == NULL ||
(ifa = ifa_ifwithaddr(
info.rti_info[RTAX_IFA])) == NULL)
ifa = ifaof_ifpforaddr(
info.rti_info[RTAX_IFA] ?
info.rti_info[RTAX_IFA] :
info.rti_info[RTAX_GATEWAY], ifp);
} else if ((info.rti_info[RTAX_IFA] &&
(ifa = ifa_ifwithaddr(info.rti_info[RTAX_IFA]))) ||
(info.rti_info[RTAX_GATEWAY] &&
(ifa = ifa_ifwithroute(rt->rt_flags,
rt_getkey(rt), info.rti_info[RTAX_GATEWAY])))) {
ifp = ifa->ifa_ifp;
}
if (ifa) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa) {
if (oifa && oifa->ifa_rtrequest) {
oifa->ifa_rtrequest(RTM_DELETE,
rt, &info);
}
rt_replace_ifa(rt, ifa);
rt->rt_ifp = ifp;
}
}
if (ifp && rt->rt_ifp != ifp)
rt->rt_ifp = ifp;
rt_setmetrics(rtm->rtm_inits, rtm, rt);
if (rt->rt_flags != info.rti_flags)
rt->rt_flags = (info.rti_flags & ~PRESERVED_RTF)
| (rt->rt_flags & PRESERVED_RTF);
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, &info);
/*FALLTHROUGH*/
1993-03-21 12:45:37 +03:00
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
1993-03-21 12:45:37 +03:00
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
1993-03-21 12:45:37 +03:00
break;
}
break;
1993-03-21 12:45:37 +03:00
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
2005-02-27 01:45:09 +03:00
else
1993-03-21 12:45:37 +03:00
rtm->rtm_flags |= RTF_DONE;
}
family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
0;
/* We cannot free old_rtm until we have stopped using the
* pointers in info, some of which may point to sockaddrs
* in old_rtm.
*/
if (old_rtm != NULL)
Free(old_rtm);
1993-03-21 12:45:37 +03:00
if (rt)
rtfree(rt);
{
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
struct rawcb *rp = NULL;
1993-03-21 12:45:37 +03:00
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (COMPATNAME(route_info).ri_cb.any_count <= 1) {
1993-03-21 12:45:37 +03:00
if (rtm)
Free(rtm);
m_freem(m);
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
1993-03-21 12:45:37 +03:00
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
1993-03-21 12:45:37 +03:00
Free(rtm);
}
if (rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */
if (family)
proto.sp_protocol = family;
if (m)
raw_input(m, &proto, &COMPATNAME(route_info).ri_src,
&COMPATNAME(route_info).ri_dst);
1993-03-21 12:45:37 +03:00
if (rp)
rp->rcb_proto.sp_family = PF_XROUTE;
1993-03-21 12:45:37 +03:00
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
1993-03-21 12:45:37 +03:00
}
static void
rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out)
1993-03-21 12:45:37 +03:00
{
#define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e;
1993-03-21 12:45:37 +03:00
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
metric(RTV_EXPIRE, rmx_expire);
#undef metric
}
static void
rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out)
{
#define metric(e) out->rtm_rmx.e = in->rt_rmx.e;
metric(rmx_recvpipe);
metric(rmx_sendpipe);
metric(rmx_ssthresh);
metric(rmx_rtt);
metric(rmx_rttvar);
metric(rmx_hopcount);
metric(rmx_mtu);
metric(rmx_expire);
#undef metric
}
static int
rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
struct rt_addrinfo *rtinfo)
{
const struct sockaddr *sa = NULL; /* Quell compiler warning */
2000-03-30 13:45:33 +04:00
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
RT_XADVANCE(cp, sa);
}
/*
* Check for extra addresses specified, except RTM_GET asking
* for interface info.
*/
if (rtmtype == RTM_GET) {
if (((rtinfo->rti_addrs &
(~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0 << i)) != 0)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return 1;
} else if ((rtinfo->rti_addrs & (~0 << i)) != 0)
return 1;
/* Check for bad data length. */
if (cp != cplim) {
if (i == RTAX_NETMASK + 1 && sa != NULL &&
cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim)
/*
* The last sockaddr was info.rti_info[RTAX_NETMASK].
* We accept this for now for the sake of old
* binaries or third party softwares.
