2225 lines
68 KiB
C
2225 lines
68 KiB
C
|
/* Target-struct-independent code to start (run) and stop an inferior process.
|
|||
|
Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996
|
|||
|
Free Software Foundation, Inc.
|
|||
|
|
|||
|
This file is part of GDB.
|
|||
|
|
|||
|
This program is free software; you can redistribute it and/or modify
|
|||
|
it under the terms of the GNU General Public License as published by
|
|||
|
the Free Software Foundation; either version 2 of the License, or
|
|||
|
(at your option) any later version.
|
|||
|
|
|||
|
This program is distributed in the hope that it will be useful,
|
|||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|||
|
GNU General Public License for more details.
|
|||
|
|
|||
|
You should have received a copy of the GNU General Public License
|
|||
|
along with this program; if not, write to the Free Software
|
|||
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|||
|
|
|||
|
#include "defs.h"
|
|||
|
#include "gdb_string.h"
|
|||
|
#include <ctype.h>
|
|||
|
#include "symtab.h"
|
|||
|
#include "frame.h"
|
|||
|
#include "inferior.h"
|
|||
|
#include "breakpoint.h"
|
|||
|
#include "wait.h"
|
|||
|
#include "gdbcore.h"
|
|||
|
#include "gdbcmd.h"
|
|||
|
#include "target.h"
|
|||
|
#include "thread.h"
|
|||
|
#include "annotate.h"
|
|||
|
|
|||
|
#include <signal.h>
|
|||
|
|
|||
|
/* unistd.h is needed to #define X_OK */
|
|||
|
#ifdef USG
|
|||
|
#include <unistd.h>
|
|||
|
#else
|
|||
|
#include <sys/file.h>
|
|||
|
#endif
|
|||
|
|
|||
|
/* Prototypes for local functions */
|
|||
|
|
|||
|
static void signals_info PARAMS ((char *, int));
|
|||
|
|
|||
|
static void handle_command PARAMS ((char *, int));
|
|||
|
|
|||
|
static void sig_print_info PARAMS ((enum target_signal));
|
|||
|
|
|||
|
static void sig_print_header PARAMS ((void));
|
|||
|
|
|||
|
static void resume_cleanups PARAMS ((int));
|
|||
|
|
|||
|
static int hook_stop_stub PARAMS ((char *));
|
|||
|
|
|||
|
/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
|
|||
|
program. It needs to examine the jmp_buf argument and extract the PC
|
|||
|
from it. The return value is non-zero on success, zero otherwise. */
|
|||
|
|
|||
|
#ifndef GET_LONGJMP_TARGET
|
|||
|
#define GET_LONGJMP_TARGET(PC_ADDR) 0
|
|||
|
#endif
|
|||
|
|
|||
|
|
|||
|
/* Some machines have trampoline code that sits between function callers
|
|||
|
and the actual functions themselves. If this machine doesn't have
|
|||
|
such things, disable their processing. */
|
|||
|
|
|||
|
#ifndef SKIP_TRAMPOLINE_CODE
|
|||
|
#define SKIP_TRAMPOLINE_CODE(pc) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* Dynamic function trampolines are similar to solib trampolines in that they
|
|||
|
are between the caller and the callee. The difference is that when you
|
|||
|
enter a dynamic trampoline, you can't determine the callee's address. Some
|
|||
|
(usually complex) code needs to run in the dynamic trampoline to figure out
|
|||
|
the callee's address. This macro is usually called twice. First, when we
|
|||
|
enter the trampoline (looks like a normal function call at that point). It
|
|||
|
should return the PC of a point within the trampoline where the callee's
|
|||
|
address is known. Second, when we hit the breakpoint, this routine returns
|
|||
|
the callee's address. At that point, things proceed as per a step resume
|
|||
|
breakpoint. */
|
|||
|
|
|||
|
#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
|
|||
|
#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* For SVR4 shared libraries, each call goes through a small piece of
|
|||
|
trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
|
|||
|
to nonzero if we are current stopped in one of these. */
|
|||
|
|
|||
|
#ifndef IN_SOLIB_CALL_TRAMPOLINE
|
|||
|
#define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* In some shared library schemes, the return path from a shared library
|
|||
|
call may need to go through a trampoline too. */
|
|||
|
|
|||
|
#ifndef IN_SOLIB_RETURN_TRAMPOLINE
|
|||
|
#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* On some systems, the PC may be left pointing at an instruction that won't
|
|||
|
actually be executed. This is usually indicated by a bit in the PSW. If
|
|||
|
we find ourselves in such a state, then we step the target beyond the
|
|||
|
nullified instruction before returning control to the user so as to avoid
|
|||
|
confusion. */
|
|||
|
|
|||
|
#ifndef INSTRUCTION_NULLIFIED
|
|||
|
#define INSTRUCTION_NULLIFIED 0
|
|||
|
#endif
|
|||
|
|
|||
|
/* Tables of how to react to signals; the user sets them. */
|
|||
|
|
|||
|
static unsigned char *signal_stop;
|
|||
|
static unsigned char *signal_print;
|
|||
|
static unsigned char *signal_program;
|
|||
|
|
|||
|
#define SET_SIGS(nsigs,sigs,flags) \
|
|||
|
do { \
|
|||
|
int signum = (nsigs); \
|
|||
|
while (signum-- > 0) \
|
|||
|
if ((sigs)[signum]) \
|
|||
|
(flags)[signum] = 1; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
#define UNSET_SIGS(nsigs,sigs,flags) \
|
|||
|
do { \
|
|||
|
int signum = (nsigs); \
|
|||
|
while (signum-- > 0) \
|
|||
|
if ((sigs)[signum]) \
|
|||
|
(flags)[signum] = 0; \
|
|||
|
} while (0)
|
|||
|
|
|||
|
|
|||
|
/* Command list pointer for the "stop" placeholder. */
|
|||
|
|
|||
|
static struct cmd_list_element *stop_command;
|
|||
|
|
|||
|
/* Nonzero if breakpoints are now inserted in the inferior. */
|
|||
|
|
|||
|
static int breakpoints_inserted;
|
|||
|
|
|||
|
/* Function inferior was in as of last step command. */
|
|||
|
|
|||
|
static struct symbol *step_start_function;
|
|||
|
|
|||
|
/* Nonzero if we are expecting a trace trap and should proceed from it. */
|
|||
|
|
|||
|
static int trap_expected;
|
|||
|
|
|||
|
/* Nonzero if we want to give control to the user when we're notified
|
|||
|
of shared library events by the dynamic linker. */
|
|||
|
static int stop_on_solib_events;
|
|||
|
|
|||
|
#ifdef HP_OS_BUG
|
|||
|
/* Nonzero if the next time we try to continue the inferior, it will
|
|||
|
step one instruction and generate a spurious trace trap.
|
|||
|
This is used to compensate for a bug in HP-UX. */
|
|||
|
|
|||
|
static int trap_expected_after_continue;
|
|||
|
#endif
|
|||
|
|
|||
|
/* Nonzero means expecting a trace trap
|
|||
|
and should stop the inferior and return silently when it happens. */
|
|||
|
|
|||
|
int stop_after_trap;
|
|||
|
|
|||
|
/* Nonzero means expecting a trap and caller will handle it themselves.
|
|||
|
It is used after attach, due to attaching to a process;
|
|||
|
when running in the shell before the child program has been exec'd;
|
|||
|
and when running some kinds of remote stuff (FIXME?). */
|
|||
|
|
|||
|
int stop_soon_quietly;
|
|||
|
|
|||
|
/* Nonzero if proceed is being used for a "finish" command or a similar
|
|||
|
situation when stop_registers should be saved. */
|
|||
|
|
|||
|
int proceed_to_finish;
|
|||
|
|
|||
|
/* Save register contents here when about to pop a stack dummy frame,
|
|||
|
if-and-only-if proceed_to_finish is set.
|
|||
|
Thus this contains the return value from the called function (assuming
|
|||
|
values are returned in a register). */
|
|||
|
|
|||
|
char stop_registers[REGISTER_BYTES];
|
|||
|
|
|||
|
/* Nonzero if program stopped due to error trying to insert breakpoints. */
|
|||
|
|
|||
|
static int breakpoints_failed;
|
|||
|
|
|||
|
/* Nonzero after stop if current stack frame should be printed. */
|
|||
|
|
|||
|
static int stop_print_frame;
|
|||
|
|
|||
|
#ifdef NO_SINGLE_STEP
|
|||
|
extern int one_stepped; /* From machine dependent code */
|
|||
|
extern void single_step (); /* Same. */
|
|||
|
#endif /* NO_SINGLE_STEP */
|
|||
|
|
|||
|
extern void write_pc_pid PARAMS ((CORE_ADDR, int));
|
|||
|
|
|||
|
|
|||
|
/* Things to clean up if we QUIT out of resume (). */
|
|||
|
/* ARGSUSED */
|
|||
|
static void
|
|||
|
resume_cleanups (arg)
|
|||
|
int arg;
|
|||
|
{
|
|||
|
normal_stop ();
|
|||
|
}
|
|||
|
|
|||
|
/* Resume the inferior, but allow a QUIT. This is useful if the user
|
|||
|
wants to interrupt some lengthy single-stepping operation
|
|||
|
(for child processes, the SIGINT goes to the inferior, and so
|
|||
|
we get a SIGINT random_signal, but for remote debugging and perhaps
|
|||
|
other targets, that's not true).
|
|||
|
|
|||
|
STEP nonzero if we should step (zero to continue instead).
|
|||
|
SIG is the signal to give the inferior (zero for none). */
|
|||
|
void
|
|||
|
resume (step, sig)
|
|||
|
int step;
|
|||
|
enum target_signal sig;
|
|||
|
{
|
|||
|
struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
|
|||
|
QUIT;
|
|||
|
|
|||
|
#ifdef CANNOT_STEP_BREAKPOINT
|
|||
|
/* Most targets can step a breakpoint instruction, thus executing it
|
|||
|
normally. But if this one cannot, just continue and we will hit
|
|||
|
it anyway. */
|
|||
|
if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
|
|||
|
step = 0;
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef NO_SINGLE_STEP
|
|||
|
if (step) {
|
|||
|
single_step(sig); /* Do it the hard way, w/temp breakpoints */
|
|||
|
step = 0; /* ...and don't ask hardware to do it. */
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
/* Handle any optimized stores to the inferior NOW... */
|
|||
|
#ifdef DO_DEFERRED_STORES
|
|||
|
DO_DEFERRED_STORES;
|
|||
|
#endif
|
|||
|
|
|||
|
/* Install inferior's terminal modes. */
|
|||
|
target_terminal_inferior ();
|
|||
|
|
|||
|
target_resume (-1, step, sig);
|
|||
|
discard_cleanups (old_cleanups);
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
/* Clear out all variables saying what to do when inferior is continued.
|
|||
|
First do this, then set the ones you want, then call `proceed'. */
|
|||
|
|
|||
|
void
|
|||
|
clear_proceed_status ()
|
|||
|
{
|
|||
|
trap_expected = 0;
|
|||
|
step_range_start = 0;
|
|||
|
step_range_end = 0;
|
|||
|
step_frame_address = 0;
|
|||
|
step_over_calls = -1;
|
|||
|
stop_after_trap = 0;
|
|||
|
stop_soon_quietly = 0;
|
|||
|
proceed_to_finish = 0;
|
|||
|
breakpoint_proceeded = 1; /* We're about to proceed... */
|
|||
|
|
|||
|
/* Discard any remaining commands or status from previous stop. */
|
|||
|
bpstat_clear (&stop_bpstat);
|
|||
|
}
|
|||
|
|
|||
|
/* Basic routine for continuing the program in various fashions.
|
|||
|
|
|||
|
ADDR is the address to resume at, or -1 for resume where stopped.
|
|||
|
SIGGNAL is the signal to give it, or 0 for none,
|
|||
|
or -1 for act according to how it stopped.
