NetBSD/sys/netinet6/nd6.c

2705 lines
66 KiB
C
Raw Normal View History

/* $NetBSD: nd6.c,v 1.248 2018/05/01 07:21:39 maxv Exp $ */
/* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
1999-07-04 01:24:45 +04:00
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
2001-11-13 03:56:55 +03:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.248 2018/05/01 07:21:39 maxv Exp $");
2015-08-25 01:21:26 +03:00
#ifdef _KERNEL_OPT
#include "opt_net_mpsafe.h"
2015-08-25 01:21:26 +03:00
#endif
#include "bridge.h"
#include "carp.h"
2001-11-13 03:56:55 +03:00
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
2017-02-22 06:41:54 +03:00
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/queue.h>
First step of random number subsystem rework described in <20111022023242.BA26F14A158@mail.netbsd.org>. This change includes the following: An initial cleanup and minor reorganization of the entropy pool code in sys/dev/rnd.c and sys/dev/rndpool.c. Several bugs are fixed. Some effort is made to accumulate entropy more quickly at boot time. A generic interface, "rndsink", is added, for stream generators to request that they be re-keyed with good quality entropy from the pool as soon as it is available. The arc4random()/arc4randbytes() implementation in libkern is adjusted to use the rndsink interface for rekeying, which helps address the problem of low-quality keys at boot time. An implementation of the FIPS 140-2 statistical tests for random number generator quality is provided (libkern/rngtest.c). This is based on Greg Rose's implementation from Qualcomm. A new random stream generator, nist_ctr_drbg, is provided. It is based on an implementation of the NIST SP800-90 CTR_DRBG by Henric Jungheim. This generator users AES in a modified counter mode to generate a backtracking-resistant random stream. An abstraction layer, "cprng", is provided for in-kernel consumers of randomness. The arc4random/arc4randbytes API is deprecated for in-kernel use. It is replaced by "cprng_strong". The current cprng_fast implementation wraps the existing arc4random implementation. The current cprng_strong implementation wraps the new CTR_DRBG implementation. Both interfaces are rekeyed from the entropy pool automatically at intervals justifiable from best current cryptographic practice. In some quick tests, cprng_fast() is about the same speed as the old arc4randbytes(), and cprng_strong() is about 20% faster than rnd_extract_data(). Performance is expected to improve. The AES code in src/crypto/rijndael is no longer an optional kernel component, as it is required by cprng_strong, which is not an optional kernel component. The entropy pool output is subjected to the rngtest tests at startup time; if it fails, the system will reboot. There is approximately a 3/10000 chance of a false positive from these tests. Entropy pool _input_ from hardware random numbers is subjected to the rngtest tests at attach time, as well as the FIPS continuous-output test, to detect bad or stuck hardware RNGs; if any are detected, they are detached, but the system continues to run. A problem with rndctl(8) is fixed -- datastructures with pointers in arrays are no longer passed to userspace (this was not a security problem, but rather a major issue for compat32). A new kernel will require a new rndctl. The sysctl kern.arandom() and kern.urandom() nodes are hooked up to the new generators, but the /dev/*random pseudodevices are not, yet. Manual pages for the new kernel interfaces are forthcoming.
2011-11-20 02:51:18 +04:00
#include <sys/cprng.h>
#include <sys/workqueue.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/if_ether.h>
#include <net/if_fddi.h>
#include <net/if_arc.h>
#include <netinet/in.h>
#include <netinet6/in6_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/in6_ifattach.h>
#include <netinet/icmp6.h>
2008-04-15 07:57:04 +04:00
#include <netinet6/icmp6_private.h>
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
/* timer values */
int nd6_prune = 1; /* walk list every 1 seconds */
int nd6_delay = 5; /* delay first probe time 5 second */
int nd6_umaxtries = 3; /* maximum unicast query */
int nd6_mmaxtries = 3; /* maximum multicast query */
int nd6_useloopback = 1; /* use loopback interface for local traffic */
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
/* preventing too many loops in ND option parsing */
int nd6_maxndopt = 10; /* max # of ND options allowed */
int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
#ifdef ND6_DEBUG
int nd6_debug = 1;
#else
int nd6_debug = 0;
#endif
krwlock_t nd6_lock __cacheline_aligned;
struct nd_drhead nd_defrouter;
struct nd_prhead nd_prefix = { 0 };
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
2007-11-01 23:33:56 +03:00
static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
static void nd6_slowtimo(void *);
2016-07-05 09:32:18 +03:00
static int regen_tmpaddr(const struct in6_ifaddr *);
2016-04-04 10:37:07 +03:00
static void nd6_free(struct llentry *, int);
2007-11-01 23:33:56 +03:00
static void nd6_llinfo_timer(void *);
2016-04-01 08:11:38 +03:00
static void nd6_timer(void *);
static void nd6_timer_work(struct work *, void *);
static void clear_llinfo_pqueue(struct llentry *);
2016-12-14 07:05:11 +03:00
static struct nd_opt_hdr *nd6_option(union nd_opts *);
2016-04-01 08:11:38 +03:00
static callout_t nd6_slowtimo_ch;
static callout_t nd6_timer_ch;
static struct workqueue *nd6_timer_wq;
static struct work nd6_timer_wk;
static int fill_drlist(void *, size_t *);
static int fill_prlist(void *, size_t *);
static struct ifnet *nd6_defifp;
static int nd6_defifindex;
static int nd6_setdefaultiface(int);
MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
void
nd6_init(void)
{
int error;
rw_init(&nd6_lock);
/* initialization of the default router list */
ND_DEFROUTER_LIST_INIT();
callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
error = workqueue_create(&nd6_timer_wq, "nd6_timer",
nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
if (error)
panic("%s: workqueue_create failed (%d)\n", __func__, error);
/* start timer */
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
2016-04-01 08:11:38 +03:00
callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
}
struct nd_ifinfo *
nd6_ifattach(struct ifnet *ifp)
{
struct nd_ifinfo *nd;
2017-02-22 06:41:54 +03:00
nd = kmem_zalloc(sizeof(*nd), KM_SLEEP);
nd->initialized = 1;
nd->chlim = IPV6_DEFHLIM;
nd->basereachable = REACHABLE_TIME;
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
nd->retrans = RETRANS_TIMER;
nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
* A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
* because one of its members should. */
if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
(ifp->if_flags & IFF_LOOPBACK))
nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
/* A loopback interface does not need to accept RTADV.
* A bridge interface should not accept RTADV
* because one of its members should. */
if (ip6_accept_rtadv &&
!(ifp->if_flags & IFF_LOOPBACK) &&
!(ifp->if_type != IFT_BRIDGE))
nd->flags |= ND6_IFF_ACCEPT_RTADV;
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
nd6_setmtu0(ifp, nd);
return nd;
}
void
nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
{
/* Ensure all IPv6 addresses are purged before calling nd6_purge */
if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
nd6_purge(ifp, ext);
2017-02-22 06:41:54 +03:00
kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo));
}
void
nd6_setmtu(struct ifnet *ifp)
{
nd6_setmtu0(ifp, ND_IFINFO(ifp));
}
void
nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
{
u_int32_t omaxmtu;
omaxmtu = ndi->maxmtu;
switch (ifp->if_type) {
case IFT_ARCNET:
ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
2001-02-21 19:28:43 +03:00
break;
case IFT_FDDI:
ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
break;
2001-02-21 19:28:43 +03:00
default:
ndi->maxmtu = ifp->if_mtu;
break;
}
/*
* Decreasing the interface MTU under IPV6 minimum MTU may cause
* undesirable situation. We thus notify the operator of the change
* explicitly. The check for omaxmtu is necessary to restrict the
2002-06-03 06:09:37 +04:00
* log to the case of changing the MTU, not initializing it.
*/
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
" small for IPv6 which needs %lu\n",
if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
IPV6_MMTU);
}
if (ndi->maxmtu > in6_maxmtu)
in6_setmaxmtu(); /* check all interfaces just in case */
}
void
nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
{
memset(ndopts, 0, sizeof(*ndopts));
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
ndopts->nd_opts_last
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
if (icmp6len == 0) {
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
}
/*
* Take one ND option.
*/
2016-12-14 07:05:11 +03:00
static struct nd_opt_hdr *
nd6_option(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int olen;
2015-06-30 11:31:42 +03:00
KASSERT(ndopts != NULL);
KASSERT(ndopts->nd_opts_last != NULL);
if (ndopts->nd_opts_search == NULL)
return NULL;
if (ndopts->nd_opts_done)
return NULL;
nd_opt = ndopts->nd_opts_search;
/* make sure nd_opt_len is inside the buffer */
if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
}
olen = nd_opt->nd_opt_len << 3;
if (olen == 0) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
}
ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
/* option overruns the end of buffer, invalid */
memset(ndopts, 0, sizeof(*ndopts));
return NULL;
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
/* reached the end of options chain */
ndopts->nd_opts_done = 1;
ndopts->nd_opts_search = NULL;
}
return nd_opt;
}
/*
* Parse multiple ND options.
* This function is much easier to use, for ND routines that do not need
* multiple options of the same type.
*/
int
nd6_options(union nd_opts *ndopts)
{
struct nd_opt_hdr *nd_opt;
int i = 0;
2015-06-30 11:31:42 +03:00
KASSERT(ndopts != NULL);
KASSERT(ndopts->nd_opts_last != NULL);
if (ndopts->nd_opts_search == NULL)
return 0;
while (1) {
nd_opt = nd6_option(ndopts);
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
/*
* Message validation requires that all included
* options have a length that is greater than zero.
*/
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
memset(ndopts, 0, sizeof(*ndopts));
return -1;
}
if (nd_opt == NULL)
goto skip1;
switch (nd_opt->nd_opt_type) {
case ND_OPT_SOURCE_LINKADDR:
case ND_OPT_TARGET_LINKADDR:
case ND_OPT_MTU:
case ND_OPT_REDIRECTED_HEADER:
case ND_OPT_NONCE:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
nd6log(LOG_INFO,
"duplicated ND6 option found (type=%d)\n",
nd_opt->nd_opt_type);
/* XXX bark? */
} else {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
break;
case ND_OPT_PREFIX_INFORMATION:
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
ndopts->nd_opt_array[nd_opt->nd_opt_type]
= nd_opt;
}
ndopts->nd_opts_pi_end =
(struct nd_opt_prefix_info *)nd_opt;
break;
default:
/*
* Unknown options must be silently ignored,
* to accommodate future extension to the protocol.
*/
nd6log(LOG_DEBUG,
"nd6_options: unsupported option %d - "
"option ignored\n", nd_opt->nd_opt_type);
}
skip1:
i++;
if (i > nd6_maxndopt) {
2008-04-15 07:57:04 +04:00
ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
nd6log(LOG_INFO, "too many loop in nd opt\n");
break;
}
if (ndopts->nd_opts_done)
break;
}
return 0;
}
/*
* ND6 timer routine to handle ND6 entries
*/
void
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
{
CTASSERT(sizeof(time_t) > sizeof(int));
LLE_WLOCK_ASSERT(ln);
KASSERT(xtick >= 0);
/*
* We have to take care of a reference leak which occurs if
* callout_reset overwrites a pending callout schedule. Unfortunately
* we don't have a mean to know the overwrite, so we need to know it
* using callout_stop. We need to call callout_pending first to exclude
* the case that the callout has never been scheduled.
*/
if (callout_pending(&ln->la_timer)) {
bool expired = callout_stop(&ln->la_timer);
if (!expired)
LLE_REMREF(ln);
}
ln->ln_expire = time_uptime + xtick / hz;
LLE_ADDREF(ln);
if (xtick > INT_MAX) {
ln->ln_ntick = xtick - INT_MAX;
callout_reset(&ln->ln_timer_ch, INT_MAX,
nd6_llinfo_timer, ln);
} else {
ln->ln_ntick = 0;
callout_reset(&ln->ln_timer_ch, xtick,
nd6_llinfo_timer, ln);
}
}
/*
* Gets source address of the first packet in hold queue
* and stores it in @src.
* Returns pointer to @src (if hold queue is not empty) or NULL.
