NetBSD/sys/kern/kern_time.c

511 lines
14 KiB
C
Raw Normal View History

/* $NetBSD: kern_time.c,v 1.25 1997/01/15 01:37:53 perry Exp $ */
1993-03-21 12:45:37 +03:00
/*
1994-05-20 11:24:51 +04:00
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
1993-03-21 12:45:37 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_time.c 8.1 (Berkeley) 6/10/93
1993-03-21 12:45:37 +03:00
*/
1993-12-18 06:59:02 +03:00
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/kernel.h>
1994-05-20 11:24:51 +04:00
#include <sys/systm.h>
1993-12-18 06:59:02 +03:00
#include <sys/proc.h>
1994-05-20 11:24:51 +04:00
#include <sys/vnode.h>
1996-02-04 05:15:01 +03:00
#include <sys/signalvar.h>
#include <sys/syslog.h>
1993-03-21 12:45:37 +03:00
#include <sys/mount.h>
#include <sys/syscallargs.h>
#if defined(NFSCLIENT) || defined(NFSSERVER)
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs_var.h>
#endif
1993-12-18 06:59:02 +03:00
#include <machine/cpu.h>
1993-03-21 12:45:37 +03:00
static void settime __P((struct timeval *));
/*
1993-03-21 12:45:37 +03:00
* Time of day and interval timer support.
*
* These routines provide the kernel entry points to get and set
* the time-of-day and per-process interval timers. Subroutines
* here provide support for adding and subtracting timeval structures
* and decrementing interval timers, optionally reloading the interval
* timers when they expire.
*/
/* This function is used by clock_settime and settimeofday */
static void
settime(tv)
struct timeval *tv;
{
struct timeval delta;
int s;
/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
s = splclock();
timersub(tv, &time, &delta);
time = *tv;
(void) splsoftclock();
timeradd(&boottime, &delta, &boottime);
timeradd(&runtime, &delta, &runtime);
# if defined(NFSCLIENT) || defined(NFSSERVER)
nqnfs_lease_updatetime(delta.tv_sec);
# endif
splx(s);
resettodr();
}
/* ARGSUSED */
int
sys_clock_gettime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_clock_gettime_args /* {
syscallarg(clockid_t) clock_id;
syscallarg(struct timespec *) tp;
} */ *uap = v;
clockid_t clock_id;
struct timeval atv;
struct timespec ats;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
microtime(&atv);
TIMEVAL_TO_TIMESPEC(&atv,&ats);
return copyout(&ats, SCARG(uap, tp), sizeof(ats));
}
/* ARGSUSED */
int
sys_clock_settime(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_clock_settime_args /* {
syscallarg(clockid_t) clock_id;
syscallarg(const struct timespec *) tp;
} */ *uap = v;
clockid_t clock_id;
struct timeval atv;
struct timespec ats;
int error;
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
return (error);
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
return (error);
TIMESPEC_TO_TIMEVAL(&atv,&ats);
settime(&atv);
return 0;
}
int
sys_clock_getres(p, v, retval)
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_clock_getres_args /* {
syscallarg(clockid_t) clock_id;
syscallarg(struct timespec *) tp;
} */ *uap = v;
clockid_t clock_id;
struct timespec ts;
int error = 0;
clock_id = SCARG(uap, clock_id);
if (clock_id != CLOCK_REALTIME)
return (EINVAL);
if (SCARG(uap, tp)) {
ts.tv_sec = 0;
ts.tv_nsec = 1000000000 / hz;
error = copyout(&ts, SCARG(uap, tp), sizeof (ts));
}
return error;
}
1993-03-21 12:45:37 +03:00
/* ARGSUSED */
int
sys_gettimeofday(p, v, retval)
1993-03-21 12:45:37 +03:00
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_gettimeofday_args /* {
syscallarg(struct timeval *) tp;
syscallarg(struct timezone *) tzp;
} */ *uap = v;
1993-03-21 12:45:37 +03:00
struct timeval atv;
int error = 0;
struct timezone tzfake;
1993-03-21 12:45:37 +03:00
if (SCARG(uap, tp)) {
1993-03-21 12:45:37 +03:00
microtime(&atv);
error = copyout(&atv, SCARG(uap, tp), sizeof (atv));
1996-02-04 05:15:01 +03:00
if (error)
1993-03-21 12:45:37 +03:00
return (error);
}
if (SCARG(uap, tzp)) {
/*
* NetBSD has no kernel notion of timezone, so we just
* fake up a timezone struct and return it if demanded.