*/
;
else
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return 1;
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return 0;
}
static int
rt_getlen(int type)
1993-03-21 12:45:37 +03:00
{
#ifndef COMPAT_RTSOCK
CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t));
#endif
switch (type) {
case RTM_DELADDR:
case RTM_NEWADDR:
case RTM_CHGADDR:
return sizeof(struct ifa_xmsghdr);
2009-01-11 05:45:45 +03:00
case RTM_OOIFINFO:
#ifdef COMPAT_14
return sizeof(struct if_msghdr14);
#else
#ifdef DIAGNOSTIC
printf("RTM_OOIFINFO\n");
#endif
return -1;
#endif
2009-01-11 05:45:45 +03:00
case RTM_OIFINFO:
#ifdef COMPAT_50
return sizeof(struct if_msghdr50);
#else
#ifdef DIAGNOSTIC
printf("RTM_OIFINFO\n");
#endif
return -1;
2009-01-11 05:45:45 +03:00
#endif
case RTM_IFINFO:
return sizeof(struct if_xmsghdr);
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
return sizeof(struct if_xannouncemsghdr);
default:
return sizeof(struct rt_xmsghdr);
}
}
struct mbuf *
COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
{
struct rt_xmsghdr *rtm;
struct mbuf *m;
int i;
const struct sockaddr *sa;
int len, dlen;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
return m;
MCLAIM(m, &COMPATNAME(routedomain).dom_mowner);
if ((len = rt_getlen(type)) == -1)
goto out;
if (len > MHLEN + MLEN)
panic("%s: message too long", __func__);
else if (len > MHLEN) {
m->m_next = m_get(M_DONTWAIT, MT_DATA);
if (m->m_next == NULL)
goto out;
MCLAIM(m->m_next, m->m_owner);
m->m_pkthdr.len = len;
m->m_len = MHLEN;
m->m_next->m_len = len - MHLEN;
} else {
m->m_pkthdr.len = m->m_len = len;
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
m->m_pkthdr.rcvif = NULL;
m_copyback(m, 0, datalen, data);
if (len > datalen)
(void)memset(mtod(m, char *) + datalen, 0, len - datalen);
rtm = mtod(m, struct rt_xmsghdr *);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_XROUNDUP(sa->sa_len);
m_copyback(m, len, sa->sa_len, sa);
if (dlen != sa->sa_len) {
/*
* Up to 6 + 1 nul's since roundup is to
* sizeof(uint64_t) (8 bytes)
*/
m_copyback(m, len + sa->sa_len,
dlen - sa->sa_len, "\0\0\0\0\0\0");
}
len += dlen;
}
if (m->m_pkthdr.len != len)
goto out;
1993-03-21 12:45:37 +03:00
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_XVERSION;
1993-03-21 12:45:37 +03:00
rtm->rtm_type = type;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return m;
out:
m_freem(m);
return NULL;
}
/*
* rt_msg2
*
* fills 'cp' or 'w'.w_tmem with the routing socket message and
* returns the length of the message in 'lenp'.
*
* if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
* the message
* otherwise walkarg's w_needed is updated and if the user buffer is
* specified and w_needed indicates space exists the information is copied
* into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
* if the allocation fails ENOBUFS is returned.
*/
static int
2009-01-11 05:45:45 +03:00
rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
int *lenp)
{
2000-03-30 13:45:33 +04:00
int i;
int len, dlen, second_time = 0;
char *cp0, *cp = cpv;
rtinfo->rti_addrs = 0;
again:
if ((len = rt_getlen(type)) == -1)
return EINVAL;
1996-02-14 00:59:53 +03:00
if ((cp0 = cp) != NULL)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
const struct sockaddr *sa;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_XROUNDUP(sa->sa_len);
if (cp) {
int diff = dlen - sa->sa_len;
(void)memcpy(cp, sa, (size_t)sa->sa_len);
cp += sa->sa_len;
if (diff > 0) {
(void)memset(cp, 0, (size_t)diff);
cp += diff;
}
}
1993-03-21 12:45:37 +03:00
len += dlen;
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (cp == NULL && w != NULL && !second_time) {
2009-01-11 05:45:45 +03:00
struct rt_walkarg *rw = w;
rw->w_needed += len;
if (rw->w_needed <= 0 && rw->w_where) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
free(rw->w_tmem, M_RTABLE);
rw->w_tmem = malloc(len, M_RTABLE, M_NOWAIT);
1996-02-14 00:59:53 +03:00
if (rw->w_tmem)
rw->w_tmemsize = len;
else
rw->w_tmemsize = 0;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
} else {
rw->w_tmemneeded = len;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return ENOBUFS;
}
}
1993-03-21 12:45:37 +03:00
}
if (cp) {
struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0;
rtm->rtm_version = RTM_XVERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
1993-03-21 12:45:37 +03:00
}
if (lenp)
*lenp = len;
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return 0;
}
/*
* This routine is called to generate a message from the routing
2001-09-16 20:34:23 +04:00
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags,
int error)
{
struct rt_xmsghdr rtm;
2000-03-30 13:45:33 +04:00
struct mbuf *m;