*/
static struct in6_addr *
nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
{
struct ip6_hdr *hip6;
if (ln == NULL || ln->ln_hold == NULL)
return NULL;
/*
* assuming every packet in ln_hold has the same IP header
*/
hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
/* XXX pullup? */
if (sizeof(*hip6) < ln->ln_hold->m_len)
*src = hip6->ip6_src;
else
src = NULL;
return src;
}
static void
nd6_llinfo_timer(void *arg)
{
struct llentry *ln = arg;
struct ifnet *ifp;
struct nd_ifinfo *ndi = NULL;
bool send_ns = false;
const struct in6_addr *daddr6 = NULL;
2002-06-03 06:09:37 +04:00
SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
LLE_WLOCK(ln);
if ((ln->la_flags & LLE_LINKED) == 0)
goto out;
if (ln->ln_ntick > 0) {
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, ln->ln_ntick);
goto out;
}
ifp = ln->lle_tbl->llt_ifp;
KASSERT(ifp != NULL);
ndi = ND_IFINFO(ifp);
switch (ln->ln_state) {
case ND6_LLINFO_INCOMPLETE:
if (ln->ln_asked < nd6_mmaxtries) {
ln->ln_asked++;
send_ns = true;
} else {
struct mbuf *m = ln->ln_hold;
if (m) {
struct mbuf *m0;
/*
* assuming every packet in ln_hold has
* the same IP header
*/
m0 = m->m_nextpkt;
m->m_nextpkt = NULL;
ln->ln_hold = m0;
clear_llinfo_pqueue(ln);
}
2016-04-04 10:37:07 +03:00
nd6_free(ln, 0);
ln = NULL;
if (m != NULL) {
icmp6_error2(m, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADDR, 0, ifp);
}
}
break;
case ND6_LLINFO_REACHABLE:
if (!ND6_LLINFO_PERMANENT(ln)) {
ln->ln_state = ND6_LLINFO_STALE;
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
}
break;
case ND6_LLINFO_PURGE:
case ND6_LLINFO_STALE:
/* Garbage Collection(RFC 2461 5.3) */
if (!ND6_LLINFO_PERMANENT(ln)) {
2016-04-04 10:37:07 +03:00
nd6_free(ln, 1);
ln = NULL;
}
break;
case ND6_LLINFO_DELAY:
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
/* We need NUD */
ln->ln_asked = 1;
ln->ln_state = ND6_LLINFO_PROBE;
2016-04-04 10:37:07 +03:00
daddr6 = &ln->r_l3addr.addr6;
send_ns = true;
} else {
ln->ln_state = ND6_LLINFO_STALE; /* XXX */
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
}
break;
case ND6_LLINFO_PROBE:
if (ln->ln_asked < nd6_umaxtries) {
ln->ln_asked++;
2016-04-04 10:37:07 +03:00
daddr6 = &ln->r_l3addr.addr6;
send_ns = true;
} else {
2016-04-04 10:37:07 +03:00
nd6_free(ln, 0);
ln = NULL;
}
break;
}
2002-06-03 06:09:37 +04:00
if (send_ns) {
struct in6_addr src, *psrc;
2016-04-04 10:37:07 +03:00
const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
psrc = nd6_llinfo_get_holdsrc(ln, &src);
LLE_FREE_LOCKED(ln);
ln = NULL;
nd6_ns_output(ifp, daddr6, taddr6, psrc, NULL);
}
out:
if (ln != NULL)
LLE_FREE_LOCKED(ln);
SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
}
/*
* ND6 timer routine to expire default route list and prefix list
*/
2016-04-01 08:11:38 +03:00
static void
nd6_timer_work(struct work *wk, void *arg)
{
struct nd_defrouter *next_dr, *dr;
struct nd_prefix *next_pr, *pr;
struct in6_ifaddr *ia6, *nia6;
int s, bound;
struct psref psref;
callout_reset(&nd6_timer_ch, nd6_prune * hz,
nd6_timer, NULL);
SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
/* expire default router list */
ND6_WLOCK();
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
if (dr->expire && dr->expire < time_uptime) {
2016-12-11 10:38:50 +03:00
nd6_defrtrlist_del(dr, NULL);
}
}
ND6_UNLOCK();
/*
* expire interface addresses.
* in the past the loop was inside prefix expiry processing.
* However, from a stricter speci-confrmance standpoint, we should
* rather separate address lifetimes and prefix lifetimes.
*/
bound = curlwp_bind();
addrloop:
s = pserialize_read_enter();
for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
ia6_acquire(ia6, &psref);
pserialize_read_exit(s);
/* check address lifetime */
if (IFA6_IS_INVALID(ia6)) {
int regen = 0;
struct ifnet *ifp;
/*
* If the expiring address is temporary, try
* regenerating a new one. This would be useful when
* we suspended a laptop PC, then turned it on after a
* period that could invalidate all temporary
* addresses. Although we may have to restart the
* loop (see below), it must be after purging the
* address. Otherwise, we'd see an infinite loop of
* regeneration.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
IFNET_LOCK(ia6->ia_ifa.ifa_ifp);
if (regen_tmpaddr(ia6) == 0)
regen = 1;
IFNET_UNLOCK(ia6->ia_ifa.ifa_ifp);
}
ifp = ia6->ia_ifa.ifa_ifp;
IFNET_LOCK(ifp);
/*
* Need to take the lock first to prevent if_detach
* from running in6_purgeaddr concurrently.
*/
if (!if_is_deactivated(ifp)) {
ia6_release(ia6, &psref);
in6_purgeaddr(&ia6->ia_ifa);
} else {
/*
* ifp is being destroyed, ia6 will be destroyed
* by if_detach.
*/
ia6_release(ia6, &psref);
}
ia6 = NULL;
IFNET_UNLOCK(ifp);
if (regen)
goto addrloop; /* XXX: see below */
} else if (IFA6_IS_DEPRECATED(ia6)) {
int oldflags = ia6->ia6_flags;
if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
rt_newaddrmsg(RTM_NEWADDR,
(struct ifaddr *)ia6, 0, NULL);
}
/*
* If a temporary address has just become deprecated,
* regenerate a new one if possible.
*/
if (ip6_use_tempaddr &&
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
(oldflags & IN6_IFF_DEPRECATED) == 0) {
if (regen_tmpaddr(ia6) == 0) {
/*
* A new temporary address is
* generated.
* XXX: this means the address chain
* has changed while we are still in
* the loop. Although the change
* would not cause disaster (because
* it's not a deletion, but an
* addition,) we'd rather restart the
* loop just for safety. Or does this
* significantly reduce performance??
*/
ia6_release(ia6, &psref);
goto addrloop;
}
}
} else {
/*
* A new RA might have made a deprecated address
* preferred.
*/
if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
rt_newaddrmsg(RTM_NEWADDR,
(struct ifaddr *)ia6, 0, NULL);
}
}
s = pserialize_read_enter();
ia6_release(ia6, &psref);
}
pserialize_read_exit(s);
curlwp_bindx(bound);
/* expire prefix list */
ND6_WLOCK();
ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) {
/*
* check prefix lifetime.
* since pltime is just for autoconf, pltime processing for
* prefix is not necessary.
*/
if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
/*
* Just invalidate the prefix here. Removing it
* will be done when purging an associated address.
*/
KASSERT(pr->ndpr_refcnt > 0);
nd6_invalidate_prefix(pr);
}
}
ND6_UNLOCK();
SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
}
static void
nd6_timer(void *ignored_arg)
{
workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
}
/* ia6: deprecated/invalidated temporary address */
static int
2016-07-05 09:32:18 +03:00
regen_tmpaddr(const struct in6_ifaddr *ia6)
{
struct ifaddr *ifa;
struct ifnet *ifp;
struct in6_ifaddr *public_ifa6 = NULL;
int s;
ifp = ia6->ia_ifa.ifa_ifp;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
struct in6_ifaddr *it6;
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
it6 = (struct in6_ifaddr *)ifa;
/* ignore no autoconf addresses. */
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
/* ignore autoconf addresses with different prefixes. */
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
continue;
/*
* Now we are looking at an autoconf address with the same
* prefix as ours. If the address is temporary and is still
* preferred, do not create another one. It would be rare, but
* could happen, for example, when we resume a laptop PC after
* a long period.
*/
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
!IFA6_IS_DEPRECATED(it6)) {
public_ifa6 = NULL;
break;
}
/*
* This is a public autoconf address that has the same prefix
* as ours. If it is preferred, keep it. We can't break the
* loop here, because there may be a still-preferred temporary
* address with the prefix.
*/
if (!IFA6_IS_DEPRECATED(it6))
2016-07-05 07:25:23 +03:00
public_ifa6 = it6;
}
if (public_ifa6 != NULL) {
int e;
struct psref psref;
ia6_acquire(public_ifa6, &psref);
pserialize_read_exit(s);
/*
* Random factor is introduced in the preferred lifetime, so
* we do not need additional delay (3rd arg to in6_tmpifadd).
*/
ND6_WLOCK();
e = in6_tmpifadd(public_ifa6, 0, 0);
ND6_UNLOCK();
if (e != 0) {
ia6_release(public_ifa6, &psref);
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
" tmp addr, errno=%d\n", e);
return -1;
}
ia6_release(public_ifa6, &psref);
return 0;
}
2016-10-18 05:46:50 +03:00
pserialize_read_exit(s);
return -1;
}
bool
nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
{
switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
return true;
case ND6_IFF_ACCEPT_RTADV:
return ip6_accept_rtadv != 0;
case ND6_IFF_OVERRIDE_RTADV:
case 0:
default:
return false;
}
}
/*
* Nuke neighbor cache/prefix/default router management table, right before
* ifp goes away.
*/
void
nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
{
struct nd_defrouter *dr, *ndr;
struct nd_prefix *pr, *npr;
/*
* During detach, the ND info might be already removed, but
* then is explitly passed as argument.
* Otherwise get it from ifp->if_afdata.
*/
if (ext == NULL)
ext = ifp->if_afdata[AF_INET6];
if (ext == NULL)
return;
ND6_WLOCK();
/*
* Nuke default router list entries toward ifp.
* We defer removal of default router list entries that is installed
* in the routing table, in order to keep additional side effects as
* small as possible.
*/
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
if (dr->installed)
continue;
if (dr->ifp == ifp) {
KASSERT(ext != NULL);
2016-12-11 10:38:50 +03:00
nd6_defrtrlist_del(dr, ext);
}
}
2012-02-02 23:35:18 +04:00
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
if (!dr->installed)
continue;
if (dr->ifp == ifp) {
KASSERT(ext != NULL);
2016-12-11 10:38:50 +03:00
nd6_defrtrlist_del(dr, ext);
}
}
/* Nuke prefix list entries toward ifp */
ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) {
if (pr->ndpr_ifp == ifp) {
/*
* All addresses referencing pr should be already freed.
*/
KASSERT(pr->ndpr_refcnt == 0);
2016-12-11 10:38:50 +03:00
nd6_prelist_remove(pr);
}
}
/* cancel default outgoing interface setting */
if (nd6_defifindex == ifp->if_index)
nd6_setdefaultiface(0);
/* XXX: too restrictive? */
if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
if (ndi && nd6_accepts_rtadv(ndi)) {
/* refresh default router list */
2016-12-11 10:38:50 +03:00
nd6_defrouter_select();
}
}
ND6_UNLOCK();
/*
* We may not need to nuke the neighbor cache entries here
* because the neighbor cache is kept in if_afdata[AF_INET6].
* nd6_purge() is invoked by in6_ifdetach() which is called
* from if_detach() where everything gets purged. However
* in6_ifdetach is directly called from vlan(4), so we still
* need to purge entries here.
*/
if (ext->lltable != NULL)
lltable_purge_entries(ext->lltable);
}
void
nd6_assert_purged(struct ifnet *ifp)
{
struct nd_defrouter *dr;
struct nd_prefix *pr;
char ip6buf[INET6_ADDRSTRLEN] __diagused;
ND6_RLOCK();
ND_DEFROUTER_LIST_FOREACH(dr) {
KASSERTMSG(dr->ifp != ifp,
"defrouter %s remains on %s",
IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname);
}
ND_PREFIX_LIST_FOREACH(pr) {
KASSERTMSG(pr->ndpr_ifp != ifp,
"prefix %s/%d remains on %s",
IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr),
pr->ndpr_plen, ifp->if_xname);
}
ND6_UNLOCK();
}
2016-04-04 10:37:07 +03:00
struct llentry *
nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
{
struct sockaddr_in6 sin6;
2016-04-04 10:37:07 +03:00
struct llentry *ln;
sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
2016-04-04 10:37:07 +03:00
IF_AFDATA_RLOCK(ifp);
ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
sin6tosa(&sin6));
IF_AFDATA_RUNLOCK(ifp);
return ln;
}
struct llentry *
nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
{
struct sockaddr_in6 sin6;
struct llentry *ln;
struct rtentry *rt;
2016-04-04 10:37:07 +03:00
sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
rt = rtalloc1(sin6tosa(&sin6), 0);
2016-04-04 10:37:07 +03:00
IF_AFDATA_WLOCK(ifp);
ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt);
2016-04-04 10:37:07 +03:00
IF_AFDATA_WUNLOCK(ifp);
if (rt != NULL)
rt_unref(rt);
2016-04-04 10:37:07 +03:00
if (ln != NULL)
ln->ln_state = ND6_LLINFO_NOSTATE;
return ln;
}
/*
* Test whether a given IPv6 address is a neighbor or not, ignoring
* the actual neighbor cache. The neighbor cache is ignored in order
* to not reenter the routing code from within itself.