*/
tzfake.tz_minuteswest = 0;
tzfake.tz_dsttime = 0;
error = copyout(&tzfake, SCARG(uap, tzp), sizeof (tzfake));
}
1993-03-21 12:45:37 +03:00
return (error);
}
/* ARGSUSED */
int
sys_settimeofday(p, v, retval)
1993-03-21 12:45:37 +03:00
struct proc *p;
void *v;
register_t *retval;
{
struct sys_settimeofday_args /* {
syscallarg(const struct timeval *) tv;
syscallarg(const struct timezone *) tzp;
} */ *uap = v;
struct timeval atv;
1993-03-21 12:45:37 +03:00
struct timezone atz;
int error;
1993-03-21 12:45:37 +03:00
1996-02-04 05:15:01 +03:00
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1993-03-21 12:45:37 +03:00
return (error);
1994-05-20 11:24:51 +04:00
/* Verify all parameters before changing time. */
if (SCARG(uap, tv) && (error = copyin(SCARG(uap, tv),
&atv, sizeof(atv))))
1994-05-20 11:24:51 +04:00
return (error);
/* XXX since we don't use tz, probably no point in doing copyin. */
if (SCARG(uap, tzp) && (error = copyin(SCARG(uap, tzp),
&atz, sizeof(atz))))
1994-05-20 11:24:51 +04:00
return (error);
if (SCARG(uap, tv))
settime(&atv);
/*
* NetBSD has no kernel notion of timezone, and only an
* obsolete program would try to set it, so we log a warning.
*/
if (SCARG(uap, tzp))
log(LOG_WARNING, "pid %d attempted to set the "
"(obsolete) kernel timezone.", p->p_pid);
1994-05-20 11:24:51 +04:00
return (0);
1993-03-21 12:45:37 +03:00
}
int tickdelta; /* current clock skew, us. per tick */
long timedelta; /* unapplied time correction, us. */
long bigadj = 1000000; /* use 10x skew above bigadj us. */
/* ARGSUSED */
int
sys_adjtime(p, v, retval)
1993-03-21 12:45:37 +03:00
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_adjtime_args /* {
syscallarg(const struct timeval *) delta;
syscallarg(struct timeval *) olddelta;
} */ *uap = v;
1994-05-20 11:24:51 +04:00
struct timeval atv;
register long ndelta, ntickdelta, odelta;
1993-03-21 12:45:37 +03:00
int s, error;
1996-02-04 05:15:01 +03:00
if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1993-03-21 12:45:37 +03:00
return (error);
1996-02-04 05:15:01 +03:00
error = copyin(SCARG(uap, delta), &atv, sizeof(struct timeval));
1996-02-04 05:15:01 +03:00
if (error)
1993-03-21 12:45:37 +03:00
return (error);
1994-05-20 11:24:51 +04:00
/*
* Compute the total correction and the rate at which to apply it.
* Round the adjustment down to a whole multiple of the per-tick
* delta, so that after some number of incremental changes in
* hardclock(), tickdelta will become zero, lest the correction
* overshoot and start taking us away from the desired final time.
*/
1993-03-21 12:45:37 +03:00
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
1994-05-20 11:24:51 +04:00
if (ndelta > bigadj)
ntickdelta = 10 * tickadj;
else
ntickdelta = tickadj;
if (ndelta % ntickdelta)
ndelta = ndelta / ntickdelta * ntickdelta;
1993-03-21 12:45:37 +03:00
1994-05-20 11:24:51 +04:00
/*
* To make hardclock()'s job easier, make the per-tick delta negative
* if we want time to run slower; then hardclock can simply compute
* tick + tickdelta, and subtract tickdelta from timedelta.