|
|||
|
STEP is nonzero if should trap after one instruction.
|
|||
|
-1 means return after that and print nothing.
|
|||
|
You should probably set various step_... variables
|
|||
|
before calling here, if you are stepping.
|
|||
|
|
|||
|
You should call clear_proceed_status before calling proceed. */
|
|||
|
|
|||
|
void
|
|||
|
proceed (addr, siggnal, step)
|
|||
|
CORE_ADDR addr;
|
|||
|
enum target_signal siggnal;
|
|||
|
int step;
|
|||
|
{
|
|||
|
int oneproc = 0;
|
|||
|
|
|||
|
if (step > 0)
|
|||
|
step_start_function = find_pc_function (read_pc ());
|
|||
|
if (step < 0)
|
|||
|
stop_after_trap = 1;
|
|||
|
|
|||
|
if (addr == (CORE_ADDR)-1)
|
|||
|
{
|
|||
|
/* If there is a breakpoint at the address we will resume at,
|
|||
|
step one instruction before inserting breakpoints
|
|||
|
so that we do not stop right away. */
|
|||
|
|
|||
|
if (breakpoint_here_p (read_pc ()))
|
|||
|
oneproc = 1;
|
|||
|
|
|||
|
#ifdef STEP_SKIPS_DELAY
|
|||
|
/* Check breakpoint_here_p first, because breakpoint_here_p is fast
|
|||
|
(it just checks internal GDB data structures) and STEP_SKIPS_DELAY
|
|||
|
is slow (it needs to read memory from the target). */
|
|||
|
if (breakpoint_here_p (read_pc () + 4)
|
|||
|
&& STEP_SKIPS_DELAY (read_pc ()))
|
|||
|
oneproc = 1;
|
|||
|
#endif /* STEP_SKIPS_DELAY */
|
|||
|
}
|
|||
|
else
|
|||
|
write_pc (addr);
|
|||
|
|
|||
|
#ifdef PREPARE_TO_PROCEED
|
|||
|
/* In a multi-threaded task we may select another thread and then continue.
|
|||
|
|
|||
|
In this case the thread that stopped at a breakpoint will immediately
|
|||
|
cause another stop, if it is not stepped over first. On the other hand,
|
|||
|
if (ADDR != -1) we only want to single step over the breakpoint if we did
|
|||
|
switch to another thread.
|
|||
|
|
|||
|
If we are single stepping, don't do any of the above.
|
|||
|
(Note that in the current implementation single stepping another
|
|||
|
thread after a breakpoint and then continuing will cause the original
|
|||
|
breakpoint to be hit again, but you can always continue, so it's not
|
|||
|
a big deal.) */
|
|||
|
|
|||
|
if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
|
|||
|
oneproc = 1;
|
|||
|
#endif /* PREPARE_TO_PROCEED */
|
|||
|
|
|||
|
#ifdef HP_OS_BUG
|
|||
|
if (trap_expected_after_continue)
|
|||
|
{
|
|||
|
/* If (step == 0), a trap will be automatically generated after
|
|||
|
the first instruction is executed. Force step one
|
|||
|
instruction to clear this condition. This should not occur
|
|||
|
if step is nonzero, but it is harmless in that case. */
|
|||
|
oneproc = 1;
|
|||
|
trap_expected_after_continue = 0;
|
|||
|
}
|
|||
|
#endif /* HP_OS_BUG */
|
|||
|
|
|||
|
if (oneproc)
|
|||
|
/* We will get a trace trap after one instruction.
|
|||
|
Continue it automatically and insert breakpoints then. */
|
|||
|
trap_expected = 1;
|
|||
|
else
|
|||
|
{
|
|||
|
int temp = insert_breakpoints ();
|
|||
|
if (temp)
|
|||
|
{
|
|||
|
print_sys_errmsg ("ptrace", temp);
|
|||
|
error ("Cannot insert breakpoints.\n\
|
|||
|
The same program may be running in another process.");
|
|||
|
}
|
|||
|
breakpoints_inserted = 1;
|
|||
|
}
|
|||
|
|
|||
|
if (siggnal != TARGET_SIGNAL_DEFAULT)
|
|||
|
stop_signal = siggnal;
|
|||
|
/* If this signal should not be seen by program,
|
|||
|
give it zero. Used for debugging signals. */
|
|||
|
else if (!signal_program[stop_signal])
|
|||
|
stop_signal = TARGET_SIGNAL_0;
|
|||
|
|
|||
|
annotate_starting ();
|
|||
|
|
|||
|
/* Make sure that output from GDB appears before output from the
|
|||
|
inferior. */
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
|
|||
|
/* Resume inferior. */
|
|||
|
resume (oneproc || step || bpstat_should_step (), stop_signal);
|
|||
|
|
|||
|
/* Wait for it to stop (if not standalone)
|
|||
|
and in any case decode why it stopped, and act accordingly. */
|
|||
|
|
|||
|
wait_for_inferior ();
|
|||
|
normal_stop ();
|
|||
|
}
|
|||
|
|
|||
|
/* Record the pc and sp of the program the last time it stopped.
|
|||
|
These are just used internally by wait_for_inferior, but need
|
|||
|
to be preserved over calls to it and cleared when the inferior
|
|||
|
is started. */
|
|||
|
static CORE_ADDR prev_pc;
|
|||
|
static CORE_ADDR prev_func_start;
|
|||
|
static char *prev_func_name;
|
|||
|
|
|||
|
|
|||
|
/* Start remote-debugging of a machine over a serial link. */
|
|||
|
|
|||
|
void
|
|||
|
start_remote ()
|
|||
|
{
|
|||
|
init_thread_list ();
|
|||
|
init_wait_for_inferior ();
|
|||
|
clear_proceed_status ();
|
|||
|
stop_soon_quietly = 1;
|
|||
|
trap_expected = 0;
|
|||
|
wait_for_inferior ();
|
|||
|
normal_stop ();
|
|||
|
}
|
|||
|
|
|||
|
/* Initialize static vars when a new inferior begins. */
|
|||
|
|
|||
|
void
|
|||
|
init_wait_for_inferior ()
|
|||
|
{
|
|||
|
/* These are meaningless until the first time through wait_for_inferior. */
|
|||
|
prev_pc = 0;
|
|||
|
prev_func_start = 0;
|
|||
|
prev_func_name = NULL;
|
|||
|
|
|||
|
#ifdef HP_OS_BUG
|
|||
|
trap_expected_after_continue = 0;
|
|||
|
#endif
|
|||
|
breakpoints_inserted = 0;
|
|||
|
breakpoint_init_inferior ();
|
|||
|
|
|||
|
/* Don't confuse first call to proceed(). */
|
|||
|
stop_signal = TARGET_SIGNAL_0;
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
delete_breakpoint_current_contents (arg)
|
|||
|
PTR arg;
|
|||
|
{
|
|||
|
struct breakpoint **breakpointp = (struct breakpoint **)arg;
|
|||
|
if (*breakpointp != NULL)
|
|||
|
delete_breakpoint (*breakpointp);
|
|||
|
}
|
|||
|
|
|||
|
/* Wait for control to return from inferior to debugger.
|
|||
|
If inferior gets a signal, we may decide to start it up again
|
|||
|
instead of returning. That is why there is a loop in this function.
|
|||
|
When this function actually returns it means the inferior
|
|||
|
should be left stopped and GDB should read more commands. */
|
|||
|
|
|||
|
void
|
|||
|
wait_for_inferior ()
|
|||
|
{
|
|||
|
struct cleanup *old_cleanups;
|
|||
|
struct target_waitstatus w;
|
|||
|
int another_trap;
|
|||
|
int random_signal;
|
|||
|
CORE_ADDR stop_func_start;
|
|||
|
CORE_ADDR stop_func_end;
|
|||
|
char *stop_func_name;
|
|||
|
#if 0
|
|||
|
CORE_ADDR prologue_pc = 0;
|
|||
|
#endif
|
|||
|
CORE_ADDR tmp;
|
|||
|
struct symtab_and_line sal;
|
|||
|
int remove_breakpoints_on_following_step = 0;
|
|||
|
int current_line;
|
|||
|
struct symtab *current_symtab;
|
|||
|
int handling_longjmp = 0; /* FIXME */
|
|||
|
struct breakpoint *step_resume_breakpoint = NULL;
|
|||
|
struct breakpoint *through_sigtramp_breakpoint = NULL;
|
|||
|
int pid;
|
|||
|
int update_step_sp = 0;
|
|||
|
|
|||
|
old_cleanups = make_cleanup (delete_breakpoint_current_contents,
|
|||
|
&step_resume_breakpoint);
|
|||
|
make_cleanup (delete_breakpoint_current_contents,
|
|||
|
&through_sigtramp_breakpoint);
|
|||
|
sal = find_pc_line(prev_pc, 0);
|
|||
|
current_line = sal.line;
|
|||
|
current_symtab = sal.symtab;
|
|||
|
|
|||
|
/* Are we stepping? */
|
|||
|
#define CURRENTLY_STEPPING() \
|
|||
|
((through_sigtramp_breakpoint == NULL \
|
|||
|
&& !handling_longjmp \
|
|||
|
&& ((step_range_end && step_resume_breakpoint == NULL) \
|
|||
|
|| trap_expected)) \
|
|||
|
|| bpstat_should_step ())
|
|||
|
|
|||
|
while (1)
|
|||
|
{
|
|||
|
/* We have to invalidate the registers BEFORE calling target_wait because
|
|||
|
they can be loaded from the target while in target_wait. This makes
|
|||
|
remote debugging a bit more efficient for those targets that provide
|
|||
|
critical registers as part of their normal status mechanism. */
|
|||
|
|
|||
|
registers_changed ();
|
|||
|
|
|||
|
if (target_wait_hook)
|
|||
|
pid = target_wait_hook (-1, &w);
|
|||
|
else
|
|||
|
pid = target_wait (-1, &w);
|
|||
|
|
|||
|
#ifdef HAVE_NONSTEPPABLE_WATCHPOINT
|
|||
|
have_waited:
|
|||
|
#endif
|
|||
|
|
|||
|
flush_cached_frames ();
|
|||
|
|
|||
|
/* If it's a new process, add it to the thread database */
|
|||
|
|
|||
|
if (pid != inferior_pid
|
|||
|
&& !in_thread_list (pid))
|
|||
|
{
|
|||
|
fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
|
|||
|
add_thread (pid);
|
|||
|
|
|||
|
/* We may want to consider not doing a resume here in order to give
|
|||
|
the user a chance to play with the new thread. It might be good
|
|||
|
to make that a user-settable option. */
|
|||
|
|
|||
|
/* At this point, all threads are stopped (happens automatically in
|
|||
|
either the OS or the native code). Therefore we need to continue
|
|||
|
all threads in order to make progress. */
|
|||
|
|
|||
|
target_resume (-1, 0, TARGET_SIGNAL_0);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
switch (w.kind)
|
|||
|
{
|
|||
|
case TARGET_WAITKIND_LOADED:
|
|||
|
/* Ignore it gracefully. */
|
|||
|
if (breakpoints_inserted)
|
|||
|
{
|
|||
|
mark_breakpoints_out ();
|
|||
|
insert_breakpoints ();
|
|||
|
}
|
|||
|
resume (0, TARGET_SIGNAL_0);
|
|||
|
continue;
|
|||
|
|
|||
|
case TARGET_WAITKIND_SPURIOUS:
|
|||
|
resume (0, TARGET_SIGNAL_0);
|
|||
|
continue;
|
|||
|
|
|||
|
case TARGET_WAITKIND_EXITED:
|
|||
|
target_terminal_ours (); /* Must do this before mourn anyway */
|
|||
|
annotate_exited (w.value.integer);
|
|||
|
if (w.value.integer)
|
|||
|
printf_filtered ("\nProgram exited with code 0%o.\n",
|
|||
|
(unsigned int)w.value.integer);
|
|||
|
else
|
|||
|
printf_filtered ("\nProgram exited normally.\n");
|
|||
|
|
|||
|
/* Record the exit code in the convenience variable $_exitcode, so
|
|||
|
that the user can inspect this again later. */
|
|||
|
set_internalvar (lookup_internalvar ("_exitcode"),
|
|||
|
value_from_longest (builtin_type_int,
|
|||
|
(LONGEST) w.value.integer));
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
target_mourn_inferior ();
|
|||
|
#ifdef NO_SINGLE_STEP
|
|||
|
one_stepped = 0;
|
|||
|
#endif
|
|||
|
stop_print_frame = 0;
|
|||
|
goto stop_stepping;
|
|||
|
|
|||
|
case TARGET_WAITKIND_SIGNALLED:
|
|||
|
stop_print_frame = 0;
|
|||
|
stop_signal = w.value.sig;
|
|||
|
target_terminal_ours (); /* Must do this before mourn anyway */
|
|||
|
annotate_signalled ();
|
|||
|
|
|||
|
/* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED
|
|||
|
mean it is already dead? This has been here since GDB 2.8, so
|
|||
|
perhaps it means rms didn't understand unix waitstatuses?