const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
struct rt_addrinfo info = *rtinfo;
COMPATCALL(rt_missmsg, (type, rtinfo, flags, error));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
1993-03-21 12:45:37 +03:00
return;
2001-07-18 20:43:09 +04:00
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_flags = RTF_DONE | flags;
rtm.rtm_errno = error;
m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm));
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (m == NULL)
return;
mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
1993-03-21 12:45:37 +03:00
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
COMPATNAME(rt_ifmsg)(struct ifnet *ifp)
{
struct if_xmsghdr ifm;
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ifmsg, (ifp));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
2009-01-11 05:45:45 +03:00
(void)memset(&info, 0, sizeof(info));
(void)memset(&ifm, 0, sizeof(ifm));
ifm.ifm_index = ifp->if_index;
ifm.ifm_flags = ifp->if_flags;
ifm.ifm_data = ifp->if_data;
ifm.ifm_addrs = 0;
m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm));
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (m == NULL)
return;
COMPATNAME(route_enqueue)(m, 0);
#ifdef COMPAT_14
compat_14_rt_oifmsg(ifp);
2009-01-11 05:45:45 +03:00
#endif
#ifdef COMPAT_50
compat_50_rt_oifmsg(ifp);
#endif
}
2009-01-11 05:45:45 +03:00
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error,
struct rtentry *rt)
{
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
#define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
struct rt_addrinfo info;
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
const struct sockaddr *sa;
int pass;
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
struct mbuf *m;
struct ifnet *ifp;
struct rt_xmsghdr rtm;
struct ifa_xmsghdr ifam;
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
int ncmd;
KASSERT(ifa != NULL);
ifp = ifa->ifa_ifp;
COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
2001-07-18 20:43:09 +04:00
memset(&info, 0, sizeof(info));
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
switch (cmdpass(cmd, pass)) {
case cmdpass(RTM_ADD, 1):
case cmdpass(RTM_CHANGE, 1):
case cmdpass(RTM_DELETE, 2):
case cmdpass(RTM_NEWADDR, 1):
case cmdpass(RTM_DELADDR, 1):
case cmdpass(RTM_CHGADDR, 1):
switch (cmd) {
case RTM_ADD:
ncmd = RTM_NEWADDR;
break;
case RTM_DELETE:
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
ncmd = RTM_DELADDR;
break;
case RTM_CHANGE:
ncmd = RTM_CHGADDR;
break;
default:
ncmd = cmd;
}
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
KASSERT(ifp->if_dl != NULL);
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
2001-07-18 20:43:09 +04:00
memset(&ifam, 0, sizeof(ifam));
ifam.ifam_index = ifp->if_index;
ifam.ifam_metric = ifa->ifa_metric;
ifam.ifam_flags = ifa->ifa_flags;
m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam));
if (m == NULL)
continue;
mtod(m, struct ifa_xmsghdr *)->ifam_addrs =
info.rti_addrs;
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
break;
case cmdpass(RTM_ADD, 2):
case cmdpass(RTM_CHANGE, 2):
case cmdpass(RTM_DELETE, 1):
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
if (rt == NULL)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
2001-07-18 20:43:09 +04:00
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_index = ifp->if_index;
rtm.rtm_flags |= rt->rt_flags;
rtm.rtm_errno = error;
m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm));
if (m == NULL)
continue;
mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
break;
default:
continue;
}
#ifdef DIAGNOSTIC
if (m == NULL)
2008-05-25 05:59:55 +04:00
panic("%s: called with wrong command", __func__);
#endif
COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
}
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
#undef cmdpass
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_xannouncemsghdr ifan;
memset(info, 0, sizeof(*info));
memset(&ifan, 0, sizeof(ifan));
ifan.ifan_index = ifp->if_index;
strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
ifan.ifan_what = what;
return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan));
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ifannouncemsg, (ifp, what));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m == NULL)
return;
COMPATNAME(route_enqueue)(m, 0);
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data,
size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m == NULL)
return;
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
(void)memcpy(mtod(n, void *), data, data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len;
COMPATNAME(route_enqueue)(m, 0);
}
/*
* This is used in dumping the kernel table via sysctl().