*/
if (ndelta < 0)
ntickdelta = -ntickdelta;
1993-03-21 12:45:37 +03:00
s = splclock();
1994-05-20 11:24:51 +04:00
odelta = timedelta;
1993-03-21 12:45:37 +03:00
timedelta = ndelta;
1994-05-20 11:24:51 +04:00
tickdelta = ntickdelta;
1993-03-21 12:45:37 +03:00
splx(s);
if (SCARG(uap, olddelta)) {
1994-05-20 11:24:51 +04:00
atv.tv_sec = odelta / 1000000;
atv.tv_usec = odelta % 1000000;
(void) copyout(&atv, SCARG(uap, olddelta),
1994-05-20 11:24:51 +04:00
sizeof(struct timeval));
}
1993-03-21 12:45:37 +03:00
return (0);
}
/*
* Get value of an interval timer. The process virtual and
* profiling virtual time timers are kept in the p_stats area, since
* they can be swapped out. These are kept internally in the
* way they are specified externally: in time until they expire.
*
* The real time interval timer is kept in the process table slot
* for the process, and its value (it_value) is kept as an
* absolute time rather than as a delta, so that it is easy to keep
* periodic real-time signals from drifting.
*
* Virtual time timers are processed in the hardclock() routine of
* kern_clock.c. The real time timer is processed by a timeout
* routine, called from the softclock() routine. Since a callout
* may be delayed in real time due to interrupt processing in the system,
* it is possible for the real time timeout routine (realitexpire, given below),
* to be delayed in real time past when it is supposed to occur. It
* does not suffice, therefore, to reload the real timer .it_value from the
* real time timers .it_interval. Rather, we compute the next time in
* absolute time the timer should go off.
*/
/* ARGSUSED */
int
sys_getitimer(p, v, retval)
1993-03-21 12:45:37 +03:00
struct proc *p;
void *v;
register_t *retval;
{
register struct sys_getitimer_args /* {
syscallarg(u_int) which;
syscallarg(struct itimerval *) itv;
} */ *uap = v;
1993-03-21 12:45:37 +03:00
struct itimerval aitv;
int s;
if (SCARG(uap, which) > ITIMER_PROF)
1993-03-21 12:45:37 +03:00
return (EINVAL);
s = splclock();
if (SCARG(uap, which) == ITIMER_REAL) {
1993-03-21 12:45:37 +03:00
/*
* Convert from absolute to relative time in .it_value
1993-03-21 12:45:37 +03:00
* part of real time timer. If time for real time timer
* has passed return 0, else return difference between
* current time and time for the timer to go off.
*/
aitv = p->p_realtimer;
if (timerisset(&aitv.it_value))
if (timercmp(&aitv.it_value, &time, <))
timerclear(&aitv.it_value);
else
1995-03-21 16:33:34 +03:00
timersub(&aitv.it_value, &time, &aitv.it_value);
1993-03-21 12:45:37 +03:00
} else
aitv = p->p_stats->p_timer[SCARG(uap, which)];
1993-03-21 12:45:37 +03:00
splx(s);
return (copyout(&aitv, SCARG(uap, itv), sizeof (struct itimerval)));
1993-03-21 12:45:37 +03:00
}
/* ARGSUSED */
int
sys_setitimer(p, v, retval)
1993-03-21 12:45:37 +03:00
struct proc *p;
1996-02-04 05:15:01 +03:00
register void *v;
register_t *retval;
{
register struct sys_setitimer_args /* {
syscallarg(u_int) which;
syscallarg(const struct itimerval *) itv;
syscallarg(struct itimerval *) oitv;
} */ *uap = v;
struct sys_getitimer_args getargs;
1993-03-21 12:45:37 +03:00
struct itimerval aitv;
register const struct itimerval *itvp;
1993-03-21 12:45:37 +03:00
int s, error;
if (SCARG(uap, which) > ITIMER_PROF)
1993-03-21 12:45:37 +03:00
return (EINVAL);
itvp = SCARG(uap, itv);
if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
1993-03-21 12:45:37 +03:00
return (error);
if (SCARG(uap, oitv) != NULL) {
SCARG(&getargs, which) = SCARG(uap, which);
SCARG(&getargs, itv) = SCARG(uap, oitv);
if ((error = sys_getitimer(p, &getargs, retval)) != 0)
return (error);
}
1993-03-21 12:45:37 +03:00
if (itvp == 0)
return (0);
if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
return (EINVAL);
s = splclock();
if (SCARG(uap, which) == ITIMER_REAL) {
1994-05-05 13:15:48 +04:00
untimeout(realitexpire, p);
1993-03-21 12:45:37 +03:00
if (timerisset(&aitv.it_value)) {
1995-03-21 16:33:34 +03:00
timeradd(&aitv.it_value, &time, &aitv.it_value);
1994-05-05 13:15:48 +04:00
timeout(realitexpire, p, hzto(&aitv.it_value));
1993-03-21 12:45:37 +03:00
}
p->p_realtimer = aitv;
} else
p->p_stats->p_timer[SCARG(uap, which)] = aitv;
1993-03-21 12:45:37 +03:00
splx(s);
return (0);
}
/*
* Real interval timer expired:
* send process whose timer expired an alarm signal.