|
|||
|
For the moment I'm just kludging around this in remote.c
|
|||
|
rather than trying to change it here --kingdon, 5 Dec 1994. */
|
|||
|
target_kill (); /* kill mourns as well */
|
|||
|
|
|||
|
printf_filtered ("\nProgram terminated with signal ");
|
|||
|
annotate_signal_name ();
|
|||
|
printf_filtered ("%s", target_signal_to_name (stop_signal));
|
|||
|
annotate_signal_name_end ();
|
|||
|
printf_filtered (", ");
|
|||
|
annotate_signal_string ();
|
|||
|
printf_filtered ("%s", target_signal_to_string (stop_signal));
|
|||
|
annotate_signal_string_end ();
|
|||
|
printf_filtered (".\n");
|
|||
|
|
|||
|
printf_filtered ("The program no longer exists.\n");
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
#ifdef NO_SINGLE_STEP
|
|||
|
one_stepped = 0;
|
|||
|
#endif
|
|||
|
goto stop_stepping;
|
|||
|
|
|||
|
case TARGET_WAITKIND_STOPPED:
|
|||
|
/* This is the only case in which we keep going; the above cases
|
|||
|
end in a continue or goto. */
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
stop_signal = w.value.sig;
|
|||
|
|
|||
|
stop_pc = read_pc_pid (pid);
|
|||
|
|
|||
|
/* See if a thread hit a thread-specific breakpoint that was meant for
|
|||
|
another thread. If so, then step that thread past the breakpoint,
|
|||
|
and continue it. */
|
|||
|
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP
|
|||
|
&& breakpoints_inserted
|
|||
|
&& breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
|
|||
|
{
|
|||
|
random_signal = 0;
|
|||
|
if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
|
|||
|
{
|
|||
|
/* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
|
|||
|
write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid);
|
|||
|
|
|||
|
remove_breakpoints ();
|
|||
|
target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
|
|||
|
/* FIXME: What if a signal arrives instead of the single-step
|
|||
|
happening? */
|
|||
|
|
|||
|
if (target_wait_hook)
|
|||
|
target_wait_hook (pid, &w);
|
|||
|
else
|
|||
|
target_wait (pid, &w);
|
|||
|
insert_breakpoints ();
|
|||
|
|
|||
|
/* We need to restart all the threads now. */
|
|||
|
target_resume (-1, 0, TARGET_SIGNAL_0);
|
|||
|
continue;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
random_signal = 1;
|
|||
|
|
|||
|
/* See if something interesting happened to the non-current thread. If
|
|||
|
so, then switch to that thread, and eventually give control back to
|
|||
|
the user. */
|
|||
|
|
|||
|
if (pid != inferior_pid)
|
|||
|
{
|
|||
|
int printed = 0;
|
|||
|
|
|||
|
/* If it's a random signal for a non-current thread, notify user
|
|||
|
if he's expressed an interest. */
|
|||
|
|
|||
|
if (random_signal
|
|||
|
&& signal_print[stop_signal])
|
|||
|
{
|
|||
|
printed = 1;
|
|||
|
target_terminal_ours_for_output ();
|
|||
|
printf_filtered ("\nProgram received signal %s, %s.\n",
|
|||
|
target_signal_to_name (stop_signal),
|
|||
|
target_signal_to_string (stop_signal));
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
}
|
|||
|
|
|||
|
/* If it's not SIGTRAP and not a signal we want to stop for, then
|
|||
|
continue the thread. */
|
|||
|
|
|||
|
if (stop_signal != TARGET_SIGNAL_TRAP
|
|||
|
&& !signal_stop[stop_signal])
|
|||
|
{
|
|||
|
if (printed)
|
|||
|
target_terminal_inferior ();
|
|||
|
|
|||
|
/* Clear the signal if it should not be passed. */
|
|||
|
if (signal_program[stop_signal] == 0)
|
|||
|
stop_signal = TARGET_SIGNAL_0;
|
|||
|
|
|||
|
target_resume (pid, 0, stop_signal);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
/* It's a SIGTRAP or a signal we're interested in. Switch threads,
|
|||
|
and fall into the rest of wait_for_inferior(). */
|
|||
|
|
|||
|
/* Save infrun state for the old thread. */
|
|||
|
save_infrun_state (inferior_pid, prev_pc,
|
|||
|
prev_func_start, prev_func_name,
|
|||
|
trap_expected, step_resume_breakpoint,
|
|||
|
through_sigtramp_breakpoint,
|
|||
|
step_range_start, step_range_end,
|
|||
|
step_frame_address, handling_longjmp,
|
|||
|
another_trap);
|
|||
|
|
|||
|
inferior_pid = pid;
|
|||
|
|
|||
|
/* Load infrun state for the new thread. */
|
|||
|
load_infrun_state (inferior_pid, &prev_pc,
|
|||
|
&prev_func_start, &prev_func_name,
|
|||
|
&trap_expected, &step_resume_breakpoint,
|
|||
|
&through_sigtramp_breakpoint,
|
|||
|
&step_range_start, &step_range_end,
|
|||
|
&step_frame_address, &handling_longjmp,
|
|||
|
&another_trap);
|
|||
|
printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
|
|||
|
|
|||
|
flush_cached_frames ();
|
|||
|
}
|
|||
|
|
|||
|
#ifdef NO_SINGLE_STEP
|
|||
|
if (one_stepped)
|
|||
|
single_step (0); /* This actually cleans up the ss */
|
|||
|
#endif /* NO_SINGLE_STEP */
|
|||
|
|
|||
|
/* If PC is pointing at a nullified instruction, then step beyond
|
|||
|
it so that the user won't be confused when GDB appears to be ready
|
|||
|
to execute it. */
|
|||
|
|
|||
|
if (INSTRUCTION_NULLIFIED)
|
|||
|
{
|
|||
|
resume (1, 0);
|
|||
|
continue;
|
|||
|
}
|
|||
|
|
|||
|
#ifdef HAVE_STEPPABLE_WATCHPOINT
|
|||
|
/* It may not be necessary to disable the watchpoint to stop over
|
|||
|
it. For example, the PA can (with some kernel cooperation)
|
|||
|
single step over a watchpoint without disabling the watchpoint. */
|
|||
|
if (STOPPED_BY_WATCHPOINT (w))
|
|||
|
{
|
|||
|
resume (1, 0);
|
|||
|
continue;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef HAVE_NONSTEPPABLE_WATCHPOINT
|
|||
|
/* It is far more common to need to disable a watchpoint
|
|||
|
to step the inferior over it. FIXME. What else might
|
|||
|
a debug register or page protection watchpoint scheme need
|
|||
|
here? */
|
|||
|
if (STOPPED_BY_WATCHPOINT (w))
|
|||
|
{
|
|||
|
/* At this point, we are stopped at an instruction which has attempted to write
|
|||
|
to a piece of memory under control of a watchpoint. The instruction hasn't
|
|||
|
actually executed yet. If we were to evaluate the watchpoint expression
|
|||
|
now, we would get the old value, and therefore no change would seem to have
|
|||
|
occurred.
|
|||
|
|
|||
|
In order to make watchpoints work `right', we really need to complete the
|
|||
|
memory write, and then evaluate the watchpoint expression. The following
|
|||
|
code does that by removing the watchpoint (actually, all watchpoints and
|
|||
|
breakpoints), single-stepping the target, re-inserting watchpoints, and then
|
|||
|
falling through to let normal single-step processing handle proceed. Since
|
|||
|
this includes evaluating watchpoints, things will come to a stop in the
|
|||
|
correct manner. */
|
|||
|
|
|||
|
write_pc (stop_pc - DECR_PC_AFTER_BREAK);
|
|||
|
|
|||
|
remove_breakpoints ();
|
|||
|
target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
|
|||
|
|
|||
|
if (target_wait_hook)
|
|||
|
target_wait_hook (pid, &w);
|
|||
|
else
|
|||
|
target_wait (pid, &w);
|
|||
|
insert_breakpoints ();
|
|||
|
/* FIXME-maybe: is this cleaner than setting a flag? Does it
|
|||
|
handle things like signals arriving and other things happening
|
|||
|
in combination correctly? */
|
|||
|
goto have_waited;
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
#ifdef HAVE_CONTINUABLE_WATCHPOINT
|
|||
|
/* It may be possible to simply continue after a watchpoint. */
|
|||
|
STOPPED_BY_WATCHPOINT (w);
|
|||
|
#endif
|
|||
|
|
|||
|
stop_func_start = 0;
|
|||
|
stop_func_name = 0;
|
|||
|
/* Don't care about return value; stop_func_start and stop_func_name
|
|||
|
will both be 0 if it doesn't work. */
|
|||
|
find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
|
|||
|
&stop_func_end);
|
|||
|
stop_func_start += FUNCTION_START_OFFSET;
|
|||
|
another_trap = 0;
|
|||
|
bpstat_clear (&stop_bpstat);
|
|||
|
stop_step = 0;
|
|||
|
stop_stack_dummy = 0;
|
|||
|
stop_print_frame = 1;
|
|||
|
random_signal = 0;
|
|||
|
stopped_by_random_signal = 0;
|
|||
|
breakpoints_failed = 0;
|
|||
|
|
|||
|
/* Look at the cause of the stop, and decide what to do.
|
|||
|
The alternatives are:
|
|||
|
1) break; to really stop and return to the debugger,
|
|||
|
2) drop through to start up again
|
|||
|
(set another_trap to 1 to single step once)
|
|||
|
3) set random_signal to 1, and the decision between 1 and 2
|
|||
|
will be made according to the signal handling tables. */
|
|||
|
|
|||
|
/* First, distinguish signals caused by the debugger from signals
|
|||
|
that have to do with the program's own actions.
|
|||
|
Note that breakpoint insns may cause SIGTRAP or SIGILL
|
|||
|
or SIGEMT, depending on the operating system version.
|
|||
|
Here we detect when a SIGILL or SIGEMT is really a breakpoint
|
|||
|
and change it to SIGTRAP. */
|
|||
|
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP
|
|||
|
|| (breakpoints_inserted &&
|
|||
|
(stop_signal == TARGET_SIGNAL_ILL
|
|||
|
|| stop_signal == TARGET_SIGNAL_EMT
|
|||
|
))
|
|||
|
|| stop_soon_quietly)
|
|||
|
{
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
|
|||
|
{
|
|||
|
stop_print_frame = 0;
|
|||
|
break;
|
|||
|
}
|
|||
|
if (stop_soon_quietly)
|
|||
|
break;
|
|||
|
|
|||
|
/* Don't even think about breakpoints
|
|||
|
if just proceeded over a breakpoint.