1993-03-21 12:45:37 +03:00
*/
static int
sysctl_dumpentry(struct rtentry *rt, void *v)
1993-03-21 12:45:37 +03:00
{
2009-01-11 05:45:45 +03:00
struct rt_walkarg *w = v;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
2001-07-18 20:43:09 +04:00
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
1995-08-19 11:48:14 +04:00
if (rt->rt_ifp) {
const struct ifaddr *rtifa;
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
* then rt_get_ifa() != NULL. So this ought to still be safe.
* --dyoung
*/
rtifa = rt_get_ifa(rt);
info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
1995-08-19 11:48:14 +04:00
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
1995-08-19 11:48:14 +04:00
}
if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm_setmetrics(rt, rtm);
KASSERT(rt->rt_ifp != NULL);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
if ((error = copyout(rtm, w->w_where, size)) != 0)
w->w_where = NULL;
else
w->w_where = (char *)w->w_where + size;
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
}
1993-03-21 12:45:37 +03:00
static int
2009-01-11 05:45:45 +03:00
sysctl_iflist(int af, struct rt_walkarg *w, int type)
{
2000-03-30 13:45:33 +04:00
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int len, error = 0;
2001-07-18 20:43:09 +04:00
memset(&info, 0, sizeof(info));
IFNET_FOREACH(ifp) {
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
if (IFADDR_EMPTY(ifp))
continue;
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
2003-05-02 07:15:23 +04:00
switch (type) {
case NET_RT_IFLIST:
error = rt_msg2(RTM_IFINFO, &info, NULL, w, &len);
break;
#ifdef COMPAT_14
2009-01-11 05:45:45 +03:00
case NET_RT_OOIFLIST:
error = rt_msg2(RTM_OOIFINFO, &info, NULL, w, &len);
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = rt_msg2(RTM_OIFINFO, &info, NULL, w, &len);
break;
#endif
default:
panic("sysctl_iflist(1)");
}
if (error)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
info.rti_info[RTAX_IFP] = NULL;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
2003-05-02 07:15:23 +04:00
switch (type) {
case NET_RT_IFLIST: {
struct if_xmsghdr *ifm;
ifm = (struct if_xmsghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info.rti_addrs;
error = copyout(ifm, w->w_where, len);
if (error)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
w->w_where = (char *)w->w_where + len;
break;
}
#ifdef COMPAT_14
2009-01-11 05:45:45 +03:00
case NET_RT_OOIFLIST:
error = compat_14_iflist(ifp, w, &info, len);
if (error)
return error;
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = compat_50_iflist(ifp, w, &info, len);
if (error)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
break;
#endif
default:
panic("sysctl_iflist(2)");
}
}
IFADDR_FOREACH(ifa, ifp) {
if (af && af != ifa->ifa_addr->sa_family)
continue;
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
if ((error = rt_msg2(RTM_NEWADDR, &info, 0, w, &len)))
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct ifa_xmsghdr *ifam;
ifam = (struct ifa_xmsghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info.rti_addrs;
1996-02-14 00:59:53 +03:00
error = copyout(w->w_tmem, w->w_where, len);
if (error)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
w->w_where = (char *)w->w_where + len;
}
}
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
1993-03-21 12:45:37 +03:00
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return 0;
1993-03-21 12:45:37 +03:00
}
static int
sysctl_rtable(SYSCTLFN_ARGS)
1993-03-21 12:45:37 +03:00
{
void *where = oldp;
size_t *given = oldlenp;
const void *new = newp;
int i, s, error = EINVAL;
u_char af;
2009-01-11 05:45:45 +03:00
struct rt_walkarg w;
1993-03-21 12:45:37 +03:00
if (namelen == 1 && name[0] == CTL_QUERY)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return sysctl_query(SYSCTLFN_CALL(rnode));
if (new)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return EPERM;
if (namelen != 3)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return EINVAL;
af = name[0];
w.w_tmemneeded = 0;
w.w_tmemsize = 0;
w.w_tmem = NULL;
again:
/* we may return here if a later [re]alloc of the t_mem buffer fails */