*/
static int
nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
{
struct nd_prefix *pr;
struct ifaddr *dstaddr;
int s;
2016-04-04 10:37:07 +03:00
/*
* A link-local address is always a neighbor.
* XXX: a link does not necessarily specify a single interface.
*/
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
struct sockaddr_in6 sin6_copy;
u_int32_t zone;
/*
2016-04-04 10:37:07 +03:00
* We need sin6_copy since sa6_recoverscope() may modify the
* content (XXX).
*/
2016-04-04 10:37:07 +03:00
sin6_copy = *addr;
if (sa6_recoverscope(&sin6_copy))
return 0; /* XXX: should be impossible */
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
return 0;
if (sin6_copy.sin6_scope_id == zone)
return 1;
else
return 0;
}
2016-04-04 10:37:07 +03:00
/*
* If the address matches one of our addresses,
* it should be a neighbor.
* If the address matches one of our on-link prefixes, it should be a
* neighbor.
*/
ND6_RLOCK();
ND_PREFIX_LIST_FOREACH(pr) {
2016-04-04 10:37:07 +03:00
if (pr->ndpr_ifp != ifp)
continue;
2016-04-04 10:37:07 +03:00
if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
struct rtentry *rt;
rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
2016-04-04 10:37:07 +03:00
if (rt == NULL)
continue;
/*
* This is the case where multiple interfaces
* have the same prefix, but only one is installed
* into the routing table and that prefix entry
* is not the one being examined here. In the case
* where RADIX_MPATH is enabled, multiple route
* entries (of the same rt_key value) will be
* installed because the interface addresses all
* differ.
*/
if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
&satocsin6(rt_getkey(rt))->sin6_addr)) {
Make the routing table and rtcaches MP-safe See the following descriptions for details. Proposed on tech-kern and tech-net Overview -------- We protect the routing table with a rwock and protect rtcaches with another rwlock. Each rtentry is protected from being freed or updated via reference counting and psref. Global rwlocks -------------- There are two rwlocks; one for the routing table (rt_lock) and the other for rtcaches (rtcache_lock). rtcache_lock covers all existing rtcaches; there may have room for optimizations (future work). The locking order is rtcache_lock first and rt_lock is next. rtentry references ------------------ References to an rtentry is managed with reference counting and psref. Either of the two mechanisms is used depending on where a rtentry is obtained. Reference counting is used when we obtain a rtentry from the routing table directly via rtalloc1 and rtrequest{,1} while psref is used when we obtain a rtentry from a rtcache via rtcache_* APIs. In both cases, a caller can sleep/block with holding an obtained rtentry. The reasons why we use two different mechanisms are (i) only using reference counting hurts the performance due to atomic instructions (rtcache case) (ii) ease of implementation; applying psref to APIs such rtaloc1 and rtrequest{,1} requires additional works (adding a local variable and an argument). We will finally migrate to use only psref but we can do it when we have a lockless routing table alternative. Reference counting for rtentry ------------------------------ rt_refcnt now doesn't count permanent references such as for rt_timers and rtcaches, instead it is used only for temporal references when obtaining a rtentry via rtalloc1 and rtrequest{,1}. We can do so because destroying a rtentry always involves removing references of rt_timers and rtcaches to the rtentry and we don't need to track such references. This also makes it easy to wait for readers to release references on deleting or updating a rtentry, i.e., we can simply wait until the reference counter is 0 or 1. (If there are permanent references the counter can be arbitrary.) rt_ref increments a reference counter of a rtentry and rt_unref decrements it. rt_ref is called inside APIs (rtalloc1 and rtrequest{,1} so users don't need to care about it while users must call rt_unref to an obtained rtentry after using it. rtfree is removed and we use rt_unref and rt_free instead. rt_unref now just decrements the counter of a given rtentry and rt_free just tries to destroy a given rtentry. See the next section for destructions of rtentries by rt_free. Destructions of rtentries ------------------------- We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE); the original implementation can destroy in any rtfree where it's the last reference. If we use reference counting or psref, it's easy to understand if the place that a rtentry is destroyed is fixed. rt_free waits for references to a given rtentry to be released before actually destroying the rtentry. rt_free uses a condition variable (cv_wait) (and psref_target_destroy for psref) to wait. Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint that we cannot use cv_wait. In that case, we have to defer the destruction to a workqueue. rtentry#rt_cv, rtentry#rt_psref and global variables (see rt_free_global) are added to conduct the procedure. Updates of rtentries -------------------- One difficulty to use refcnt/psref instead of rwlock for rtentry is updates of rtentries. We need an additional mechanism to prevent readers from seeing inconsistency of a rtentry being updated. We introduce RTF_UPDATING flag to rtentries that are updating. While the flag is set to a rtentry, users cannot acquire the rtentry. By doing so, we avoid users to see inconsistent rtentries. There are two options when a user tries to acquire a rtentry with the RTF_UPDATING flag; if a user runs in softint context the user fails to acquire a rtentry (NULL is returned). Otherwise a user waits until the update completes by waiting on cv. The procedure of a updater is simpler to destruction of a rtentry. Wait on cv (and psref) and after all readers left, proceed with the update. Global variables (see rt_update_global) are added to conduct the procedure. Currently we apply the mechanism to only RTM_CHANGE in rtsock.c. We would have to apply other codes. See "Known issues" section. psref for rtentry ----------------- When we obtain a rtentry from a rtcache via rtcache_* APIs, psref is used to reference to the rtentry. rtcache_ref acquires a reference to a rtentry with psref and rtcache_unref releases the reference after using it. rtcache_ref is called inside rtcache_* APIs and users don't need to take care of it while users must call rtcache_unref to release the reference. struct psref and int bound that is needed for psref is embedded into struct route. By doing so we don't need to add local variables and additional argument to APIs. However this adds another constraint to psref other than reference counting one's; holding a reference of an rtentry via a rtcache is allowed by just one caller at the same time. So we must not acquire a rtentry via a rtcache twice and avoid a recursive use of a rtcache. And also a rtcache must be arranged to be used by a LWP/softint at the same time somehow. For IP forwarding case, we have per-CPU rtcaches used in softint so the constraint is guaranteed. For a h rtcache of a PCB case, the constraint is guaranteed by the solock of each PCB. Any other cases (pf, ipf, stf and ipsec) are currently guaranteed by only the existence of the global locks (softnet_lock and/or KERNEL_LOCK). If we've found the cases that we cannot guarantee the constraint, we would need to introduce other rtcache APIs that use simple reference counting. psref of rtcache is created with IPL_SOFTNET and so rtcache shouldn't used at an IPL higher than IPL_SOFTNET. Note that rtcache_free is used to invalidate a given rtcache. We don't need another care by my change; just keep them as they are. Performance impact ------------------ When NET_MPSAFE is disabled the performance drop is 3% while when it's enabled the drop is increased to 11%. The difference comes from that currently we don't take any global locks and don't use psref if NET_MPSAFE is disabled. We can optimize the performance of the case of NET_MPSAFE on by reducing lookups of rtcache that uses psref; currently we do two lookups but we should be able to trim one of two. This is a future work. Known issues ------------ There are two known issues to be solved; one is that a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit). We need to prevent new references during the update. Or we may be able to remove the code (perhaps, need more investigations). The other is rtredirect that updates a rtentry. We need to apply our update mechanism, however it's not easy because rtredirect is called in softint and we cannot apply our mechanism simply. One solution is to defer rtredirect to a workqueue but it requires some code restructuring.
2016-12-12 06:55:57 +03:00
rt_unref(rt);
2016-04-04 10:37:07 +03:00
continue;
}
Make the routing table and rtcaches MP-safe See the following descriptions for details. Proposed on tech-kern and tech-net Overview -------- We protect the routing table with a rwock and protect rtcaches with another rwlock. Each rtentry is protected from being freed or updated via reference counting and psref. Global rwlocks -------------- There are two rwlocks; one for the routing table (rt_lock) and the other for rtcaches (rtcache_lock). rtcache_lock covers all existing rtcaches; there may have room for optimizations (future work). The locking order is rtcache_lock first and rt_lock is next. rtentry references ------------------ References to an rtentry is managed with reference counting and psref. Either of the two mechanisms is used depending on where a rtentry is obtained. Reference counting is used when we obtain a rtentry from the routing table directly via rtalloc1 and rtrequest{,1} while psref is used when we obtain a rtentry from a rtcache via rtcache_* APIs. In both cases, a caller can sleep/block with holding an obtained rtentry. The reasons why we use two different mechanisms are (i) only using reference counting hurts the performance due to atomic instructions (rtcache case) (ii) ease of implementation; applying psref to APIs such rtaloc1 and rtrequest{,1} requires additional works (adding a local variable and an argument). We will finally migrate to use only psref but we can do it when we have a lockless routing table alternative. Reference counting for rtentry ------------------------------ rt_refcnt now doesn't count permanent references such as for rt_timers and rtcaches, instead it is used only for temporal references when obtaining a rtentry via rtalloc1 and rtrequest{,1}. We can do so because destroying a rtentry always involves removing references of rt_timers and rtcaches to the rtentry and we don't need to track such references. This also makes it easy to wait for readers to release references on deleting or updating a rtentry, i.e., we can simply wait until the reference counter is 0 or 1. (If there are permanent references the counter can be arbitrary.) rt_ref increments a reference counter of a rtentry and rt_unref decrements it. rt_ref is called inside APIs (rtalloc1 and rtrequest{,1} so users don't need to care about it while users must call rt_unref to an obtained rtentry after using it. rtfree is removed and we use rt_unref and rt_free instead. rt_unref now just decrements the counter of a given rtentry and rt_free just tries to destroy a given rtentry. See the next section for destructions of rtentries by rt_free. Destructions of rtentries ------------------------- We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE); the original implementation can destroy in any rtfree where it's the last reference. If we use reference counting or psref, it's easy to understand if the place that a rtentry is destroyed is fixed. rt_free waits for references to a given rtentry to be released before actually destroying the rtentry. rt_free uses a condition variable (cv_wait) (and psref_target_destroy for psref) to wait. Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint that we cannot use cv_wait. In that case, we have to defer the destruction to a workqueue. rtentry#rt_cv, rtentry#rt_psref and global variables (see rt_free_global) are added to conduct the procedure. Updates of rtentries -------------------- One difficulty to use refcnt/psref instead of rwlock for rtentry is updates of rtentries. We need an additional mechanism to prevent readers from seeing inconsistency of a rtentry being updated. We introduce RTF_UPDATING flag to rtentries that are updating. While the flag is set to a rtentry, users cannot acquire the rtentry. By doing so, we avoid users to see inconsistent rtentries. There are two options when a user tries to acquire a rtentry with the RTF_UPDATING flag; if a user runs in softint context the user fails to acquire a rtentry (NULL is returned). Otherwise a user waits until the update completes by waiting on cv. The procedure of a updater is simpler to destruction of a rtentry. Wait on cv (and psref) and after all readers left, proceed with the update. Global variables (see rt_update_global) are added to conduct the procedure. Currently we apply the mechanism to only RTM_CHANGE in rtsock.c. We would have to apply other codes. See "Known issues" section. psref for rtentry ----------------- When we obtain a rtentry from a rtcache via rtcache_* APIs, psref is used to reference to the rtentry. rtcache_ref acquires a reference to a rtentry with psref and rtcache_unref releases the reference after using it. rtcache_ref is called inside rtcache_* APIs and users don't need to take care of it while users must call rtcache_unref to release the reference. struct psref and int bound that is needed for psref is embedded into struct route. By doing so we don't need to add local variables and additional argument to APIs. However this adds another constraint to psref other than reference counting one's; holding a reference of an rtentry via a rtcache is allowed by just one caller at the same time. So we must not acquire a rtentry via a rtcache twice and avoid a recursive use of a rtcache. And also a rtcache must be arranged to be used by a LWP/softint at the same time somehow. For IP forwarding case, we have per-CPU rtcaches used in softint so the constraint is guaranteed. For a h rtcache of a PCB case, the constraint is guaranteed by the solock of each PCB. Any other cases (pf, ipf, stf and ipsec) are currently guaranteed by only the existence of the global locks (softnet_lock and/or KERNEL_LOCK). If we've found the cases that we cannot guarantee the constraint, we would need to introduce other rtcache APIs that use simple reference counting. psref of rtcache is created with IPL_SOFTNET and so rtcache shouldn't used at an IPL higher than IPL_SOFTNET. Note that rtcache_free is used to invalidate a given rtcache. We don't need another care by my change; just keep them as they are. Performance impact ------------------ When NET_MPSAFE is disabled the performance drop is 3% while when it's enabled the drop is increased to 11%. The difference comes from that currently we don't take any global locks and don't use psref if NET_MPSAFE is disabled. We can optimize the performance of the case of NET_MPSAFE on by reducing lookups of rtcache that uses psref; currently we do two lookups but we should be able to trim one of two. This is a future work. Known issues ------------ There are two known issues to be solved; one is that a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit). We need to prevent new references during the update. Or we may be able to remove the code (perhaps, need more investigations). The other is rtredirect that updates a rtentry. We need to apply our update mechanism, however it's not easy because rtredirect is called in softint and we cannot apply our mechanism simply. One solution is to defer rtredirect to a workqueue but it requires some code restructuring.