* If time is not set up to reload, then just return.
* Else compute next time timer should go off which is > current time.
* This is where delay in processing this timeout causes multiple
* SIGALRM calls to be compressed into one.
*/
void
realitexpire(arg)
void *arg;
1993-03-21 12:45:37 +03:00
{
register struct proc *p;
1993-03-21 12:45:37 +03:00
int s;
p = (struct proc *)arg;
1993-03-21 12:45:37 +03:00
psignal(p, SIGALRM);
if (!timerisset(&p->p_realtimer.it_interval)) {
timerclear(&p->p_realtimer.it_value);
return;
}
for (;;) {
s = splclock();
1995-03-21 16:33:34 +03:00
timeradd(&p->p_realtimer.it_value,
&p->p_realtimer.it_interval, &p->p_realtimer.it_value);
1993-03-21 12:45:37 +03:00
if (timercmp(&p->p_realtimer.it_value, &time, >)) {
1994-05-05 13:15:48 +04:00
timeout(realitexpire, p,
1993-03-21 12:45:37 +03:00
hzto(&p->p_realtimer.it_value));
splx(s);
return;
}
splx(s);
}
}
/*
* Check that a proposed value to load into the .it_value or
* .it_interval part of an interval timer is acceptable, and
* fix it to have at least minimal value (i.e. if it is less
* than the resolution of the clock, round it up.)
*/
int
1993-03-21 12:45:37 +03:00
itimerfix(tv)
struct timeval *tv;
{
if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
tv->tv_usec < 0 || tv->tv_usec >= 1000000)
return (EINVAL);
if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
tv->tv_usec = tick;
return (0);
}
/*
* Decrement an interval timer by a specified number
* of microseconds, which must be less than a second,
* i.e. < 1000000. If the timer expires, then reload
* it. In this case, carry over (usec - old value) to
1994-05-20 11:24:51 +04:00
* reduce the value reloaded into the timer so that
1993-03-21 12:45:37 +03:00
* the timer does not drift. This routine assumes
* that it is called in a context where the timers
* on which it is operating cannot change in value.
*/
int
1993-03-21 12:45:37 +03:00
itimerdecr(itp, usec)
register struct itimerval *itp;
int usec;
{
if (itp->it_value.tv_usec < usec) {
if (itp->it_value.tv_sec == 0) {
/* expired, and already in next interval */
usec -= itp->it_value.tv_usec;
goto expire;
}
itp->it_value.tv_usec += 1000000;
itp->it_value.tv_sec--;
}
itp->it_value.tv_usec -= usec;
usec = 0;
if (timerisset(&itp->it_value))
return (1);
/* expired, exactly at end of interval */
expire:
if (timerisset(&itp->it_interval)) {
itp->it_value = itp->it_interval;
itp->it_value.tv_usec -= usec;
if (itp->it_value.tv_usec < 0) {
itp->it_value.tv_usec += 1000000;
itp->it_value.tv_sec--;
}
} else
itp->it_value.tv_usec = 0; /* sec is already 0 */
return (0);
}