if (w.w_tmemneeded) {
w.w_tmem = malloc(w.w_tmemneeded, M_RTABLE, M_WAITOK);
w.w_tmemsize = w.w_tmemneeded;
w.w_tmemneeded = 0;
}
w.w_op = name[1];
w.w_arg = name[2];
w.w_given = *given;
w.w_needed = 0 - w.w_given;
w.w_where = where;
1993-03-21 12:45:37 +03:00
1995-08-13 03:59:09 +04:00
s = splsoftnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
for (i = 1; i <= AF_MAX; i++)
if ((af == 0 || af == i) &&
(error = rt_walktree(i, sysctl_dumpentry, &w)))
break;
break;
#ifdef COMPAT_14
2009-01-11 05:45:45 +03:00
case NET_RT_OOIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
#ifdef COMPAT_50
case NET_RT_OIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
1993-03-21 12:45:37 +03:00
}
splx(s);
/* check to see if we couldn't allocate memory with NOWAIT */
if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
goto again;
if (w.w_tmem)
free(w.w_tmem, M_RTABLE);
1993-03-21 12:45:37 +03:00
w.w_needed += w.w_given;
if (where) {
*given = (char *)w.w_where - (char *)where;
if (*given < w.w_needed)
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return ENOMEM;
} else {
*given = (11 * w.w_needed) / 10;
1993-03-21 12:45:37 +03:00
}
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
return error;
1993-03-21 12:45:37 +03:00
}
/*
* Routing message software interrupt routine
*/
static void
COMPATNAME(route_intr)(void *cookie)
{
struct sockproto proto = { .sp_family = PF_XROUTE, };
struct route_info * const ri = &COMPATNAME(route_info);
struct mbuf *m;
int s;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
while (!IF_IS_EMPTY(&ri->ri_intrq)) {
s = splnet();
IF_DEQUEUE(&ri->ri_intrq, m);
splx(s);
if (m == NULL)
break;
proto.sp_protocol = M_GETCTX(m, uintptr_t);
raw_input(m, &proto, &ri->ri_src, &ri->ri_dst);
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* Enqueue a message to the software interrupt routine.
*/
2009-01-11 05:45:45 +03:00
void
COMPATNAME(route_enqueue)(struct mbuf *m, int family)
{
struct route_info * const ri = &COMPATNAME(route_info);
int s, wasempty;
s = splnet();
if (IF_QFULL(&ri->ri_intrq)) {
IF_DROP(&ri->ri_intrq);
m_freem(m);
} else {
wasempty = IF_IS_EMPTY(&ri->ri_intrq);
M_SETCTX(m, (uintptr_t)family);
IF_ENQUEUE(&ri->ri_intrq, m);
if (wasempty)
softint_schedule(ri->ri_sih);
}
splx(s);
}
static void
COMPATNAME(route_init)(void)
{
struct route_info * const ri = &COMPATNAME(route_info);
#ifndef COMPAT_RTSOCK
rt_init();
#endif
sysctl_net_route_setup(NULL);
ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen;
ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
COMPATNAME(route_intr), NULL);
}
1993-03-21 12:45:37 +03:00
/*
* Definitions of protocols supported in the ROUTE domain.
*/
#ifndef COMPAT_RTSOCK
PR_WRAP_USRREQ(route_usrreq);
#else
PR_WRAP_USRREQ(compat_50_route_usrreq);
#endif
1993-03-21 12:45:37 +03:00
static const struct protosw COMPATNAME(route_protosw)[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &COMPATNAME(routedomain),
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_input = raw_input,
.pr_output = COMPATNAME(route_output),
.pr_ctlinput = raw_ctlinput,
.pr_usrreq = COMPATNAME(route_usrreq_wrapper),
.pr_init = raw_init,
},
};
struct domain COMPATNAME(routedomain) = {
.dom_family = PF_XROUTE,
.dom_name = DOMAINNAME,
.dom_init = COMPATNAME(route_init),
.dom_protosw = COMPATNAME(route_protosw),
.dom_protoswNPROTOSW =
&COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))],
1993-03-21 12:45:37 +03:00
};
static void
sysctl_net_route_setup(struct sysctllog **clog)
{
2006-05-28 03:08:11 +04:00
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
2006-05-28 03:08:11 +04:00
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, DOMAINNAME,
SYSCTL_DESCR("PF_ROUTE information"),
NULL, 0, NULL, 0,
CTL_NET, PF_XROUTE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rtable",
SYSCTL_DESCR("Routing table information"),
sysctl_rtable, 0, NULL, 0,
CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL);
2006-05-28 03:08:11 +04:00
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("Routing statistics"),
NULL, 0, &rtstat, sizeof(rtstat),
CTL_CREATE, CTL_EOL);
}