2016-12-12 06:55:57 +03:00
rt_unref(rt);
}
2016-04-04 10:37:07 +03:00
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
&addr->sin6_addr, &pr->ndpr_mask)) {
ND6_UNLOCK();
2016-04-04 10:37:07 +03:00
return 1;
}
2016-04-04 10:37:07 +03:00
}
ND6_UNLOCK();
/*
2016-04-04 10:37:07 +03:00
* If the address is assigned on the node of the other side of
* a p2p interface, the address should be a neighbor.
*/
s = pserialize_read_enter();
dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
2016-04-04 10:37:07 +03:00
if (dstaddr != NULL) {
if (dstaddr->ifa_ifp == ifp) {
pserialize_read_exit(s);
2016-04-04 10:37:07 +03:00
return 1;
}
}
pserialize_read_exit(s);
/*
2016-04-04 10:37:07 +03:00
* If the default router list is empty, all addresses are regarded
* as on-link, and thus, as a neighbor.
*/
ND6_RLOCK();
2016-04-04 10:37:07 +03:00
if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) {
ND6_UNLOCK();
2016-04-04 10:37:07 +03:00
return 1;
}
ND6_UNLOCK();
2016-04-04 10:37:07 +03:00
return 0;
}
/*
* Detect if a given IPv6 address identifies a neighbor on a given link.
* XXX: should take care of the destination of a p2p link?
*/
int
nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
{
struct nd_prefix *pr;
2016-04-04 10:37:07 +03:00
struct llentry *ln;
struct rtentry *rt;
/*
* A link-local address is always a neighbor.
2001-10-16 10:24:44 +04:00
* XXX: a link does not necessarily specify a single interface.
*/
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
struct sockaddr_in6 sin6_copy;
u_int32_t zone;
/*
* We need sin6_copy since sa6_recoverscope() may modify the
* content (XXX).
*/
sin6_copy = *addr;
if (sa6_recoverscope(&sin6_copy))
return 0; /* XXX: should be impossible */
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
return 0;
if (sin6_copy.sin6_scope_id == zone)
return 1;
else
return 0;
}
/*
* If the address matches one of our on-link prefixes, it should be a
* neighbor.
*/
ND6_RLOCK();
ND_PREFIX_LIST_FOREACH(pr) {
if (pr->ndpr_ifp != ifp)
continue;
if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
continue;
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
&addr->sin6_addr, &pr->ndpr_mask)) {
ND6_UNLOCK();
return 1;
}
}
/*
* If the default router list is empty, all addresses are regarded
* as on-link, and thus, as a neighbor.
* XXX: we restrict the condition to hosts, because routers usually do
* not have the "default router list".
*/
if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
nd6_defifindex == ifp->if_index) {
ND6_UNLOCK();
return 1;
}
ND6_UNLOCK();
2016-04-04 10:37:07 +03:00
if (nd6_is_new_addr_neighbor(addr, ifp))
return 1;
/*
2016-04-04 10:37:07 +03:00
* Even if the address matches none of our addresses, it might be
* in the neighbor cache or a connected route.
*/
2016-04-04 10:37:07 +03:00
ln = nd6_lookup(&addr->sin6_addr, ifp, false);
if (ln != NULL) {
LLE_RUNLOCK(ln);
return 1;
}
rt = rtalloc1(sin6tocsa(addr), 0);
if (rt == NULL)
return 0;
if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
#if NBRIDGE > 0
|| rt->rt_ifp->if_bridge == ifp->if_bridge
#endif
#if NCARP > 0
|| (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
(rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
(ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
rt->rt_ifp->if_carpdev == ifp->if_carpdev)
#endif
)) {
Make the routing table and rtcaches MP-safe See the following descriptions for details. Proposed on tech-kern and tech-net Overview -------- We protect the routing table with a rwock and protect rtcaches with another rwlock. Each rtentry is protected from being freed or updated via reference counting and psref. Global rwlocks -------------- There are two rwlocks; one for the routing table (rt_lock) and the other for rtcaches (rtcache_lock). rtcache_lock covers all existing rtcaches; there may have room for optimizations (future work). The locking order is rtcache_lock first and rt_lock is next. rtentry references ------------------ References to an rtentry is managed with reference counting and psref. Either of the two mechanisms is used depending on where a rtentry is obtained. Reference counting is used when we obtain a rtentry from the routing table directly via rtalloc1 and rtrequest{,1} while psref is used when we obtain a rtentry from a rtcache via rtcache_* APIs. In both cases, a caller can sleep/block with holding an obtained rtentry. The reasons why we use two different mechanisms are (i) only using reference counting hurts the performance due to atomic instructions (rtcache case) (ii) ease of implementation; applying psref to APIs such rtaloc1 and rtrequest{,1} requires additional works (adding a local variable and an argument). We will finally migrate to use only psref but we can do it when we have a lockless routing table alternative. Reference counting for rtentry ------------------------------ rt_refcnt now doesn't count permanent references such as for rt_timers and rtcaches, instead it is used only for temporal references when obtaining a rtentry via rtalloc1 and rtrequest{,1}. We can do so because destroying a rtentry always involves removing references of rt_timers and rtcaches to the rtentry and we don't need to track such references. This also makes it easy to wait for readers to release references on deleting or updating a rtentry, i.e., we can simply wait until the reference counter is 0 or 1. (If there are permanent references the counter can be arbitrary.) rt_ref increments a reference counter of a rtentry and rt_unref decrements it. rt_ref is called inside APIs (rtalloc1 and rtrequest{,1} so users don't need to care about it while users must call rt_unref to an obtained rtentry after using it. rtfree is removed and we use rt_unref and rt_free instead. rt_unref now just decrements the counter of a given rtentry and rt_free just tries to destroy a given rtentry. See the next section for destructions of rtentries by rt_free. Destructions of rtentries ------------------------- We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE); the original implementation can destroy in any rtfree where it's the last reference. If we use reference counting or psref, it's easy to understand if the place that a rtentry is destroyed is fixed. rt_free waits for references to a given rtentry to be released before actually destroying the rtentry. rt_free uses a condition variable (cv_wait) (and psref_target_destroy for psref) to wait. Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint that we cannot use cv_wait. In that case, we have to defer the destruction to a workqueue. rtentry#rt_cv, rtentry#rt_psref and global variables (see rt_free_global) are added to conduct the procedure. Updates of rtentries -------------------- One difficulty to use refcnt/psref instead of rwlock for rtentry is updates of rtentries. We need an additional mechanism to prevent readers from seeing inconsistency of a rtentry being updated. We introduce RTF_UPDATING flag to rtentries that are updating. While the flag is set to a rtentry, users cannot acquire the rtentry. By doing so, we avoid users to see inconsistent rtentries. There are two options when a user tries to acquire a rtentry with the RTF_UPDATING flag; if a user runs in softint context the user fails to acquire a rtentry (NULL is returned). Otherwise a user waits until the update completes by waiting on cv. The procedure of a updater is simpler to destruction of a rtentry. Wait on cv (and psref) and after all readers left, proceed with the update. Global variables (see rt_update_global) are added to conduct the procedure. Currently we apply the mechanism to only RTM_CHANGE in rtsock.c. We would have to apply other codes. See "Known issues" section. psref for rtentry ----------------- When we obtain a rtentry from a rtcache via rtcache_* APIs, psref is used to reference to the rtentry. rtcache_ref acquires a reference to a rtentry with psref and rtcache_unref releases the reference after using it. rtcache_ref is called inside rtcache_* APIs and users don't need to take care of it while users must call rtcache_unref to release the reference. struct psref and int bound that is needed for psref is embedded into struct route. By doing so we don't need to add local variables and additional argument to APIs. However this adds another constraint to psref other than reference counting one's; holding a reference of an rtentry via a rtcache is allowed by just one caller at the same time. So we must not acquire a rtentry via a rtcache twice and avoid a recursive use of a rtcache. And also a rtcache must be arranged to be used by a LWP/softint at the same time somehow. For IP forwarding case, we have per-CPU rtcaches used in softint so the constraint is guaranteed. For a h rtcache of a PCB case, the constraint is guaranteed by the solock of each PCB. Any other cases (pf, ipf, stf and ipsec) are currently guaranteed by only the existence of the global locks (softnet_lock and/or KERNEL_LOCK). If we've found the cases that we cannot guarantee the constraint, we would need to introduce other rtcache APIs that use simple reference counting. psref of rtcache is created with IPL_SOFTNET and so rtcache shouldn't used at an IPL higher than IPL_SOFTNET. Note that rtcache_free is used to invalidate a given rtcache. We don't need another care by my change; just keep them as they are. Performance impact ------------------ When NET_MPSAFE is disabled the performance drop is 3% while when it's enabled the drop is increased to 11%. The difference comes from that currently we don't take any global locks and don't use psref if NET_MPSAFE is disabled. We can optimize the performance of the case of NET_MPSAFE on by reducing lookups of rtcache that uses psref; currently we do two lookups but we should be able to trim one of two. This is a future work. Known issues ------------ There are two known issues to be solved; one is that a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit). We need to prevent new references during the update. Or we may be able to remove the code (perhaps, need more investigations). The other is rtredirect that updates a rtentry. We need to apply our update mechanism, however it's not easy because rtredirect is called in softint and we cannot apply our mechanism simply. One solution is to defer rtredirect to a workqueue but it requires some code restructuring.