|
|||
|
|
|||
|
However, if we are trying to proceed over a breakpoint
|
|||
|
and end up in sigtramp, then through_sigtramp_breakpoint
|
|||
|
will be set and we should check whether we've hit the
|
|||
|
step breakpoint. */
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
|
|||
|
&& through_sigtramp_breakpoint == NULL)
|
|||
|
bpstat_clear (&stop_bpstat);
|
|||
|
else
|
|||
|
{
|
|||
|
/* See if there is a breakpoint at the current PC. */
|
|||
|
stop_bpstat = bpstat_stop_status
|
|||
|
(&stop_pc,
|
|||
|
#if DECR_PC_AFTER_BREAK
|
|||
|
/* Notice the case of stepping through a jump
|
|||
|
that lands just after a breakpoint.
|
|||
|
Don't confuse that with hitting the breakpoint.
|
|||
|
What we check for is that 1) stepping is going on
|
|||
|
and 2) the pc before the last insn does not match
|
|||
|
the address of the breakpoint before the current pc. */
|
|||
|
(prev_pc != stop_pc - DECR_PC_AFTER_BREAK
|
|||
|
&& CURRENTLY_STEPPING ())
|
|||
|
#else /* DECR_PC_AFTER_BREAK zero */
|
|||
|
0
|
|||
|
#endif /* DECR_PC_AFTER_BREAK zero */
|
|||
|
);
|
|||
|
/* Following in case break condition called a
|
|||
|
function. */
|
|||
|
stop_print_frame = 1;
|
|||
|
}
|
|||
|
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP)
|
|||
|
random_signal
|
|||
|
= !(bpstat_explains_signal (stop_bpstat)
|
|||
|
|| trap_expected
|
|||
|
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|
|||
|
|| PC_IN_CALL_DUMMY (stop_pc, read_sp (),
|
|||
|
FRAME_FP (get_current_frame ()))
|
|||
|
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
|
|||
|
|| (step_range_end && step_resume_breakpoint == NULL));
|
|||
|
else
|
|||
|
{
|
|||
|
random_signal
|
|||
|
= !(bpstat_explains_signal (stop_bpstat)
|
|||
|
/* End of a stack dummy. Some systems (e.g. Sony
|
|||
|
news) give another signal besides SIGTRAP,
|
|||
|
so check here as well as above. */
|
|||
|
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|
|||
|
|| PC_IN_CALL_DUMMY (stop_pc, read_sp (),
|
|||
|
FRAME_FP (get_current_frame ()))
|
|||
|
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
|
|||
|
);
|
|||
|
if (!random_signal)
|
|||
|
stop_signal = TARGET_SIGNAL_TRAP;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
random_signal = 1;
|
|||
|
|
|||
|
/* For the program's own signals, act according to
|
|||
|
the signal handling tables. */
|
|||
|
|
|||
|
if (random_signal)
|
|||
|
{
|
|||
|
/* Signal not for debugging purposes. */
|
|||
|
int printed = 0;
|
|||
|
|
|||
|
stopped_by_random_signal = 1;
|
|||
|
|
|||
|
if (signal_print[stop_signal])
|
|||
|
{
|
|||
|
printed = 1;
|
|||
|
target_terminal_ours_for_output ();
|
|||
|
annotate_signal ();
|
|||
|
printf_filtered ("\nProgram received signal ");
|
|||
|
annotate_signal_name ();
|
|||
|
printf_filtered ("%s", target_signal_to_name (stop_signal));
|
|||
|
annotate_signal_name_end ();
|
|||
|
printf_filtered (", ");
|
|||
|
annotate_signal_string ();
|
|||
|
printf_filtered ("%s", target_signal_to_string (stop_signal));
|
|||
|
annotate_signal_string_end ();
|
|||
|
printf_filtered (".\n");
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
}
|
|||
|
if (signal_stop[stop_signal])
|
|||
|
break;
|
|||
|
/* If not going to stop, give terminal back
|
|||
|
if we took it away. */
|
|||
|
else if (printed)
|
|||
|
target_terminal_inferior ();
|
|||
|
|
|||
|
/* Clear the signal if it should not be passed. */
|
|||
|
if (signal_program[stop_signal] == 0)
|
|||
|
stop_signal = TARGET_SIGNAL_0;
|
|||
|
|
|||
|
/* I'm not sure whether this needs to be check_sigtramp2 or
|
|||
|
whether it could/should be keep_going. */
|
|||
|
goto check_sigtramp2;
|
|||
|
}
|
|||
|
|
|||
|
/* Handle cases caused by hitting a breakpoint. */
|
|||
|
{
|
|||
|
CORE_ADDR jmp_buf_pc;
|
|||
|
struct bpstat_what what;
|
|||
|
|
|||
|
what = bpstat_what (stop_bpstat);
|
|||
|
|
|||
|
if (what.call_dummy)
|
|||
|
{
|
|||
|
stop_stack_dummy = 1;
|
|||
|
#ifdef HP_OS_BUG
|
|||
|
trap_expected_after_continue = 1;
|
|||
|
#endif
|
|||
|
}
|
|||
|
|
|||
|
switch (what.main_action)
|
|||
|
{
|
|||
|
case BPSTAT_WHAT_SET_LONGJMP_RESUME:
|
|||
|
/* If we hit the breakpoint at longjmp, disable it for the
|
|||
|
duration of this command. Then, install a temporary
|
|||
|
breakpoint at the target of the jmp_buf. */
|
|||
|
disable_longjmp_breakpoint();
|
|||
|
remove_breakpoints ();
|
|||
|
breakpoints_inserted = 0;
|
|||
|
if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
|
|||
|
|
|||
|
/* Need to blow away step-resume breakpoint, as it
|
|||
|
interferes with us */
|
|||
|
if (step_resume_breakpoint != NULL)
|
|||
|
{
|
|||
|
delete_breakpoint (step_resume_breakpoint);
|
|||
|
step_resume_breakpoint = NULL;
|
|||
|
}
|
|||
|
/* Not sure whether we need to blow this away too, but probably
|
|||
|
it is like the step-resume breakpoint. */
|
|||
|
if (through_sigtramp_breakpoint != NULL)
|
|||
|
{
|
|||
|
delete_breakpoint (through_sigtramp_breakpoint);
|
|||
|
through_sigtramp_breakpoint = NULL;
|
|||
|
}
|
|||
|
|
|||
|
#if 0
|
|||
|
/* FIXME - Need to implement nested temporary breakpoints */
|
|||
|
if (step_over_calls > 0)
|
|||
|
set_longjmp_resume_breakpoint(jmp_buf_pc,
|
|||
|
get_current_frame());
|
|||
|
else
|
|||
|
#endif /* 0 */
|
|||
|
set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
|
|||
|
handling_longjmp = 1; /* FIXME */
|
|||
|
goto keep_going;
|
|||
|
|
|||
|
case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
|
|||
|
case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
|
|||
|
remove_breakpoints ();
|
|||
|
breakpoints_inserted = 0;
|
|||
|
#if 0
|
|||
|
/* FIXME - Need to implement nested temporary breakpoints */
|
|||
|
if (step_over_calls
|
|||
|
&& (FRAME_FP (get_current_frame ())
|
|||
|
INNER_THAN step_frame_address))
|
|||
|
{
|
|||
|
another_trap = 1;
|
|||
|
goto keep_going;
|
|||
|
}
|
|||
|
#endif /* 0 */
|
|||
|
disable_longjmp_breakpoint();
|
|||
|
handling_longjmp = 0; /* FIXME */
|
|||
|
if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
|
|||
|
break;
|
|||
|
/* else fallthrough */
|
|||
|
|
|||
|
case BPSTAT_WHAT_SINGLE:
|
|||
|
if (breakpoints_inserted)
|
|||
|
remove_breakpoints ();
|
|||
|
breakpoints_inserted = 0;
|
|||
|
another_trap = 1;
|
|||
|
/* Still need to check other stuff, at least the case
|
|||
|
where we are stepping and step out of the right range. */
|
|||
|
break;
|
|||
|
|
|||
|
case BPSTAT_WHAT_STOP_NOISY:
|
|||
|
stop_print_frame = 1;
|
|||
|
|
|||
|
/* We are about to nuke the step_resume_breakpoint and
|
|||
|
through_sigtramp_breakpoint via the cleanup chain, so
|
|||
|
no need to worry about it here. */
|
|||
|
|
|||
|
goto stop_stepping;
|
|||
|
|
|||
|
case BPSTAT_WHAT_STOP_SILENT:
|
|||
|
stop_print_frame = 0;
|
|||
|
|
|||
|
/* We are about to nuke the step_resume_breakpoint and
|
|||
|
through_sigtramp_breakpoint via the cleanup chain, so
|
|||
|
no need to worry about it here. */
|
|||
|
|
|||
|
goto stop_stepping;
|
|||
|
|
|||
|
case BPSTAT_WHAT_STEP_RESUME:
|
|||
|
delete_breakpoint (step_resume_breakpoint);
|
|||
|
step_resume_breakpoint = NULL;
|
|||
|
break;
|
|||
|
|
|||
|
case BPSTAT_WHAT_THROUGH_SIGTRAMP:
|
|||
|
if (through_sigtramp_breakpoint)
|
|||
|
delete_breakpoint (through_sigtramp_breakpoint);
|
|||
|
through_sigtramp_breakpoint = NULL;
|
|||
|
|
|||
|
/* If were waiting for a trap, hitting the step_resume_break
|
|||
|
doesn't count as getting it. */
|
|||
|
if (trap_expected)
|
|||
|
another_trap = 1;
|
|||
|
break;
|
|||
|
|
|||
|
#ifdef SOLIB_ADD
|
|||
|
case BPSTAT_WHAT_CHECK_SHLIBS:
|
|||
|
{
|
|||
|
extern int auto_solib_add;
|
|||
|
|
|||
|
/* Remove breakpoints, we eventually want to step over the
|
|||
|
shlib event breakpoint, and SOLIB_ADD might adjust
|
|||
|
breakpoint addresses via breakpoint_re_set. */
|
|||
|
if (breakpoints_inserted)
|
|||
|
remove_breakpoints ();
|
|||
|
breakpoints_inserted = 0;
|
|||
|
|
|||
|
/* Check for any newly added shared libraries if we're
|
|||
|
supposed to be adding them automatically. */
|
|||
|
if (auto_solib_add)
|
|||
|
{
|
|||
|
/* Switch terminal for any messages produced by
|
|||
|
breakpoint_re_set. */
|
|||
|
target_terminal_ours_for_output ();
|
|||
|
SOLIB_ADD (NULL, 0, NULL);
|
|||
|
re_enable_breakpoints_in_shlibs ();
|
|||
|
target_terminal_inferior ();
|
|||
|
}
|
|||
|
|
|||
|
/* If requested, stop when the dynamic linker notifies
|
|||
|
gdb of events. This allows the user to get control
|
|||
|
and place breakpoints in initializer routines for
|
|||
|
dynamically loaded objects (among other things). */
|
|||
|
if (stop_on_solib_events)
|
|||
|
{
|
|||
|
stop_print_frame = 0;
|
|||
|
goto stop_stepping;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* We want to step over this breakpoint, then keep going. */
|
|||
|
another_trap = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
#endif
|
|||
|
|
|||
|
case BPSTAT_WHAT_LAST:
|
|||
|
/* Not a real code, but listed here to shut up gcc -Wall. */
|
|||
|
|
|||
|
case BPSTAT_WHAT_KEEP_CHECKING:
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* We come here if we hit a breakpoint but should not
|
|||
|
stop for it. Possibly we also were stepping
|
|||
|
and should stop for that. So fall through and
|
|||
|
test for stepping. But, if not stepping,
|
|||
|
do not stop. */
|
|||
|
|
|||
|
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
|
|||
|
/* This is the old way of detecting the end of the stack dummy.