2016-12-12 06:55:57 +03:00
rt_unref(rt);
return 1;
}
Make the routing table and rtcaches MP-safe See the following descriptions for details. Proposed on tech-kern and tech-net Overview -------- We protect the routing table with a rwock and protect rtcaches with another rwlock. Each rtentry is protected from being freed or updated via reference counting and psref. Global rwlocks -------------- There are two rwlocks; one for the routing table (rt_lock) and the other for rtcaches (rtcache_lock). rtcache_lock covers all existing rtcaches; there may have room for optimizations (future work). The locking order is rtcache_lock first and rt_lock is next. rtentry references ------------------ References to an rtentry is managed with reference counting and psref. Either of the two mechanisms is used depending on where a rtentry is obtained. Reference counting is used when we obtain a rtentry from the routing table directly via rtalloc1 and rtrequest{,1} while psref is used when we obtain a rtentry from a rtcache via rtcache_* APIs. In both cases, a caller can sleep/block with holding an obtained rtentry. The reasons why we use two different mechanisms are (i) only using reference counting hurts the performance due to atomic instructions (rtcache case) (ii) ease of implementation; applying psref to APIs such rtaloc1 and rtrequest{,1} requires additional works (adding a local variable and an argument). We will finally migrate to use only psref but we can do it when we have a lockless routing table alternative. Reference counting for rtentry ------------------------------ rt_refcnt now doesn't count permanent references such as for rt_timers and rtcaches, instead it is used only for temporal references when obtaining a rtentry via rtalloc1 and rtrequest{,1}. We can do so because destroying a rtentry always involves removing references of rt_timers and rtcaches to the rtentry and we don't need to track such references. This also makes it easy to wait for readers to release references on deleting or updating a rtentry, i.e., we can simply wait until the reference counter is 0 or 1. (If there are permanent references the counter can be arbitrary.) rt_ref increments a reference counter of a rtentry and rt_unref decrements it. rt_ref is called inside APIs (rtalloc1 and rtrequest{,1} so users don't need to care about it while users must call rt_unref to an obtained rtentry after using it. rtfree is removed and we use rt_unref and rt_free instead. rt_unref now just decrements the counter of a given rtentry and rt_free just tries to destroy a given rtentry. See the next section for destructions of rtentries by rt_free. Destructions of rtentries ------------------------- We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE); the original implementation can destroy in any rtfree where it's the last reference. If we use reference counting or psref, it's easy to understand if the place that a rtentry is destroyed is fixed. rt_free waits for references to a given rtentry to be released before actually destroying the rtentry. rt_free uses a condition variable (cv_wait) (and psref_target_destroy for psref) to wait. Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint that we cannot use cv_wait. In that case, we have to defer the destruction to a workqueue. rtentry#rt_cv, rtentry#rt_psref and global variables (see rt_free_global) are added to conduct the procedure. Updates of rtentries -------------------- One difficulty to use refcnt/psref instead of rwlock for rtentry is updates of rtentries. We need an additional mechanism to prevent readers from seeing inconsistency of a rtentry being updated. We introduce RTF_UPDATING flag to rtentries that are updating. While the flag is set to a rtentry, users cannot acquire the rtentry. By doing so, we avoid users to see inconsistent rtentries. There are two options when a user tries to acquire a rtentry with the RTF_UPDATING flag; if a user runs in softint context the user fails to acquire a rtentry (NULL is returned). Otherwise a user waits until the update completes by waiting on cv. The procedure of a updater is simpler to destruction of a rtentry. Wait on cv (and psref) and after all readers left, proceed with the update. Global variables (see rt_update_global) are added to conduct the procedure. Currently we apply the mechanism to only RTM_CHANGE in rtsock.c. We would have to apply other codes. See "Known issues" section. psref for rtentry ----------------- When we obtain a rtentry from a rtcache via rtcache_* APIs, psref is used to reference to the rtentry. rtcache_ref acquires a reference to a rtentry with psref and rtcache_unref releases the reference after using it. rtcache_ref is called inside rtcache_* APIs and users don't need to take care of it while users must call rtcache_unref to release the reference. struct psref and int bound that is needed for psref is embedded into struct route. By doing so we don't need to add local variables and additional argument to APIs. However this adds another constraint to psref other than reference counting one's; holding a reference of an rtentry via a rtcache is allowed by just one caller at the same time. So we must not acquire a rtentry via a rtcache twice and avoid a recursive use of a rtcache. And also a rtcache must be arranged to be used by a LWP/softint at the same time somehow. For IP forwarding case, we have per-CPU rtcaches used in softint so the constraint is guaranteed. For a h rtcache of a PCB case, the constraint is guaranteed by the solock of each PCB. Any other cases (pf, ipf, stf and ipsec) are currently guaranteed by only the existence of the global locks (softnet_lock and/or KERNEL_LOCK). If we've found the cases that we cannot guarantee the constraint, we would need to introduce other rtcache APIs that use simple reference counting. psref of rtcache is created with IPL_SOFTNET and so rtcache shouldn't used at an IPL higher than IPL_SOFTNET. Note that rtcache_free is used to invalidate a given rtcache. We don't need another care by my change; just keep them as they are. Performance impact ------------------ When NET_MPSAFE is disabled the performance drop is 3% while when it's enabled the drop is increased to 11%. The difference comes from that currently we don't take any global locks and don't use psref if NET_MPSAFE is disabled. We can optimize the performance of the case of NET_MPSAFE on by reducing lookups of rtcache that uses psref; currently we do two lookups but we should be able to trim one of two. This is a future work. Known issues ------------ There are two known issues to be solved; one is that a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit). We need to prevent new references during the update. Or we may be able to remove the code (perhaps, need more investigations). The other is rtredirect that updates a rtentry. We need to apply our update mechanism, however it's not easy because rtredirect is called in softint and we cannot apply our mechanism simply. One solution is to defer rtredirect to a workqueue but it requires some code restructuring.
2016-12-12 06:55:57 +03:00
rt_unref(rt);
return 0;
}
/*
* Free an nd6 llinfo entry.
* Since the function would cause significant changes in the kernel, DO NOT
* make it global, unless you have a strong reason for the change, and are sure
* that the change is safe.
*/
static void
2016-04-04 10:37:07 +03:00
nd6_free(struct llentry *ln, int gc)
{
struct nd_defrouter *dr;
2016-04-04 10:37:07 +03:00
struct ifnet *ifp;
struct in6_addr *in6;
KASSERT(ln != NULL);
LLE_WLOCK_ASSERT(ln);
2016-04-04 10:37:07 +03:00
ifp = ln->lle_tbl->llt_ifp;
in6 = &ln->r_l3addr.addr6;
/*
* we used to have pfctlinput(PRC_HOSTDEAD) here.
* even though it is not harmful, it was not really necessary.
*/
if (!ip6_forwarding) {
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
dr = nd6_defrouter_lookup(in6, ifp);
if (dr != NULL && dr->expire &&
ln->ln_state == ND6_LLINFO_STALE && gc) {
/*
* If the reason for the deletion is just garbage
* collection, and the neighbor is an active default
* router, do not delete it. Instead, reset the GC
* timer using the router's lifetime.
* Simply deleting the entry would affect default
* router selection, which is not necessarily a good
* thing, especially when we're using router preference
* values.
* XXX: the check for ln_state would be redundant,
* but we intentionally keep it just in case.
*/
if (dr->expire > time_uptime)
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln,
(dr->expire - time_uptime) * hz);
else
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
ND6_UNLOCK();
2015-12-18 12:04:33 +03:00
LLE_WUNLOCK(ln);
return;
}
if (ln->ln_router || dr) {
/*
2016-12-11 10:38:50 +03:00
* We need to unlock to avoid a LOR with nd6_rt_flush()
* with the rnh and for the calls to
2016-12-11 10:38:50 +03:00
* nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
* block further down for calls into nd6_lookup().
* We still hold a ref.
*/
LLE_WUNLOCK(ln);
/*
2016-12-11 10:38:50 +03:00
* nd6_rt_flush must be called whether or not the neighbor
* is in the Default Router List.
* See a corresponding comment in nd6_na_input().
*/
2016-12-11 10:38:50 +03:00
nd6_rt_flush(in6, ifp);
}
if (dr) {
/*
* Unreachablity of a router might affect the default
* router selection and on-link detection of advertised
* prefixes.
*/
/*
* Temporarily fake the state to choose a new default
* router and to perform on-link determination of
* prefixes correctly.
* Below the state will be set correctly,
* or the entry itself will be deleted.
*/
ln->ln_state = ND6_LLINFO_INCOMPLETE;
/*
2016-12-11 10:38:50 +03:00
* Since nd6_defrouter_select() does not affect the
* on-link determination and MIP6 needs the check
* before the default router selection, we perform
* the check now.
*/
2016-12-11 10:38:50 +03:00
nd6_pfxlist_onlink_check();
/*
* refresh default router list
*/
2016-12-11 10:38:50 +03:00
nd6_defrouter_select();
}
#ifdef __FreeBSD__
/*
* If this entry was added by an on-link redirect, remove the
* corresponding host route.
*/
if (ln->la_flags & LLE_REDIRECT)
nd6_free_redirect(ln);
#endif
ND6_UNLOCK();
if (ln->ln_router || dr)
LLE_WLOCK(ln);
}
/*
2016-04-04 10:37:07 +03:00
* Save to unlock. We still hold an extra reference and will not
* free(9) in llentry_free() if someone else holds one as well.
*/
2016-04-04 10:37:07 +03:00
LLE_WUNLOCK(ln);
IF_AFDATA_LOCK(ifp);
LLE_WLOCK(ln);
lltable_free_entry(LLTABLE6(ifp), ln);
2016-04-04 10:37:07 +03:00
IF_AFDATA_UNLOCK(ifp);
}
/*
* Upper-layer reachability hint for Neighbor Unreachability Detection.
*
* XXX cost-effective methods?
*/
void
nd6_nud_hint(struct rtentry *rt)
{
struct llentry *ln;
2016-04-04 10:37:07 +03:00
struct ifnet *ifp;
if (rt == NULL)
return;
2016-04-04 10:37:07 +03:00
ifp = rt->rt_ifp;
ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
if (ln == NULL)
return;
if (ln->ln_state < ND6_LLINFO_REACHABLE)
2016-04-04 10:37:07 +03:00
goto done;
/*
* if we get upper-layer reachability confirmation many times,
* it is possible we have false information.
*/
ln->ln_byhint++;
if (ln->ln_byhint > nd6_maxnudhint)
2016-04-04 10:37:07 +03:00
goto done;
ln->ln_state = ND6_LLINFO_REACHABLE;
2016-04-04 10:37:07 +03:00
if (!ND6_LLINFO_PERMANENT(ln))
nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
done:
LLE_WUNLOCK(ln);
return;
}
struct gc_args {
int gc_entries;
const struct in6_addr *skip_in6;
};
static int
nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
{
struct gc_args *args = farg;
int *n = &args->gc_entries;
const struct in6_addr *skip_in6 = args->skip_in6;
if (*n <= 0)
return 0;
if (ND6_LLINFO_PERMANENT(ln))
return 0;
if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
return 0;
LLE_WLOCK(ln);
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
ln->ln_state = ND6_LLINFO_STALE;
else
ln->ln_state = ND6_LLINFO_PURGE;
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, 0);
LLE_WUNLOCK(ln);
(*n)--;
return 0;
}
static void
nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
{
if (ip6_neighborgcthresh >= 0 &&
lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
struct gc_args gc_args = {10, in6};
/*
* XXX entries that are "less recently used" should be
* freed first.
*/
lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
}
}
void
nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
{
struct sockaddr *gate = rt->rt_gateway;
struct ifnet *ifp = rt->rt_ifp;
uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
struct ifaddr *ifa;
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if (req == RTM_LLINFO_UPD) {
int rc;
struct in6_addr *in6;
struct in6_addr in6_all;
int anycast;
if ((ifa = info->rti_ifa) == NULL)
return;
in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
in6_all = in6addr_linklocal_allnodes;
if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
log(LOG_ERR, "%s: failed to set scope %s "
"(errno=%d)\n", __func__, if_name(ifp), rc);
return;
}
/* XXX don't set Override for proxy addresses */
nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
(anycast ? 0 : ND_NA_FLAG_OVERRIDE)
#if 0
| (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
#endif
, 1, NULL);
return;
}
if ((rt->rt_flags & RTF_GATEWAY) != 0)
return;
if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* This is probably an interface direct route for a link
* which does not need neighbor caches (e.g. fe80::%lo0/64).
* We do not need special treatment below for such a route.
* Moreover, the RTF_LLINFO flag which would be set below
* would annoy the ndp(8) command.
*/
return;
}
switch (req) {
case RTM_ADD: {
struct psref psref;
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* There is no backward compatibility :)
*
* if ((rt->rt_flags & RTF_HOST) == 0 &&
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
* rt->rt_flags |= RTF_CLONING;
*/
2016-04-04 10:37:07 +03:00
/* XXX should move to route.c? */
if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
union {
struct sockaddr sa;
struct sockaddr_dl sdl;
struct sockaddr_storage ss;
} u;
/*
* Case 1: This route should come from a route to
* interface (RTF_CLONING case) or the route should be
* treated as on-link but is currently not
* (RTF_LLINFO && ln == NULL case).
*/
if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
ifp->if_index, ifp->if_type,
NULL, namelen, NULL, addrlen) == NULL) {
printf("%s.%d: sockaddr_dl_init(, %zu, ) "
"failed on %s\n", __func__, __LINE__,
sizeof(u.ss), if_name(ifp));
}
rt_setgate(rt, &u.sa);
gate = rt->rt_gateway;
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
if (gate == NULL) {
log(LOG_ERR,
"%s: rt_setgate failed on %s\n", __func__,
if_name(ifp));
break;
}
2016-04-04 10:37:07 +03:00
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
2016-04-04 10:37:07 +03:00
if ((rt->rt_flags & RTF_CONNECTED) != 0)
break;
}
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
* We don't do that here since llinfo is not ready yet.
*
* There are also couple of other things to be discussed:
* - unsolicited NA code needs improvement beforehand
* - RFC2461 says we MAY send multicast unsolicited NA
* (7.2.6 paragraph 4), however, it also says that we
* SHOULD provide a mechanism to prevent multicast NA storm.
* we don't have anything like it right now.
* note that the mechanism needs a mutual agreement
* between proxies, which means that we need to implement
* a new protocol, or a new kludge.
* - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
* we need to check ip6forwarding before sending it.
* (or should we allow proxy ND configuration only for
* routers? there's no mention about proxy ND from hosts)
*/
#if 0
/* XXX it does not work */
if (rt->rt_flags & RTF_ANNOUNCE)
nd6_na_output(ifp,
&satocsin6(rt_getkey(rt))->sin6_addr,
&satocsin6(rt_getkey(rt))->sin6_addr,
ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1, NULL);
#endif
2016-04-04 10:37:07 +03:00
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* Address resolution isn't necessary for a point to
* point link, so we can skip this test for a p2p link.
*/
if (gate->sa_family != AF_LINK ||
gate->sa_len <
sockaddr_dl_measure(namelen, addrlen)) {
log(LOG_DEBUG,
"nd6_rtrequest: bad gateway value: %s\n",
if_name(ifp));
break;
}
satosdl(gate)->sdl_type = ifp->if_type;
satosdl(gate)->sdl_index = ifp->if_index;
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
}
2013-01-24 18:23:09 +04:00
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
/*
* When called from rt_ifa_addlocal, we cannot depend on that
* the address (rt_getkey(rt)) exits in the address list of the
* interface. So check RTF_LOCAL instead.
*/
if (rt->rt_flags & RTF_LOCAL) {
if (nd6_useloopback)
rt->rt_ifp = lo0ifp; /* XXX */
break;
}
/*
Take steps to hide the radix_node implementation of the forwarding table from the forwarding table's users: Introduce rt_walktree() for walking the routing table and applying a function to each rtentry. Replace most rn_walktree() calls with it. Use rt_getkey()/rt_setkey() to get/set a route's destination. Keep a pointer to the sockaddr key in the rtentry, so that rtentry users do not have to grovel in the radix_node for the key. Add a RTM_GET method to rtrequest. Use that instead of radix_node lookups in, e.g., carp(4). Add sys/net/link_proto.c, which supplies sockaddr routines for link-layer socket addresses (sockaddr_dl). Cosmetic: Constify. KNF. Stop open-coding LIST_FOREACH, TAILQ_FOREACH, et cetera. Use NULL instead of 0 for null pointers. Use __arraycount(). Reduce gratuitous parenthesization. Stop using variadic arguments for rip6_output(), it is unnecessary. Remove the unnecessary rtentry member rt_genmask and the code to maintain it, since nothing actually used it. Make rt_maskedcopy() easier to read by using meaningful variable names. Extract a subroutine intern_netmask() for looking up a netmask in the masks table. Start converting backslash-ridden IPv6 macros in sys/netinet6/in6_var.h into inline subroutines that one can read without special eyeglasses. One functional change: when the kernel serves an RTM_GET, RTM_LOCK, or RTM_CHANGE request, it applies the netmask (if supplied) to a destination before searching for it in the forwarding table. I have changed sys/netinet/ip_carp.c, carp_setroute(), to remove the unlawful radix_node knowledge. Apart from the changes to carp(4), netiso, ATM, and strip(4), I have run the changes on three nodes in my wireless routing testbed, which involves IPv4 + IPv6 dynamic routing acrobatics, and it's working beautifully so far.
2007-07-20 00:48:52 +04:00
* check if rt_getkey(rt) is an address assigned
* to the interface.
*/
ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp,
&satocsin6(rt_getkey(rt))->sin6_addr, &psref);
if (ifa != NULL) {
if (nd6_useloopback) {
2016-05-18 14:28:44 +03:00
rt->rt_ifp = lo0ifp; /* XXX */
/*
* Make sure rt_ifa be equal to the ifaddr
* corresponding to the address.
* We need this because when we refer
* rt_ifa->ia6_flags in ip6_input, we assume
* that the rt_ifa points to the address instead
* of the loopback address.
*/
if (ifa != rt->rt_ifa)
rt_replace_ifa(rt, ifa);
}
} else if (rt->rt_flags & RTF_ANNOUNCE) {
/* join solicited node multicast for proxy ND */
if (ifp->if_flags & IFF_MULTICAST) {
struct in6_addr llsol;
int error;
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
llsol.s6_addr32[0] = htonl(0xff020000);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL))
2016-04-04 10:37:07 +03:00
goto out;
if (!in6_addmulti(&llsol, ifp, &error, 0)) {
char ip6buf[INET6_ADDRSTRLEN];
nd6log(LOG_ERR, "%s: failed to join "
"%s (errno=%d)\n", if_name(ifp),
IN6_PRINT(ip6buf, &llsol), error);
}
}
}
2016-04-04 10:37:07 +03:00
out:
ifa_release(ifa, &psref);
/*
* If we have too many cache entries, initiate immediate
* purging for some entries.
*/
2016-04-04 10:37:07 +03:00
if (rt->rt_ifp != NULL)
nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
break;
}
case RTM_DELETE:
/* leave from solicited node multicast for proxy ND */
if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
(ifp->if_flags & IFF_MULTICAST) != 0) {
struct in6_addr llsol;
struct in6_multi *in6m;
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
llsol.s6_addr32[0] = htonl(0xff020000);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr8[12] = 0xff;
if (in6_setscope(&llsol, ifp, NULL) == 0) {
2017-02-22 10:46:00 +03:00
in6m = in6_lookup_multi(&llsol, ifp);
if (in6m)
in6_delmulti(in6m);
}
}
2016-04-04 10:37:07 +03:00
break;
}
}
int
nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
{
struct in6_drlist *drl = (struct in6_drlist *)data;
struct in6_oprlist *oprl = (struct in6_oprlist *)data;
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
struct nd_defrouter *dr;
struct nd_prefix *pr;
int i = 0, error = 0;
switch (cmd) {
case SIOCGDRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*/
memset(drl, 0, sizeof(*drl));
ND6_RLOCK();
ND_DEFROUTER_LIST_FOREACH(dr) {
if (i >= DRLSTSIZ)
break;
drl->defrouter[i].rtaddr = dr->rtaddr;
in6_clearscope(&drl->defrouter[i].rtaddr);
drl->defrouter[i].flags = dr->flags;
drl->defrouter[i].rtlifetime = dr->rtlifetime;
drl->defrouter[i].expire = dr->expire ?
time_mono_to_wall(dr->expire) : 0;
drl->defrouter[i].if_index = dr->ifp->if_index;
i++;
}
ND6_UNLOCK();
break;
case SIOCGPRLST_IN6:
/*
* obsolete API, use sysctl under net.inet6.icmp6
*
* XXX the structure in6_prlist was changed in backward-
* incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
* in6_prlist is used for nd6_sysctl() - fill_prlist().
*/
/*
* XXX meaning of fields, especialy "raflags", is very
* differnet between RA prefix list and RR/static prefix list.
* how about separating ioctls into two?
*/
memset(oprl, 0, sizeof(*oprl));
ND6_RLOCK();
ND_PREFIX_LIST_FOREACH(pr) {
struct nd_pfxrouter *pfr;
int j;
if (i >= PRLSTSIZ)
break;
oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
oprl->prefix[i].raflags = pr->ndpr_raf;
oprl->prefix[i].prefixlen = pr->ndpr_plen;
oprl->prefix[i].vltime = pr->ndpr_vltime;
oprl->prefix[i].pltime = pr->ndpr_pltime;
oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
oprl->prefix[i].expire = 0;
else {
time_t maxexpire;
/* XXX: we assume time_t is signed. */
maxexpire = (-1) &
~((time_t)1 <<
((sizeof(maxexpire) * 8) - 1));
if (pr->ndpr_vltime <
maxexpire - pr->ndpr_lastupdate) {
time_t expire;
expire = pr->ndpr_lastupdate +
pr->ndpr_vltime;
oprl->prefix[i].expire = expire ?
time_mono_to_wall(expire) : 0;
} else
oprl->prefix[i].expire = maxexpire;
}
j = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
if (j < DRLSTSIZ) {
#define RTRADDR oprl->prefix[i].advrtr[j]
RTRADDR = pfr->router->rtaddr;
in6_clearscope(&RTRADDR);
#undef RTRADDR
}
j++;
}
oprl->prefix[i].advrtrs = j;
oprl->prefix[i].origin = PR_ORIG_RA;
i++;
}
ND6_UNLOCK();
break;
case OSIOCGIFINFO_IN6:
#define ND ndi->ndi
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
memset(&ND, 0, sizeof(ND));
ND.linkmtu = IN6_LINKMTU(ifp);
ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
ND.basereachable = ND_IFINFO(ifp)->basereachable;
ND.reachable = ND_IFINFO(ifp)->reachable;
ND.retrans = ND_IFINFO(ifp)->retrans;
ND.flags = ND_IFINFO(ifp)->flags;
ND.recalctm = ND_IFINFO(ifp)->recalctm;
ND.chlim = ND_IFINFO(ifp)->chlim;
break;
case SIOCGIFINFO_IN6:
ND = *ND_IFINFO(ifp);
break;
case SIOCSIFINFO_IN6:
/*
* used to change host variables from userland.
* intented for a use on router to reflect RA configurations.
*/
/* 0 means 'unspecified' */
if (ND.linkmtu != 0) {
if (ND.linkmtu < IPV6_MMTU ||
ND.linkmtu > IN6_LINKMTU(ifp)) {
error = EINVAL;
break;
}
ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
}
if (ND.basereachable != 0) {
int obasereachable = ND_IFINFO(ifp)->basereachable;
ND_IFINFO(ifp)->basereachable = ND.basereachable;
if (ND.basereachable != obasereachable)
ND_IFINFO(ifp)->reachable =
ND_COMPUTE_RTIME(ND.basereachable);
}
if (ND.retrans != 0)
ND_IFINFO(ifp)->retrans = ND.retrans;
if (ND.chlim != 0)
ND_IFINFO(ifp)->chlim = ND.chlim;
/* FALLTHROUGH */
case SIOCSIFINFO_FLAGS:
{
struct ifaddr *ifa;
struct in6_ifaddr *ia;
int s;
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
!(ND.flags & ND6_IFF_IFDISABLED))
{
/*
* If the interface is marked as ND6_IFF_IFDISABLED and
* has a link-local address with IN6_IFF_DUPLICATED,
* do not clear ND6_IFF_IFDISABLED.
* See RFC 4862, section 5.4.5.
*/
int duplicated_linklocal = 0;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
{
duplicated_linklocal = 1;
break;
}
}
pserialize_read_exit(s);
if (duplicated_linklocal) {
ND.flags |= ND6_IFF_IFDISABLED;
log(LOG_ERR, "Cannot enable an interface"
" with a link-local address marked"
" duplicate.\n");
} else {
ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
if (ifp->if_flags & IFF_UP)
in6_if_up(ifp);
}
} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
(ND.flags & ND6_IFF_IFDISABLED)) {
int bound = curlwp_bind();
/* Mark all IPv6 addresses as tentative. */
ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
struct psref psref;
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ifa_acquire(ifa, &psref);
pserialize_read_exit(s);
nd6_dad_stop(ifa);
ia = (struct in6_ifaddr *)ifa;
ia->ia6_flags |= IN6_IFF_TENTATIVE;
s = pserialize_read_enter();
ifa_release(ifa, &psref);
}
pserialize_read_exit(s);
curlwp_bindx(bound);
}
if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
/* auto_linklocal 0->1 transition */
ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
in6_ifattach(ifp, NULL);
} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
ifp->if_flags & IFF_UP)
{
/*
* When the IF already has
* ND6_IFF_AUTO_LINKLOCAL, no link-local
* address is assigned, and IFF_UP, try to
* assign one.