|
|||
|
An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
|
|||
|
handled above. As soon as we can test it on all of them, all
|
|||
|
architectures should define it. */
|
|||
|
|
|||
|
/* If this is the breakpoint at the end of a stack dummy,
|
|||
|
just stop silently, unless the user was doing an si/ni, in which
|
|||
|
case she'd better know what she's doing. */
|
|||
|
|
|||
|
if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
|
|||
|
&& !step_range_end)
|
|||
|
{
|
|||
|
stop_print_frame = 0;
|
|||
|
stop_stack_dummy = 1;
|
|||
|
#ifdef HP_OS_BUG
|
|||
|
trap_expected_after_continue = 1;
|
|||
|
#endif
|
|||
|
break;
|
|||
|
}
|
|||
|
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
|
|||
|
|
|||
|
if (step_resume_breakpoint)
|
|||
|
/* Having a step-resume breakpoint overrides anything
|
|||
|
else having to do with stepping commands until
|
|||
|
that breakpoint is reached. */
|
|||
|
/* I'm not sure whether this needs to be check_sigtramp2 or
|
|||
|
whether it could/should be keep_going. */
|
|||
|
goto check_sigtramp2;
|
|||
|
|
|||
|
if (step_range_end == 0)
|
|||
|
/* Likewise if we aren't even stepping. */
|
|||
|
/* I'm not sure whether this needs to be check_sigtramp2 or
|
|||
|
whether it could/should be keep_going. */
|
|||
|
goto check_sigtramp2;
|
|||
|
|
|||
|
/* If stepping through a line, keep going if still within it. */
|
|||
|
if (stop_pc >= step_range_start
|
|||
|
&& stop_pc < step_range_end
|
|||
|
#if 0
|
|||
|
/* I haven't a clue what might trigger this clause, and it seems wrong anyway,
|
|||
|
so I've disabled it until someone complains. -Stu 10/24/95 */
|
|||
|
|
|||
|
/* The step range might include the start of the
|
|||
|
function, so if we are at the start of the
|
|||
|
step range and either the stack or frame pointers
|
|||
|
just changed, we've stepped outside */
|
|||
|
&& !(stop_pc == step_range_start
|
|||
|
&& FRAME_FP (get_current_frame ())
|
|||
|
&& (read_sp () INNER_THAN step_sp
|
|||
|
|| FRAME_FP (get_current_frame ()) != step_frame_address))
|
|||
|
#endif
|
|||
|
)
|
|||
|
{
|
|||
|
/* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
|
|||
|
So definately need to check for sigtramp here. */
|
|||
|
goto check_sigtramp2;
|
|||
|
}
|
|||
|
|
|||
|
/* We stepped out of the stepping range. */
|
|||
|
|
|||
|
/* We can't update step_sp every time through the loop, because
|
|||
|
reading the stack pointer would slow down stepping too much.
|
|||
|
But we can update it every time we leave the step range. */
|
|||
|
update_step_sp = 1;
|
|||
|
|
|||
|
/* Did we just take a signal? */
|
|||
|
if (IN_SIGTRAMP (stop_pc, stop_func_name)
|
|||
|
&& !IN_SIGTRAMP (prev_pc, prev_func_name))
|
|||
|
{
|
|||
|
/* We've just taken a signal; go until we are back to
|
|||
|
the point where we took it and one more. */
|
|||
|
|
|||
|
/* This code is needed at least in the following case:
|
|||
|
The user types "next" and then a signal arrives (before
|
|||
|
the "next" is done). */
|
|||
|
|
|||
|
/* Note that if we are stopped at a breakpoint, then we need
|
|||
|
the step_resume breakpoint to override any breakpoints at
|
|||
|
the same location, so that we will still step over the
|
|||
|
breakpoint even though the signal happened. */
|
|||
|
|
|||
|
{
|
|||
|
struct symtab_and_line sr_sal;
|
|||
|
|
|||
|
sr_sal.pc = prev_pc;
|
|||
|
sr_sal.symtab = NULL;
|
|||
|
sr_sal.line = 0;
|
|||
|
/* We could probably be setting the frame to
|
|||
|
step_frame_address; I don't think anyone thought to try it. */
|
|||
|
step_resume_breakpoint =
|
|||
|
set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
|
|||
|
if (breakpoints_inserted)
|
|||
|
insert_breakpoints ();
|
|||
|
}
|
|||
|
|
|||
|
/* If this is stepi or nexti, make sure that the stepping range
|
|||
|
gets us past that instruction. */
|
|||
|
if (step_range_end == 1)
|
|||
|
/* FIXME: Does this run afoul of the code below which, if
|
|||
|
we step into the middle of a line, resets the stepping
|
|||
|
range? */
|
|||
|
step_range_end = (step_range_start = prev_pc) + 1;
|
|||
|
|
|||
|
remove_breakpoints_on_following_step = 1;
|
|||
|
goto keep_going;
|
|||
|
}
|
|||
|
|
|||
|
#if 0
|
|||
|
/* I disabled this test because it was too complicated and slow. The
|
|||
|
SKIP_PROLOGUE was especially slow, because it caused unnecessary
|
|||
|
prologue examination on various architectures. The code in the #else
|
|||
|
clause has been tested on the Sparc, Mips, PA, and Power
|
|||
|
architectures, so it's pretty likely to be correct. -Stu 10/24/95 */
|
|||
|
|
|||
|
/* See if we left the step range due to a subroutine call that
|
|||
|
we should proceed to the end of. */
|
|||
|
|
|||
|
if (stop_func_start)
|
|||
|
{
|
|||
|
struct symtab *s;
|
|||
|
|
|||
|
/* Do this after the IN_SIGTRAMP check; it might give
|
|||
|
an error. */
|
|||
|
prologue_pc = stop_func_start;
|
|||
|
|
|||
|
/* Don't skip the prologue if this is assembly source */
|
|||
|
s = find_pc_symtab (stop_pc);
|
|||
|
if (s && s->language != language_asm)
|
|||
|
SKIP_PROLOGUE (prologue_pc);
|
|||
|
}
|
|||
|
|
|||
|
if ((/* Might be a non-recursive call. If the symbols are missing
|
|||
|
enough that stop_func_start == prev_func_start even though
|
|||
|
they are really two functions, we will treat some calls as
|
|||
|
jumps. */
|
|||
|
stop_func_start != prev_func_start
|
|||
|
|
|||
|
/* Might be a recursive call if either we have a prologue
|
|||
|
or the call instruction itself saves the PC on the stack. */
|
|||
|
|| prologue_pc != stop_func_start
|
|||
|
|| read_sp () != step_sp)
|
|||
|
&& (/* PC is completely out of bounds of any known objfiles. Treat
|
|||
|
like a subroutine call. */
|
|||
|
! stop_func_start
|
|||
|
|
|||
|
/* If we do a call, we will be at the start of a function... */
|
|||
|
|| stop_pc == stop_func_start
|
|||
|
|
|||
|
/* ...except on the Alpha with -O (and also Irix 5 and
|
|||
|
perhaps others), in which we might call the address
|
|||
|
after the load of gp. Since prologues don't contain
|
|||
|
calls, we can't return to within one, and we don't
|
|||
|
jump back into them, so this check is OK. */
|
|||
|
|
|||
|
|| stop_pc < prologue_pc
|
|||
|
|
|||
|
/* ...and if it is a leaf function, the prologue might
|
|||
|
consist of gp loading only, so the call transfers to
|
|||
|
the first instruction after the prologue. */
|
|||
|
|| (stop_pc == prologue_pc
|
|||
|
|
|||
|
/* Distinguish this from the case where we jump back
|
|||
|
to the first instruction after the prologue,
|
|||
|
within a function. */
|
|||
|
&& stop_func_start != prev_func_start)
|
|||
|
|
|||
|
/* If we end up in certain places, it means we did a subroutine
|
|||
|
call. I'm not completely sure this is necessary now that we
|
|||
|
have the above checks with stop_func_start (and now that
|
|||
|
find_pc_partial_function is pickier). */
|
|||
|
|| IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
|
|||
|
|
|||
|
/* If none of the above apply, it is a jump within a function,
|
|||
|
or a return from a subroutine. The other case is longjmp,
|
|||
|
which can no longer happen here as long as the
|
|||
|
handling_longjmp stuff is working. */
|
|||
|
))
|
|||
|
#else
|
|||
|
/* This test is a much more streamlined, (but hopefully correct)
|
|||
|
replacement for the code above. It's been tested on the Sparc,
|
|||
|
Mips, PA, and Power architectures with good results. */
|
|||
|
|
|||
|
if (stop_pc == stop_func_start /* Quick test */
|
|||
|
|| in_prologue (stop_pc, stop_func_start)
|
|||
|
|| IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
|
|||
|
|| stop_func_start == 0)
|
|||
|
#endif
|
|||
|
|
|||
|
{
|
|||
|
/* It's a subroutine call. */
|
|||
|
|
|||
|
if (step_over_calls == 0)
|
|||
|
{
|
|||
|
/* I presume that step_over_calls is only 0 when we're
|
|||
|
supposed to be stepping at the assembly language level
|
|||
|
("stepi"). Just stop. */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (step_over_calls > 0)
|
|||
|
/* We're doing a "next". */
|
|||
|
goto step_over_function;
|
|||
|
|
|||
|
/* If we are in a function call trampoline (a stub between
|
|||
|
the calling routine and the real function), locate the real
|
|||
|
function. That's what tells us (a) whether we want to step
|
|||
|
into it at all, and (b) what prologue we want to run to
|
|||
|
the end of, if we do step into it. */
|
|||
|
tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
|
|||
|
if (tmp != 0)
|
|||
|
stop_func_start = tmp;
|
|||
|
else
|
|||
|
{
|
|||
|
tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
|
|||
|
if (tmp)
|
|||
|
{
|
|||
|
struct symtab_and_line xxx;
|
|||
|
|
|||
|
xxx.pc = tmp;
|
|||
|
xxx.symtab = NULL;
|
|||
|
xxx.line = 0;
|
|||
|
step_resume_breakpoint =
|
|||
|
set_momentary_breakpoint (xxx, NULL, bp_step_resume);
|
|||
|
insert_breakpoints ();
|
|||
|
goto keep_going;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If we have line number information for the function we
|
|||
|
are thinking of stepping into, step into it.
|
|||
|
|
|||
|
If there are several symtabs at that PC (e.g. with include
|
|||
|
files), just want to know whether *any* of them have line
|
|||
|
numbers. find_pc_line handles this. */
|
|||
|
{
|
|||
|
struct symtab_and_line tmp_sal;
|
|||
|
|
|||
|
tmp_sal = find_pc_line (stop_func_start, 0);
|
|||
|
if (tmp_sal.line != 0)
|
|||
|
goto step_into_function;
|
|||
|
}
|
|||
|
|
|||
|
step_over_function:
|
|||
|
/* A subroutine call has happened. */
|
|||
|
{
|
|||
|
/* Set a special breakpoint after the return */
|
|||
|
struct symtab_and_line sr_sal;
|
|||
|
sr_sal.pc =
|
|||
|
ADDR_BITS_REMOVE
|
|||
|
(SAVED_PC_AFTER_CALL (get_current_frame ()));
|
|||
|
sr_sal.symtab = NULL;
|
|||
|
sr_sal.line = 0;
|
|||
|
step_resume_breakpoint =
|
|||
|
set_momentary_breakpoint (sr_sal, get_current_frame (),
|
|||
|
bp_step_resume);
|
|||
|
step_resume_breakpoint->frame = step_frame_address;
|
|||
|
if (breakpoints_inserted)
|
|||
|
insert_breakpoints ();
|
|||
|
}
|
|||
|
goto keep_going;
|
|||
|
|
|||
|
step_into_function:
|
|||
|
/* Subroutine call with source code we should not step over.
|
|||
|
Do step to the first line of code in it. */
|
|||
|
{
|
|||
|
struct symtab *s;
|
|||
|
|
|||
|
s = find_pc_symtab (stop_pc);
|
|||
|
if (s && s->language != language_asm)
|
|||
|
SKIP_PROLOGUE (stop_func_start);
|
|||
|
}
|
|||
|
sal = find_pc_line (stop_func_start, 0);
|
|||
|
/* Use the step_resume_break to step until
|
|||
|
the end of the prologue, even if that involves jumps
|
|||
|
(as it seems to on the vax under 4.2). */
|
|||
|
/* If the prologue ends in the middle of a source line,
|
|||
|
continue to the end of that source line (if it is still
|
|||
|
within the function). Otherwise, just go to end of prologue. */
|
|||
|
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
|
|||
|
/* no, don't either. It skips any code that's
|
|||
|
legitimately on the first line. */
|
|||
|
#else
|
|||
|
if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
|
|||
|
stop_func_start = sal.end;
|
|||
|
#endif
|
|||
|
|
|||
|
if (stop_func_start == stop_pc)
|
|||
|
{
|
|||
|
/* We are already there: stop now. */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
else
|
|||
|
/* Put the step-breakpoint there and go until there. */
|
|||
|
{
|
|||
|
struct symtab_and_line sr_sal;
|
|||
|
|
|||
|
sr_sal.pc = stop_func_start;
|
|||
|
sr_sal.symtab = NULL;
|
|||
|
sr_sal.line = 0;
|
|||
|
/* Do not specify what the fp should be when we stop
|
|||
|
since on some machines the prologue
|
|||
|
is where the new fp value is established. */
|
|||
|
step_resume_breakpoint =
|
|||
|
set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
|
|||
|
if (breakpoints_inserted)
|
|||
|
insert_breakpoints ();
|
|||
|
|
|||
|
/* And make sure stepping stops right away then. */
|
|||
|
step_range_end = step_range_start;
|
|||
|
}
|
|||
|
goto keep_going;
|
|||
|
}
|
|||
|
|
|||
|
/* We've wandered out of the step range. */
|
|||
|
|
|||
|
sal = find_pc_line(stop_pc, 0);
|
|||
|
|
|||
|
if (step_range_end == 1)
|
|||
|
{
|
|||
|
/* It is stepi or nexti. We always want to stop stepping after
|
|||
|
one instruction. */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* If we're in the return path from a shared library trampoline,
|
|||
|
we want to proceed through the trampoline when stepping. */
|
|||
|
if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name))
|
|||
|
{
|
|||
|
CORE_ADDR tmp;
|
|||
|
|
|||
|
/* Determine where this trampoline returns. */
|
|||
|
tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
|
|||
|
|
|||
|
/* Only proceed through if we know where it's going. */
|
|||
|
if (tmp)
|
|||
|
{
|
|||
|
/* And put the step-breakpoint there and go until there. */
|
|||
|
struct symtab_and_line sr_sal;
|
|||
|
|
|||
|
sr_sal.pc = tmp;
|
|||
|
sr_sal.symtab = NULL;
|
|||
|
sr_sal.line = 0;
|
|||
|
/* Do not specify what the fp should be when we stop
|
|||
|
since on some machines the prologue
|
|||
|
is where the new fp value is established. */
|
|||
|
step_resume_breakpoint =
|
|||
|
set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
|
|||
|
if (breakpoints_inserted)
|
|||
|
insert_breakpoints ();
|
|||
|
|
|||
|
/* Restart without fiddling with the step ranges or
|
|||
|
other state. */
|
|||
|
goto keep_going;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if (sal.line == 0)
|
|||
|
{
|
|||
|
/* We have no line number information. That means to stop
|
|||
|
stepping (does this always happen right after one instruction,
|
|||
|
when we do "s" in a function with no line numbers,
|
|||
|
or can this happen as a result of a return or longjmp?). */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
if (stop_pc == sal.pc
|
|||
|
&& (current_line != sal.line || current_symtab != sal.symtab))
|
|||
|
{
|
|||
|
/* We are at the start of a different line. So stop. Note that
|
|||
|
we don't stop if we step into the middle of a different line.
|
|||
|
That is said to make things like for (;;) statements work
|
|||
|
better. */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
|
|||
|
/* We aren't done stepping.
|
|||
|
|
|||
|
Optimize by setting the stepping range to the line.
|
|||
|
(We might not be in the original line, but if we entered a
|
|||
|
new line in mid-statement, we continue stepping. This makes
|
|||
|
things like for(;;) statements work better.) */
|
|||
|
|
|||
|
if (stop_func_end && sal.end >= stop_func_end)
|
|||
|
{
|
|||
|
/* If this is the last line of the function, don't keep stepping
|
|||
|
(it would probably step us out of the function).
|
|||
|
This is particularly necessary for a one-line function,
|
|||
|
in which after skipping the prologue we better stop even though
|
|||
|
we will be in mid-line. */
|
|||
|
stop_step = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
step_range_start = sal.pc;
|
|||
|
step_range_end = sal.end;
|
|||
|
goto keep_going;
|
|||
|
|
|||
|
check_sigtramp2:
|
|||
|
if (trap_expected
|
|||
|
&& IN_SIGTRAMP (stop_pc, stop_func_name)
|
|||
|
&& !IN_SIGTRAMP (prev_pc, prev_func_name))
|
|||
|
{
|
|||
|
/* What has happened here is that we have just stepped the inferior
|
|||
|
with a signal (because it is a signal which shouldn't make
|
|||
|
us stop), thus stepping into sigtramp.
|
|||
|
|
|||
|
So we need to set a step_resume_break_address breakpoint
|
|||
|
and continue until we hit it, and then step. FIXME: This should
|
|||
|
be more enduring than a step_resume breakpoint; we should know
|
|||
|
that we will later need to keep going rather than re-hitting
|
|||
|
the breakpoint here (see testsuite/gdb.t06/signals.exp where
|
|||
|
it says "exceedingly difficult"). */
|
|||
|
struct symtab_and_line sr_sal;
|
|||
|
|
|||
|
sr_sal.pc = prev_pc;
|
|||
|
sr_sal.symtab = NULL;
|
|||
|
sr_sal.line = 0;
|
|||
|
/* We perhaps could set the frame if we kept track of what
|
|||
|
the frame corresponding to prev_pc was. But we don't,
|
|||
|
so don't. */
|
|||
|
through_sigtramp_breakpoint =
|
|||
|
set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
|
|||
|
if (breakpoints_inserted)
|
|||
|
insert_breakpoints ();
|
|||
|
|
|||
|
remove_breakpoints_on_following_step = 1;
|
|||
|
another_trap = 1;
|
|||
|
}
|
|||
|
|
|||
|
keep_going:
|
|||
|
/* Come to this label when you need to resume the inferior.
|
|||
|
It's really much cleaner to do a goto than a maze of if-else
|
|||
|
conditions. */
|
|||
|
|
|||
|
/* Save the pc before execution, to compare with pc after stop. */
|
|||
|
prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
|
|||
|
prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
|
|||
|
BREAK is defined, the
|
|||
|
original pc would not have
|
|||
|
been at the start of a
|
|||
|
function. */
|
|||
|
prev_func_name = stop_func_name;
|
|||
|
|
|||
|
if (update_step_sp)
|
|||
|
step_sp = read_sp ();
|
|||
|
update_step_sp = 0;
|
|||
|
|
|||
|
/* If we did not do break;, it means we should keep
|
|||
|
running the inferior and not return to debugger. */
|
|||
|
|
|||
|
if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
|
|||
|
{
|
|||
|
/* We took a signal (which we are supposed to pass through to
|
|||
|
the inferior, else we'd have done a break above) and we
|
|||
|
haven't yet gotten our trap. Simply continue. */
|
|||
|
resume (CURRENTLY_STEPPING (), stop_signal);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Either the trap was not expected, but we are continuing
|
|||
|
anyway (the user asked that this signal be passed to the
|
|||
|
child)
|
|||
|
-- or --
|
|||
|
The signal was SIGTRAP, e.g. it was our signal, but we
|
|||
|
decided we should resume from it.
|
|||
|
|
|||
|
We're going to run this baby now!
|
|||
|
|
|||
|
Insert breakpoints now, unless we are trying
|
|||
|
to one-proceed past a breakpoint. */
|
|||
|
/* If we've just finished a special step resume and we don't
|
|||
|
want to hit a breakpoint, pull em out. */
|
|||
|
if (step_resume_breakpoint == NULL
|
|||
|
&& through_sigtramp_breakpoint == NULL
|
|||
|
&& remove_breakpoints_on_following_step)
|
|||
|
{
|
|||
|
remove_breakpoints_on_following_step = 0;
|
|||
|
remove_breakpoints ();
|
|||
|
breakpoints_inserted = 0;
|
|||
|
}
|
|||
|
else if (!breakpoints_inserted &&
|
|||
|
(through_sigtramp_breakpoint != NULL || !another_trap))
|
|||
|
{
|
|||
|
breakpoints_failed = insert_breakpoints ();
|
|||
|
if (breakpoints_failed)
|
|||
|
break;
|
|||
|
breakpoints_inserted = 1;
|
|||
|
}
|
|||
|
|
|||
|
trap_expected = another_trap;
|
|||
|
|
|||
|
if (stop_signal == TARGET_SIGNAL_TRAP)
|
|||
|
stop_signal = TARGET_SIGNAL_0;
|
|||
|
|
|||
|
#ifdef SHIFT_INST_REGS
|
|||
|
/* I'm not sure when this following segment applies. I do know, now,
|
|||
|
that we shouldn't rewrite the regs when we were stopped by a
|
|||
|
random signal from the inferior process. */
|
|||
|
/* FIXME: Shouldn't this be based on the valid bit of the SXIP?
|
|||
|
(this is only used on the 88k). */
|
|||
|
|
|||
|
if (!bpstat_explains_signal (stop_bpstat)
|
|||
|
&& (stop_signal != TARGET_SIGNAL_CHLD)
|
|||
|
&& !stopped_by_random_signal)
|
|||
|
SHIFT_INST_REGS();
|
|||
|
#endif /* SHIFT_INST_REGS */
|
|||
|
|
|||
|
resume (CURRENTLY_STEPPING (), stop_signal);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
stop_stepping:
|
|||
|
if (target_has_execution)
|
|||
|
{
|
|||
|
/* Assuming the inferior still exists, set these up for next
|
|||
|
time, just like we did above if we didn't break out of the
|
|||
|
loop. */
|
|||
|
prev_pc = read_pc ();
|
|||
|
prev_func_start = stop_func_start;
|
|||
|
prev_func_name = stop_func_name;
|
|||
|
}
|
|||
|
do_cleanups (old_cleanups);
|
|||
|
}
|
|||
|
|
|||
|
/* Here to return control to GDB when the inferior stops for real.
|
|||
|
Print appropriate messages, remove breakpoints, give terminal our modes.
|
|||
|
|
|||
|
STOP_PRINT_FRAME nonzero means print the executing frame
|
|||
|
(pc, function, args, file, line number and line text).
|
|||
|
BREAKPOINTS_FAILED nonzero means stop was due to error
|
|||
|
attempting to insert breakpoints. */
|
|||
|
|
|||
|
void
|
|||
|
normal_stop ()
|
|||
|
{
|
|||
|
/* Make sure that the current_frame's pc is correct. This
|
|||
|
is a correction for setting up the frame info before doing
|
|||
|
DECR_PC_AFTER_BREAK */
|
|||
|
if (target_has_execution && get_current_frame())
|
|||
|
(get_current_frame ())->pc = read_pc ();
|
|||
|
|
|||
|
if (breakpoints_failed)
|
|||
|
{
|
|||
|
target_terminal_ours_for_output ();
|
|||
|
print_sys_errmsg ("ptrace", breakpoints_failed);
|
|||
|
printf_filtered ("Stopped; cannot insert breakpoints.\n\
|
|||
|
The same program may be running in another process.\n");
|
|||
|
}
|
|||
|
|
|||
|
if (target_has_execution && breakpoints_inserted)
|
|||
|
if (remove_breakpoints ())
|
|||
|
{
|
|||
|
target_terminal_ours_for_output ();
|
|||
|
printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
|
|||
|
It might be running in another process.\n\
|
|||
|
Further execution is probably impossible.\n");
|
|||
|
}
|
|||
|
|
|||
|
breakpoints_inserted = 0;
|
|||
|
|
|||
|
/* Delete the breakpoint we stopped at, if it wants to be deleted.