*/
int haslinklocal = 0;
s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family !=AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
haslinklocal = 1;
break;
}
}
pserialize_read_exit(s);
if (!haslinklocal)
in6_ifattach(ifp, NULL);
}
}
}
ND_IFINFO(ifp)->flags = ND.flags;
break;
#undef ND
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
/* sync kernel routing table with the default router list */
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
nd6_defrouter_reset();
nd6_defrouter_select();
ND6_UNLOCK();
break;
case SIOCSPFXFLUSH_IN6:
{
/* flush all the prefix advertised by routers */
struct nd_prefix *pfx, *next;
restart:
ND6_WLOCK();
ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) {
struct in6_ifaddr *ia, *ia_next;
int _s;
if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
continue; /* XXX */
/* do we really have to remove addresses as well? */
_s = pserialize_read_enter();
for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
ia = ia_next) {
struct ifnet *ifa_ifp;
int bound;
struct psref psref;
/* ia might be removed. keep the next ptr. */
ia_next = IN6_ADDRLIST_READER_NEXT(ia);
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
continue;
if (ia->ia6_ndpr != pfx)
continue;
bound = curlwp_bind();
ia6_acquire(ia, &psref);
pserialize_read_exit(_s);
ND6_UNLOCK();
ifa_ifp = ia->ia_ifa.ifa_ifp;
if (ifa_ifp == ifp) {
/* Already have IFNET_LOCK(ifp) */
KASSERT(!if_is_deactivated(ifp));
ia6_release(ia, &psref);
in6_purgeaddr(&ia->ia_ifa);
curlwp_bindx(bound);
goto restart;
}
IFNET_LOCK(ifa_ifp);
/*
* Need to take the lock first to prevent
* if_detach from running in6_purgeaddr
* concurrently.
*/
if (!if_is_deactivated(ifa_ifp)) {
ia6_release(ia, &psref);
in6_purgeaddr(&ia->ia_ifa);
} else {
/*
* ifp is being destroyed, ia will be
* destroyed by if_detach.
*/
ia6_release(ia, &psref);
/* XXX may cause busy loop */
}
IFNET_UNLOCK(ifa_ifp);
curlwp_bindx(bound);
goto restart;
}
pserialize_read_exit(_s);
KASSERT(pfx->ndpr_refcnt == 0);
2016-12-11 10:38:50 +03:00
nd6_prelist_remove(pfx);
}
ND6_UNLOCK();
break;
}
case SIOCSRTRFLUSH_IN6:
{
/* flush all the default routers */
struct nd_defrouter *drtr, *next;
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
nd6_defrouter_reset();
ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
2016-12-11 10:38:50 +03:00
nd6_defrtrlist_del(drtr, NULL);
}
2016-12-11 10:38:50 +03:00
nd6_defrouter_select();
ND6_UNLOCK();
break;
}
case SIOCGNBRINFO_IN6:
{
struct llentry *ln;
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
return error;
2016-04-04 10:37:07 +03:00
ln = nd6_lookup(&nb_addr, ifp, false);
if (ln == NULL) {
error = EINVAL;
break;
}
nbi->state = ln->ln_state;
nbi->asked = ln->ln_asked;
nbi->isrouter = ln->ln_router;
nbi->expire = ln->ln_expire ?
time_mono_to_wall(ln->ln_expire) : 0;
2016-04-04 10:37:07 +03:00
LLE_RUNLOCK(ln);
2002-06-03 06:09:37 +04:00
break;
}
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
ndif->ifindex = nd6_defifindex;
break;
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
return nd6_setdefaultiface(ndif->ifindex);
}
return error;
}
void
2016-04-04 10:37:07 +03:00
nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
{
struct mbuf *m_hold, *m_hold_next;
2016-04-04 10:37:07 +03:00
struct sockaddr_in6 sin6;
LLE_WLOCK_ASSERT(ln);
2016-04-04 10:37:07 +03:00
sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
LLE_WUNLOCK(ln);
for (; m_hold != NULL; m_hold = m_hold_next) {
m_hold_next = m_hold->m_nextpkt;
m_hold->m_nextpkt = NULL;
/*
* we assume ifp is not a p2p here, so
* just set the 2nd argument as the
* 1st one.
*/
ip6_if_output(ifp, ifp, m_hold, &sin6, NULL);
}
2016-04-04 10:37:07 +03:00
LLE_WLOCK(ln);
}
/*
* Create neighbor cache entry and cache link-layer address,
2001-10-16 10:24:44 +04:00
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
*/
void
nd6_cache_lladdr(
struct ifnet *ifp,
struct in6_addr *from,
char *lladdr,
int lladdrlen,
int type, /* ICMP6 type */
int code /* type dependent information */
)
{
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
struct llentry *ln = NULL;
int is_newentry;
int do_update;
int olladdr;
int llchange;
int newstate = 0;
2016-04-04 10:37:07 +03:00
uint16_t router = 0;
2015-06-30 11:31:42 +03:00
KASSERT(ifp != NULL);
KASSERT(from != NULL);
/* nothing must be updated for unspecified address */
if (IN6_IS_ADDR_UNSPECIFIED(from))
return;
/*
* Validation about ifp->if_addrlen and lladdrlen must be done in
* the caller.
*
* XXX If the link does not have link-layer adderss, what should
* we do? (ifp->if_addrlen == 0)
* Spec says nothing in sections for RA, RS and NA. There's small
* description on it in NS section (RFC 2461 7.2.3).
*/
2016-04-04 10:37:07 +03:00
ln = nd6_lookup(from, ifp, true);
if (ln == NULL) {
#if 0
/* nothing must be done if there's no lladdr */
if (!lladdr || !lladdrlen)
return NULL;
#endif
2016-04-04 10:37:07 +03:00
ln = nd6_create(from, ifp);
is_newentry = 1;
} else {
/* do nothing if static ndp is set */
2016-04-04 10:37:07 +03:00
if (ln->la_flags & LLE_STATIC) {
LLE_WUNLOCK(ln);
return;
}
is_newentry = 0;
}
if (ln == NULL)
2016-04-04 10:37:07 +03:00
return;
olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
if (olladdr && lladdr) {
2016-04-04 10:37:07 +03:00
llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
} else
llchange = 0;
/*
* newentry olladdr lladdr llchange (*=record)
* 0 n n -- (1)
* 0 y n -- (2)
* 0 n y -- (3) * STALE
* 0 y y n (4) *
* 0 y y y (5) * STALE
* 1 -- n -- (6) NOSTATE(= PASSIVE)
* 1 -- y -- (7) * STALE
*/
2001-10-16 10:24:44 +04:00
if (lladdr) { /* (3-5) and (7) */
/*
* Record source link-layer address
* XXX is it dependent to ifp->if_type?
*/
2016-04-04 10:37:07 +03:00
memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
ln->la_flags |= LLE_VALID;
}
if (!is_newentry) {
if ((!olladdr && lladdr) || /* (3) */
(olladdr && lladdr && llchange)) { /* (5) */
do_update = 1;
newstate = ND6_LLINFO_STALE;
2001-10-16 10:24:44 +04:00
} else /* (1-2,4) */
do_update = 0;
} else {
do_update = 1;
if (lladdr == NULL) /* (6) */
newstate = ND6_LLINFO_NOSTATE;
2001-10-16 10:24:44 +04:00
else /* (7) */
newstate = ND6_LLINFO_STALE;
}
if (do_update) {
/*
* Update the state of the neighbor cache.
*/
ln->ln_state = newstate;
if (ln->ln_state == ND6_LLINFO_STALE) {
/*
* XXX: since nd6_output() below will cause
* state tansition to DELAY and reset the timer,
* we must set the timer now, although it is actually
* meaningless.
*/
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2016-04-04 10:37:07 +03:00
nd6_llinfo_release_pkts(ln, ifp);
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
/* probe right away */
nd6_llinfo_settimer((void *)ln, 0);
}
}
/*
* ICMP6 type dependent behavior.
*
* NS: clear IsRouter if new entry
* RS: clear IsRouter
* RA: set IsRouter if there's lladdr
* redir: clear IsRouter if new entry
*
* RA case, (1):
* The spec says that we must set IsRouter in the following cases:
* - If lladdr exist, set IsRouter. This means (1-5).
* - If it is old entry (!newentry), set IsRouter. This means (7).
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
* A quetion arises for (1) case. (1) case has no lladdr in the
* neighbor cache, this is similar to (6).
* This case is rare but we figured that we MUST NOT set IsRouter.
*
* newentry olladdr lladdr llchange NS RS RA redir
* D R
* 0 n n -- (1) c ? s
* 0 y n -- (2) c s s
* 0 n y -- (3) c s s
* 0 y y n (4) c s s
* 0 y y y (5) c s s
* 1 -- n -- (6) c c c s
* 1 -- y -- (7) c c s c s
*
* (c=clear s=set)
*/
switch (type & 0xff) {
case ND_NEIGHBOR_SOLICIT:
/*
* New entry must have is_router flag cleared.
*/
2001-10-16 10:24:44 +04:00
if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_REDIRECT:
/*
* If the icmp is a redirect to a better router, always set the
2001-10-16 10:24:44 +04:00
* is_router flag. Otherwise, if the entry is newly created,
* clear the flag. [RFC 2461, sec 8.3]
*/
if (code == ND_REDIRECT_ROUTER)
ln->ln_router = 1;
2001-10-16 10:24:44 +04:00
else if (is_newentry) /* (6-7) */
ln->ln_router = 0;
break;
case ND_ROUTER_SOLICIT:
/*
* is_router flag must always be cleared.
*/
ln->ln_router = 0;
break;
case ND_ROUTER_ADVERT:
/*
* Mark an entry with lladdr as a router.
*/
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
(is_newentry && lladdr)) { /* (7) */
ln->ln_router = 1;
}
break;
}
2016-04-04 10:37:07 +03:00
#if 0
/* XXX should we send rtmsg as it used to be? */
if (do_update)
rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2016-04-04 10:37:07 +03:00
#endif
if (ln != NULL) {
router = ln->ln_router;
LLE_WUNLOCK(ln);
}
/*
* If we have too many cache entries, initiate immediate
* purging for some entries.
*/
if (is_newentry)
nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
/*
* When the link-layer address of a router changes, select the
* best router again. In particular, when the neighbor entry is newly
* created, it might affect the selection policy.
* Question: can we restrict the first condition to the "is_newentry"
* case?
* XXX: when we hear an RA from a new router with the link-layer
2016-12-11 10:38:50 +03:00
* address option, nd6_defrouter_select() is called twice, since
* defrtrlist_update called the function as well. However, I believe
* we can compromise the overhead, since it only happens the first
* time.
2016-12-11 10:38:50 +03:00
* XXX: although nd6_defrouter_select() should not have a bad effect
2001-10-16 10:24:44 +04:00
* for those are not autoconfigured hosts, we explicitly avoid such
* cases for safety.
*/
2016-04-04 10:37:07 +03:00
if (do_update && router && !ip6_forwarding &&
nd6_accepts_rtadv(ndi)) {
ND6_WLOCK();
2016-12-11 10:38:50 +03:00
nd6_defrouter_select();
ND6_UNLOCK();
}
}
static void
nd6_slowtimo(void *ignored_arg)
{
struct nd_ifinfo *nd6if;
struct ifnet *ifp;
int s;
SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2015-08-31 06:26:53 +03:00
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
nd6_slowtimo, NULL);
s = pserialize_read_enter();
IFNET_READER_FOREACH(ifp) {
nd6if = ND_IFINFO(ifp);
if (nd6if->basereachable && /* already initialized */
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
/*
* Since reachable time rarely changes by router
* advertisements, we SHOULD insure that a new random
* value gets recomputed at least once every few hours.
* (RFC 2461, 6.3.4)
*/
nd6if->recalctm = nd6_recalc_reachtm_interval;
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
}
}
pserialize_read_exit(s);
SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
}
/*
* Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not
* found and trying to resolve a neighbor; in this case the mbuf is queued in
* the list. Otherwise return errno after freeing the mbuf.
*/
int
nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize)
{
struct llentry *ln = NULL;
2016-04-04 10:37:07 +03:00
bool created = false;
const struct sockaddr_in6 *dst = satocsin6(_dst);
Stop using rt_gwroute on packet sending paths rt_gwroute of rtentry is a reference to a rtentry of the gateway for a rtentry with RTF_GATEWAY. That was used by L2 (arp and ndp) to look up L2 addresses. By separating L2 nexthop caches, we don't need a route for the purpose and we can stop using rt_gwroute. By doing so, we can reduce referencing and modifying rtentries, which makes it easy to apply a lock (and/or psref) to the routing table and rtentries. One issue to do this is to keep RTF_REJECT behavior. It seems it was broken when we moved rtalloc1 things from L2 output routines (e.g., ether_output) to ip_hresolv_output, but (fortunately?) it works unexpectedly. What we mistook are: - RTF_REJECT was checked for any routes in L2 output routines, but in ip_hresolv_output it is checked only when the route is RTF_GATEWAY - The RTF_REJECT check wasn't copied to IPv6 (nd6_output) It seems that rt_gwroute checks hid the mistakes and it looked work (unexpectedly) and removing rt_gwroute checks unveil the issue. So we need to fix RTF_REJECT checks in ip_hresolv_output and also add them to nd6_output. One more point we have to care is returning an errno; we need to mimic looutput behavior. Originally RTF_REJECT check was done either in L2 output routines or in looutput. The latter is applied when a reject route directs to a loopback interface. However, now RTF_REJECT check is done before looutput so to keep the original behavior we need to return an errno which looutput chooses. Added rt_check_reject_route does such tweaks.