|
|||
|
Delete any breakpoint that is to be deleted at the next stop. */
|
|||
|
|
|||
|
breakpoint_auto_delete (stop_bpstat);
|
|||
|
|
|||
|
/* If an auto-display called a function and that got a signal,
|
|||
|
delete that auto-display to avoid an infinite recursion. */
|
|||
|
|
|||
|
if (stopped_by_random_signal)
|
|||
|
disable_current_display ();
|
|||
|
|
|||
|
if (step_multi && stop_step)
|
|||
|
goto done;
|
|||
|
|
|||
|
target_terminal_ours ();
|
|||
|
|
|||
|
if (stop_bpstat
|
|||
|
&& stop_bpstat->breakpoint_at
|
|||
|
&& stop_bpstat->breakpoint_at->type == bp_shlib_event)
|
|||
|
printf_filtered ("Stopped due to shared library event\n");
|
|||
|
|
|||
|
/* Look up the hook_stop and run it if it exists. */
|
|||
|
|
|||
|
if (stop_command->hook)
|
|||
|
{
|
|||
|
catch_errors (hook_stop_stub, (char *)stop_command->hook,
|
|||
|
"Error while running hook_stop:\n", RETURN_MASK_ALL);
|
|||
|
}
|
|||
|
|
|||
|
if (!target_has_stack)
|
|||
|
goto done;
|
|||
|
|
|||
|
/* Select innermost stack frame except on return from a stack dummy routine,
|
|||
|
or if the program has exited. Print it without a level number if
|
|||
|
we have changed functions or hit a breakpoint. Print source line
|
|||
|
if we have one. */
|
|||
|
if (!stop_stack_dummy)
|
|||
|
{
|
|||
|
select_frame (get_current_frame (), 0);
|
|||
|
|
|||
|
if (stop_print_frame)
|
|||
|
{
|
|||
|
int source_only;
|
|||
|
|
|||
|
source_only = bpstat_print (stop_bpstat);
|
|||
|
source_only = source_only ||
|
|||
|
( stop_step
|
|||
|
&& step_frame_address == FRAME_FP (get_current_frame ())
|
|||
|
&& step_start_function == find_pc_function (stop_pc));
|
|||
|
|
|||
|
print_stack_frame (selected_frame, -1, source_only? -1: 1);
|
|||
|
|
|||
|
/* Display the auto-display expressions. */
|
|||
|
do_displays ();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* Save the function value return registers, if we care.
|
|||
|
We might be about to restore their previous contents. */
|
|||
|
if (proceed_to_finish)
|
|||
|
read_register_bytes (0, stop_registers, REGISTER_BYTES);
|
|||
|
|
|||
|
if (stop_stack_dummy)
|
|||
|
{
|
|||
|
/* Pop the empty frame that contains the stack dummy.
|
|||
|
POP_FRAME ends with a setting of the current frame, so we
|
|||
|
can use that next. */
|
|||
|
POP_FRAME;
|
|||
|
/* Set stop_pc to what it was before we called the function. Can't rely
|
|||
|
on restore_inferior_status because that only gets called if we don't
|
|||
|
stop in the called function. */
|
|||
|
stop_pc = read_pc();
|
|||
|
select_frame (get_current_frame (), 0);
|
|||
|
}
|
|||
|
done:
|
|||
|
annotate_stopped ();
|
|||
|
}
|
|||
|
|
|||
|
static int
|
|||
|
hook_stop_stub (cmd)
|
|||
|
char *cmd;
|
|||
|
{
|
|||
|
execute_user_command ((struct cmd_list_element *)cmd, 0);
|
|||
|
return (0);
|
|||
|
}
|
|||
|
|
|||
|
int signal_stop_state (signo)
|
|||
|
int signo;
|
|||
|
{
|
|||
|
return signal_stop[signo];
|
|||
|
}
|
|||
|
|
|||
|
int signal_print_state (signo)
|
|||
|
int signo;
|
|||
|
{
|
|||
|
return signal_print[signo];
|
|||
|
}
|
|||
|
|
|||
|
int signal_pass_state (signo)
|
|||
|
int signo;
|
|||
|
{
|
|||
|
return signal_program[signo];
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
sig_print_header ()
|
|||
|
{
|
|||
|
printf_filtered ("\
|
|||
|
Signal Stop\tPrint\tPass to program\tDescription\n");
|
|||
|
}
|
|||
|
|
|||
|
static void
|
|||
|
sig_print_info (oursig)
|
|||
|
enum target_signal oursig;
|
|||
|
{
|
|||
|
char *name = target_signal_to_name (oursig);
|
|||
|
printf_filtered ("%s", name);
|
|||
|
printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
|
|||
|
" ");
|
|||
|
printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
|
|||
|
printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
|
|||
|
printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
|
|||
|
printf_filtered ("%s\n", target_signal_to_string (oursig));
|
|||
|
}
|
|||
|
|
|||
|
/* Specify how various signals in the inferior should be handled. */
|
|||
|
|
|||
|
static void
|
|||
|
handle_command (args, from_tty)
|
|||
|
char *args;
|
|||
|
int from_tty;
|
|||
|
{
|
|||
|
char **argv;
|
|||
|
int digits, wordlen;
|
|||
|
int sigfirst, signum, siglast;
|
|||
|
enum target_signal oursig;
|
|||
|
int allsigs;
|
|||
|
int nsigs;
|
|||
|
unsigned char *sigs;
|
|||
|
struct cleanup *old_chain;
|
|||
|
|
|||
|
if (args == NULL)
|
|||
|
{
|
|||
|
error_no_arg ("signal to handle");
|
|||
|
}
|
|||
|
|
|||
|
/* Allocate and zero an array of flags for which signals to handle. */
|
|||
|
|
|||
|
nsigs = (int)TARGET_SIGNAL_LAST;
|
|||
|
sigs = (unsigned char *) alloca (nsigs);
|
|||
|
memset (sigs, 0, nsigs);
|
|||
|
|
|||
|
/* Break the command line up into args. */
|
|||
|
|
|||
|
argv = buildargv (args);
|
|||
|
if (argv == NULL)
|
|||
|
{
|
|||
|
nomem (0);
|
|||
|
}
|
|||
|
old_chain = make_cleanup (freeargv, (char *) argv);
|
|||
|
|
|||
|
/* Walk through the args, looking for signal oursigs, signal names, and
|
|||
|
actions. Signal numbers and signal names may be interspersed with
|
|||
|
actions, with the actions being performed for all signals cumulatively
|
|||
|
specified. Signal ranges can be specified as <LOW>-<HIGH>. */
|
|||
|
|
|||
|
while (*argv != NULL)
|
|||
|
{
|
|||
|
wordlen = strlen (*argv);
|
|||
|
for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
|
|||
|
allsigs = 0;
|
|||
|
sigfirst = siglast = -1;
|
|||
|
|
|||
|
if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
|
|||
|
{
|
|||
|
/* Apply action to all signals except those used by the
|
|||
|
debugger. Silently skip those. */
|
|||
|
allsigs = 1;
|
|||
|
sigfirst = 0;
|
|||
|
siglast = nsigs - 1;
|
|||
|
}
|
|||
|
else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
|
|||
|
{
|
|||
|
SET_SIGS (nsigs, sigs, signal_stop);
|
|||
|
SET_SIGS (nsigs, sigs, signal_print);
|
|||
|
}
|
|||
|
else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
|
|||
|
{
|
|||
|
UNSET_SIGS (nsigs, sigs, signal_program);
|
|||
|
}
|
|||
|
else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
|
|||
|
{
|
|||
|
SET_SIGS (nsigs, sigs, signal_print);
|
|||
|
}
|
|||
|
else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
|
|||
|
{
|
|||
|
SET_SIGS (nsigs, sigs, signal_program);
|
|||
|
}
|
|||
|
else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
|
|||
|
{
|
|||
|
UNSET_SIGS (nsigs, sigs, signal_stop);
|
|||
|
}
|
|||
|
else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
|
|||
|
{
|
|||
|
SET_SIGS (nsigs, sigs, signal_program);
|
|||
|
}
|
|||
|
else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
|
|||
|
{
|
|||
|
UNSET_SIGS (nsigs, sigs, signal_print);
|
|||
|
UNSET_SIGS (nsigs, sigs, signal_stop);
|
|||
|
}
|
|||
|
else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
|
|||
|
{
|
|||
|
UNSET_SIGS (nsigs, sigs, signal_program);
|
|||
|
}
|
|||
|
else if (digits > 0)
|
|||
|
{
|
|||
|
/* It is numeric. The numeric signal refers to our own internal
|
|||
|
signal numbering from target.h, not to host/target signal number.
|
|||
|
This is a feature; users really should be using symbolic names
|
|||
|
anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
|
|||
|
will work right anyway. */
|
|||
|
|
|||
|
sigfirst = siglast = (int) target_signal_from_command (atoi (*argv));
|
|||
|
if ((*argv)[digits] == '-')
|
|||
|
{
|
|||
|
siglast =
|
|||
|
(int) target_signal_from_command (atoi ((*argv) + digits + 1));
|
|||
|
}
|
|||
|
if (sigfirst > siglast)
|
|||
|
{
|
|||
|
/* Bet he didn't figure we'd think of this case... */
|
|||
|
signum = sigfirst;
|
|||
|
sigfirst = siglast;
|
|||
|
siglast = signum;
|
|||
|
}
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
oursig = target_signal_from_name (*argv);
|
|||
|
if (oursig != TARGET_SIGNAL_UNKNOWN)
|
|||
|
{
|
|||
|
sigfirst = siglast = (int)oursig;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
/* Not a number and not a recognized flag word => complain. */
|
|||
|
error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
/* If any signal numbers or symbol names were found, set flags for
|
|||
|
which signals to apply actions to. */
|
|||
|
|
|||
|
for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
|
|||
|
{
|
|||
|
switch ((enum target_signal)signum)
|
|||
|
{
|
|||
|
case TARGET_SIGNAL_TRAP:
|
|||
|
case TARGET_SIGNAL_INT:
|
|||
|
if (!allsigs && !sigs[signum])
|
|||
|
{
|
|||
|
if (query ("%s is used by the debugger.\n\
|
|||
|
Are you sure you want to change it? ",
|
|||
|
target_signal_to_name
|
|||
|
((enum target_signal)signum)))
|
|||
|
{
|
|||
|
sigs[signum] = 1;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
printf_unfiltered ("Not confirmed, unchanged.\n");
|
|||
|
gdb_flush (gdb_stdout);
|
|||
|
}
|
|||
|
}
|
|||
|
break;
|
|||
|
case TARGET_SIGNAL_0:
|
|||
|
case TARGET_SIGNAL_DEFAULT:
|
|||
|
case TARGET_SIGNAL_UNKNOWN:
|
|||
|
/* Make sure that "all" doesn't print these. */
|
|||
|
break;
|
|||
|
default:
|
|||
|
sigs[signum] = 1;
|
|||
|
break;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
argv++;
|
|||
|
}
|
|||
|
|
|||
|
target_notice_signals(inferior_pid);
|
|||
|
|
|||
|
if (from_tty)
|
|||
|
{
|
|||
|
/* Show the results. */
|
|||
|
sig_print_header ();
|
|||
|
for (signum = 0; signum < nsigs; signum++)
|
|||
|
{
|
|||
|
if (sigs[signum])
|
|||
|
{
|
|||
|
sig_print_info (signum);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
do_cleanups (old_chain);
|
|||
|
}
|
|||
|
|
|||
|
/* Print current contents of the tables set by the handle command.
|
|||
|
It is possible we should just be printing signals actually used
|
|||
|
by the current target (but for things to work right when switching
|
|||
|
targets, all signals should be in the signal tables). */
|
|||
|
|
|||
|
static void
|
|||
|
signals_info (signum_exp, from_tty)
|
|||
|
char *signum_exp;
|
|||
|
int from_tty;
|
|||
|
{
|
|||
|
enum target_signal oursig;
|
|||
|
sig_print_header ();
|
|||
|
|
|||
|
if (signum_exp)
|
|||
|
{
|
|||
|
/* First see if this is a symbol name. */
|
|||
|
oursig = target_signal_from_name (signum_exp);
|
|||
|
if (oursig == TARGET_SIGNAL_UNKNOWN)
|
|||
|
{
|
|||
|
/* No, try numeric. */
|
|||
|
oursig =
|
|||
|
target_signal_from_command (parse_and_eval_address (signum_exp));
|
|||
|
}
|
|||
|
sig_print_info (oursig);
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
printf_filtered ("\n");
|
|||
|
/* These ugly casts brought to you by the native VAX compiler. */
|
|||
|
for (oursig = TARGET_SIGNAL_FIRST;
|
|||
|
(int)oursig < (int)TARGET_SIGNAL_LAST;
|
|||
|
oursig = (enum target_signal)((int)oursig + 1))
|
|||
|
{
|
|||
|
QUIT;
|
|||
|
|
|||
|
if (oursig != TARGET_SIGNAL_UNKNOWN
|
|||
|
&& oursig != TARGET_SIGNAL_DEFAULT
|
|||
|
&& oursig != TARGET_SIGNAL_0)
|
|||
|
sig_print_info (oursig);
|
|||
|
}
|
|||
|
|
|||
|
printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
|
|||
|
}
|
|||
|
|
|||
|
/* Save all of the information associated with the inferior<==>gdb
|
|||
|
connection. INF_STATUS is a pointer to a "struct inferior_status"
|
|||
|
(defined in inferior.h). */
|
|||
|
|
|||
|
void
|
|||
|
save_inferior_status (inf_status, restore_stack_info)
|
|||
|
struct inferior_status *inf_status;
|
|||
|
int restore_stack_info;
|
|||
|
{
|
|||
|
inf_status->stop_signal = stop_signal;
|
|||
|
inf_status->stop_pc = stop_pc;
|
|||
|
inf_status->stop_step = stop_step;
|
|||
|
inf_status->stop_stack_dummy = stop_stack_dummy;
|
|||
|
inf_status->stopped_by_random_signal = stopped_by_random_signal;
|
|||
|
inf_status->trap_expected = trap_expected;
|
|||
|
inf_status->step_range_start = step_range_start;
|
|||
|
inf_status->step_range_end = step_range_end;
|
|||
|
inf_status->step_frame_address = step_frame_address;
|
|||
|
inf_status->step_over_calls = step_over_calls;
|
|||
|
inf_status->stop_after_trap = stop_after_trap;
|
|||
|
inf_status->stop_soon_quietly = stop_soon_quietly;
|
|||
|
/* Save original bpstat chain here; replace it with copy of chain.
|
|||
|
If caller's caller is walking the chain, they'll be happier if we
|
|||
|
hand them back the original chain when restore_i_s is called. */
|
|||
|
inf_status->stop_bpstat = stop_bpstat;
|
|||
|
stop_bpstat = bpstat_copy (stop_bpstat);
|
|||
|
inf_status->breakpoint_proceeded = breakpoint_proceeded;
|
|||
|
inf_status->restore_stack_info = restore_stack_info;
|
|||
|
inf_status->proceed_to_finish = proceed_to_finish;
|
|||
|
|
|||
|
memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
|
|||
|
|
|||
|
read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
|
|||
|
|
|||
|
record_selected_frame (&(inf_status->selected_frame_address),
|
|||
|
&(inf_status->selected_level));
|
|||
|
return;
|
|||
|
}
|
|||
|
|
|||
|
struct restore_selected_frame_args {
|
|||
|
CORE_ADDR frame_address;
|
|||
|
int level;
|
|||
|
};
|
|||
|
|
|||
|
static int restore_selected_frame PARAMS ((char *));
|
|||
|
|
|||
|
/* Restore the selected frame. args is really a struct
|
|||
|
restore_selected_frame_args * (declared as char * for catch_errors)
|
|||
|
telling us what frame to restore. Returns 1 for success, or 0 for
|
|||
|
failure. An error message will have been printed on error. */
|
|||
|
|
|||
|
static int
|
|||
|
restore_selected_frame (args)
|
|||
|
char *args;
|
|||
|
{
|
|||
|
struct restore_selected_frame_args *fr =
|
|||
|
(struct restore_selected_frame_args *) args;
|
|||
|
struct frame_info *frame;
|
|||
|
int level = fr->level;
|
|||
|
|
|||
|
frame = find_relative_frame (get_current_frame (), &level);
|
|||
|
|
|||
|
/* If inf_status->selected_frame_address is NULL, there was no
|
|||
|
previously selected frame. */
|
|||
|
if (frame == NULL ||
|
|||
|
FRAME_FP (frame) != fr->frame_address ||
|
|||
|
level != 0)
|
|||
|
{
|
|||
|
warning ("Unable to restore previously selected frame.\n");
|
|||
|
return 0;
|
|||
|
}
|
|||
|
select_frame (frame, fr->level);
|
|||
|
return(1);
|
|||
|
}
|
|||
|
|
|||
|
void
|
|||
|
restore_inferior_status (inf_status)
|
|||
|
struct inferior_status *inf_status;
|
|||
|
{
|
|||
|
stop_signal = inf_status->stop_signal;
|
|||
|
stop_pc = inf_status->stop_pc;
|
|||
|
stop_step = inf_status->stop_step;
|
|||
|
stop_stack_dummy = inf_status->stop_stack_dummy;
|
|||
|
stopped_by_random_signal = inf_status->stopped_by_random_signal;
|
|||
|
trap_expected = inf_status->trap_expected;
|
|||
|
step_range_start = inf_status->step_range_start;
|
|||
|
step_range_end = inf_status->step_range_end;
|
|||
|
step_frame_address = inf_status->step_frame_address;
|
|||
|
step_over_calls = inf_status->step_over_calls;
|
|||
|
stop_after_trap = inf_status->stop_after_trap;
|
|||
|
stop_soon_quietly = inf_status->stop_soon_quietly;
|
|||
|
bpstat_clear (&stop_bpstat);
|
|||
|
stop_bpstat = inf_status->stop_bpstat;
|
|||
|
breakpoint_proceeded = inf_status->breakpoint_proceeded;
|
|||
|
proceed_to_finish = inf_status->proceed_to_finish;
|
|||
|
|
|||
|
memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
|
|||
|
|
|||
|
/* The inferior can be gone if the user types "print exit(0)"
|
|||
|
(and perhaps other times). */
|
|||
|
if (target_has_execution)
|
|||
|
write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
|
|||
|
|
|||
|
/* The inferior can be gone if the user types "print exit(0)"
|
|||
|
(and perhaps other times). */
|
|||
|
|
|||
|
/* FIXME: If we are being called after stopping in a function which
|
|||
|
is called from gdb, we should not be trying to restore the
|
|||
|
selected frame; it just prints a spurious error message (The
|
|||
|
message is useful, however, in detecting bugs in gdb (like if gdb
|
|||
|
clobbers the stack)). In fact, should we be restoring the
|
|||
|
inferior status at all in that case? . */
|
|||
|
|
|||
|
if (target_has_stack && inf_status->restore_stack_info)
|
|||
|
{
|
|||
|
struct restore_selected_frame_args fr;
|
|||
|
fr.level = inf_status->selected_level;
|
|||
|
fr.frame_address = inf_status->selected_frame_address;
|
|||
|
/* The point of catch_errors is that if the stack is clobbered,
|
|||
|
walking the stack might encounter a garbage pointer and error()
|
|||
|
trying to dereference it. */
|
|||
|
if (catch_errors (restore_selected_frame, &fr,
|
|||
|
"Unable to restore previously selected frame:\n",
|
|||
|
RETURN_MASK_ERROR) == 0)
|
|||
|
/* Error in restoring the selected frame. Select the innermost
|
|||
|
frame. */
|
|||
|
select_frame (get_current_frame (), 0);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
void
|
|||
|
_initialize_infrun ()
|
|||
|
{
|
|||
|
register int i;
|
|||
|
register int numsigs;
|
|||
|
|
|||
|
add_info ("signals", signals_info,
|
|||
|
"What debugger does when program gets various signals.\n\
|
|||
|
Specify a signal as argument to print info on that signal only.");
|
|||
|
add_info_alias ("handle", "signals", 0);
|
|||
|
|
|||
|
add_com ("handle", class_run, handle_command,
|
|||
|
concat ("Specify how to handle a signal.\n\
|
|||
|
Args are signals and actions to apply to those signals.\n\
|
|||
|
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
|
|||
|
from 1-15 are allowed for compatibility with old versions of GDB.\n\
|
|||
|
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
|
|||
|
The special arg \"all\" is recognized to mean all signals except those\n\
|
|||
|
used by the debugger, typically SIGTRAP and SIGINT.\n",
|
|||
|
"Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
|
|||
|
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
|
|||
|
Stop means reenter debugger if this signal happens (implies print).\n\
|
|||
|
Print means print a message if this signal happens.\n\
|
|||
|
Pass means let program see this signal; otherwise program doesn't know.\n\
|
|||
|
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
|
|||
|
Pass and Stop may be combined.", NULL));
|
|||
|
|
|||
|
stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
|
|||
|
"There is no `stop' command, but you can set a hook on `stop'.\n\
|
|||
|
This allows you to set a list of commands to be run each time execution\n\
|
|||
|
of the program stops.", &cmdlist);
|
|||
|
|
|||
|
numsigs = (int)TARGET_SIGNAL_LAST;
|
|||
|
signal_stop = (unsigned char *)
|
|||
|
xmalloc (sizeof (signal_stop[0]) * numsigs);
|
|||
|
signal_print = (unsigned char *)
|
|||
|
xmalloc (sizeof (signal_print[0]) * numsigs);
|
|||
|
signal_program = (unsigned char *)
|
|||
|
xmalloc (sizeof (signal_program[0]) * numsigs);
|
|||
|
for (i = 0; i < numsigs; i++)
|
|||
|
{
|
|||
|
signal_stop[i] = 1;
|
|||
|
signal_print[i] = 1;
|
|||
|
signal_program[i] = 1;
|
|||
|
}
|
|||
|
|
|||
|
/* Signals caused by debugger's own actions
|
|||
|
should not be given to the program afterwards. */
|
|||
|
signal_program[TARGET_SIGNAL_TRAP] = 0;
|
|||
|
signal_program[TARGET_SIGNAL_INT] = 0;
|
|||
|
|
|||
|
/* Signals that are not errors should not normally enter the debugger. */
|
|||
|
signal_stop[TARGET_SIGNAL_ALRM] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_ALRM] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_VTALRM] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_VTALRM] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_PROF] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_PROF] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_CHLD] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_CHLD] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_IO] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_IO] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_POLL] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_POLL] = 0;
|
|||
|
signal_stop[TARGET_SIGNAL_URG] = 0;
|
|||
|
signal_print[TARGET_SIGNAL_URG] = 0;
|
|||
|
|
|||
|
#ifdef SOLIB_ADD
|
|||
|
add_show_from_set
|
|||
|
(add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
|
|||
|
(char *) &stop_on_solib_events,
|
|||
|
"Set stopping for shared library events.\n\
|
|||
|
If nonzero, gdb will give control to the user when the dynamic linker\n\
|
|||
|
notifies gdb of shared library events. The most common event of interest\n\
|
|||
|
to the user would be loading/unloading of a new library.\n",
|
|||
|
&setlist),
|
|||
|
&showlist);
|
|||
|
#endif
|
|||
|
}
|