2016-04-26 12:30:01 +03:00
/* discard the packet if IPv6 operation is disabled on the interface */
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
m_freem(m);
return ENETDOWN; /* better error? */
Stop using rt_gwroute on packet sending paths rt_gwroute of rtentry is a reference to a rtentry of the gateway for a rtentry with RTF_GATEWAY. That was used by L2 (arp and ndp) to look up L2 addresses. By separating L2 nexthop caches, we don't need a route for the purpose and we can stop using rt_gwroute. By doing so, we can reduce referencing and modifying rtentries, which makes it easy to apply a lock (and/or psref) to the routing table and rtentries. One issue to do this is to keep RTF_REJECT behavior. It seems it was broken when we moved rtalloc1 things from L2 output routines (e.g., ether_output) to ip_hresolv_output, but (fortunately?) it works unexpectedly. What we mistook are: - RTF_REJECT was checked for any routes in L2 output routines, but in ip_hresolv_output it is checked only when the route is RTF_GATEWAY - The RTF_REJECT check wasn't copied to IPv6 (nd6_output) It seems that rt_gwroute checks hid the mistakes and it looked work (unexpectedly) and removing rt_gwroute checks unveil the issue. So we need to fix RTF_REJECT checks in ip_hresolv_output and also add them to nd6_output. One more point we have to care is returning an errno; we need to mimic looutput behavior. Originally RTF_REJECT check was done either in L2 output routines or in looutput. The latter is applied when a reject route directs to a loopback interface. However, now RTF_REJECT check is done before looutput so to keep the original behavior we need to return an errno which looutput chooses. Added rt_check_reject_route does such tweaks.
2016-04-26 12:30:01 +03:00
}
/*
* Address resolution or Neighbor Unreachability Detection
* for the next hop.
* At this point, the destination of the packet must be a unicast
* or an anycast address(i.e. not a multicast).
*/
/* Look up the neighbor cache for the nexthop */
ln = nd6_lookup(&dst->sin6_addr, ifp, false);
if (ln != NULL && (ln->la_flags & LLE_VALID) != 0) {
KASSERT(ln->ln_state > ND6_LLINFO_INCOMPLETE);
/* Fast path */
memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
LLE_RUNLOCK(ln);
return 0;
}
if (ln != NULL)
LLE_RUNLOCK(ln);
/* Slow path */
2016-04-04 10:37:07 +03:00
ln = nd6_lookup(&dst->sin6_addr, ifp, true);
if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) {
struct sockaddr_in6 sin6;
/*
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2001-10-16 10:24:44 +04:00
* the condition below is not very efficient. But we believe
* it is tolerable, because this should be a rare case.
*/
2016-04-04 10:37:07 +03:00
ln = nd6_create(&dst->sin6_addr, ifp);
if (ln == NULL) {
char ip6buf[INET6_ADDRSTRLEN];
log(LOG_DEBUG,
"%s: can't allocate llinfo for %s "
"(ln=%p, rt=%p)\n", __func__,
IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt);
m_freem(m);
return ENOBUFS;
}
sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
rt_clonedmsg(sin6tosa(&sin6), ifp, rt);
created = true;
}
2017-10-05 06:42:14 +03:00
if (ln == NULL) {
m_freem(m);
return ENETDOWN; /* better error? */
}
2016-04-04 10:37:07 +03:00
LLE_WLOCK_ASSERT(ln);
/* We don't have to do link-layer address resolution on a p2p link. */
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
ln->ln_state < ND6_LLINFO_REACHABLE) {
ln->ln_state = ND6_LLINFO_STALE;
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
}
/*
* The first time we send a packet to a neighbor whose entry is
* STALE, we have to change the state to DELAY and a sets a timer to
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
* neighbor unreachability detection on expiration.
* (RFC 2461 7.3.3)
*/
if (ln->ln_state == ND6_LLINFO_STALE) {
ln->ln_asked = 0;
ln->ln_state = ND6_LLINFO_DELAY;
nd6_llinfo_settimer(ln, nd6_delay * hz);
}
/*
* There is a neighbor cache entry, but no ethernet address
* response yet. Append this latest packet to the end of the
* packet queue in the mbuf, unless the number of the packet
* does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
* the oldest packet in the queue will be removed.
*/
if (ln->ln_state == ND6_LLINFO_NOSTATE)
ln->ln_state = ND6_LLINFO_INCOMPLETE;
if (ln->ln_hold) {
struct mbuf *m_hold;
int i;
i = 0;
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
i++;
if (m_hold->m_nextpkt == NULL) {
m_hold->m_nextpkt = m;
break;
}
}
while (i >= nd6_maxqueuelen) {
m_hold = ln->ln_hold;
ln->ln_hold = ln->ln_hold->m_nextpkt;
m_freem(m_hold);
i--;
}
} else {
ln->ln_hold = m;
}
/*
* If there has been no NS for the neighbor after entering the
* INCOMPLETE state, send the first solicitation.
*/
if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
struct in6_addr src, *psrc;
ln->ln_asked++;
2016-04-04 10:37:07 +03:00
nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
psrc = nd6_llinfo_get_holdsrc(ln, &src);
2016-04-04 10:37:07 +03:00
LLE_WUNLOCK(ln);
ln = NULL;
nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, NULL);
2016-04-04 10:37:07 +03:00
} else {
/* We did the lookup so we need to do the unlock here. */
LLE_WUNLOCK(ln);
}
2016-04-04 10:37:07 +03:00
if (created)
nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
return EWOULDBLOCK;
2016-04-04 10:37:07 +03:00
}
int
nd6_need_cache(struct ifnet *ifp)
{
/*
* XXX: we currently do not make neighbor cache on any interface
* other than ARCnet, Ethernet, FDDI and GIF.
*
* RFC2893 says:
* - unidirectional tunnels needs no ND
*/
switch (ifp->if_type) {
case IFT_ARCNET:
case IFT_ETHER:
case IFT_FDDI:
case IFT_IEEE1394:
case IFT_CARP:
case IFT_GIF: /* XXX need more cases? */
case IFT_PPP:
case IFT_TUNNEL:
return 1;
default:
return 0;
}
}
static void
clear_llinfo_pqueue(struct llentry *ln)
{
struct mbuf *m_hold, *m_hold_next;
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
m_hold_next = m_hold->m_nextpkt;
m_hold->m_nextpkt = NULL;
m_freem(m_hold);
}
ln->ln_hold = NULL;
return;
}
int
nd6_sysctl(
int name,
void *oldp, /* syscall arg, need copyout */
size_t *oldlenp,
void *newp, /* syscall arg, need copyin */
size_t newlen
)
{
int (*fill_func)(void *, size_t *);
if (newp)
return EPERM;
switch (name) {
case ICMPV6CTL_ND6_DRLIST:
fill_func = fill_drlist;
break;
case ICMPV6CTL_ND6_PRLIST:
fill_func = fill_prlist;
break;
case ICMPV6CTL_ND6_MAXQLEN:
2018-01-29 06:29:26 +03:00
return 0;
default:
2018-01-29 06:29:26 +03:00
return ENOPROTOOPT;
}
if (oldlenp == NULL)
return EINVAL;
size_t ol;
int error = (*fill_func)(NULL, &ol); /* calc len needed */
if (error)
return error;
if (oldp == NULL) {
*oldlenp = ol;
return 0;
}
ol = *oldlenp = min(ol, *oldlenp);
if (ol == 0)
return 0;
void *p = kmem_alloc(ol, KM_SLEEP);
error = (*fill_func)(p, oldlenp);
if (!error)
error = copyout(p, oldp, *oldlenp);
kmem_free(p, ol);
return error;
}
static int
fill_drlist(void *oldp, size_t *oldlenp)
{
int error = 0;
struct in6_defrouter *d = NULL, *de = NULL;
struct nd_defrouter *dr;
size_t l;
if (oldp) {
d = (struct in6_defrouter *)oldp;
de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
}
l = 0;
ND6_RLOCK();
ND_DEFROUTER_LIST_FOREACH(dr) {
if (oldp && d + 1 <= de) {
memset(d, 0, sizeof(*d));
sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
if (sa6_recoverscope(&d->rtaddr)) {
char ip6buf[INET6_ADDRSTRLEN];
log(LOG_ERR,
"scope error in router list (%s)\n",
IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr));
/* XXX: press on... */
}
d->flags = dr->flags;
d->rtlifetime = dr->rtlifetime;
d->expire = dr->expire ?
time_mono_to_wall(dr->expire) : 0;
d->if_index = dr->ifp->if_index;
}
l += sizeof(*d);
if (d)
d++;
}
ND6_UNLOCK();
*oldlenp = l; /* (void *)d - (void *)oldp */
return error;
}
static int
fill_prlist(void *oldp, size_t *oldlenp)
{
int error = 0;
struct nd_prefix *pr;
uint8_t *p = NULL, *ps = NULL;
uint8_t *pe = NULL;
size_t l;
char ip6buf[INET6_ADDRSTRLEN];
if (oldp) {
ps = p = (uint8_t*)oldp;
pe = (uint8_t*)oldp + *oldlenp;
}
l = 0;
ND6_RLOCK();
ND_PREFIX_LIST_FOREACH(pr) {
u_short advrtrs;
struct sockaddr_in6 sin6;
struct nd_pfxrouter *pfr;
struct in6_prefix pfx;
if (oldp && p + sizeof(struct in6_prefix) <= pe)
{
memset(&pfx, 0, sizeof(pfx));
ps = p;
pfx.prefix = pr->ndpr_prefix;
if (sa6_recoverscope(&pfx.prefix)) {
log(LOG_ERR,
"scope error in prefix list (%s)\n",
IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr));
/* XXX: press on... */
}
pfx.raflags = pr->ndpr_raf;
pfx.prefixlen = pr->ndpr_plen;
pfx.vltime = pr->ndpr_vltime;
pfx.pltime = pr->ndpr_pltime;
pfx.if_index = pr->ndpr_ifp->if_index;
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
pfx.expire = 0;
else {
time_t maxexpire;
/* XXX: we assume time_t is signed. */
maxexpire = (-1) &
~((time_t)1 <<
((sizeof(maxexpire) * 8) - 1));
if (pr->ndpr_vltime <
maxexpire - pr->ndpr_lastupdate) {
pfx.expire = pr->ndpr_lastupdate +
pr->ndpr_vltime;
} else
pfx.expire = maxexpire;
}
pfx.refcnt = pr->ndpr_refcnt;
pfx.flags = pr->ndpr_stateflags;
pfx.origin = PR_ORIG_RA;
p += sizeof(pfx); l += sizeof(pfx);
advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
if (p + sizeof(sin6) > pe) {
advrtrs++;
continue;
}
sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
0, 0, 0);
if (sa6_recoverscope(&sin6)) {
log(LOG_ERR,
"scope error in "
"prefix list (%s)\n",
IN6_PRINT(ip6buf,
&pfr->router->rtaddr));
}
advrtrs++;
memcpy(p, &sin6, sizeof(sin6));
p += sizeof(sin6);
l += sizeof(sin6);
}
pfx.advrtrs = advrtrs;
memcpy(ps, &pfx, sizeof(pfx));
}
else {
l += sizeof(pfx);
advrtrs = 0;
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
advrtrs++;
l += sizeof(sin6);
}
}
}
ND6_UNLOCK();
*oldlenp = l;
return error;
}
static int
nd6_setdefaultiface(int ifindex)
{
ifnet_t *ifp;
int error = 0;
int s;
s = pserialize_read_enter();
ifp = if_byindex(ifindex);
if (ifp == NULL) {
pserialize_read_exit(s);
return EINVAL;
}
if (nd6_defifindex != ifindex) {
nd6_defifindex = ifindex;
nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
/*
* Our current implementation assumes one-to-one maping between
* interfaces and links, so it would be natural to use the
* default interface as the default link.
*/
scope6_setdefault(nd6_defifp);
}
pserialize_read_exit(s);
return (error);
}