NetBSD/sys/kern/subr_ipi.c

450 lines
11 KiB
C
Raw Normal View History

/* $NetBSD: subr_ipi.c,v 1.7 2019/10/16 18:29:49 christos Exp $ */
/*-
* Copyright (c) 2014 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Inter-processor interrupt (IPI) interface: asynchronous IPIs to
* invoke functions with a constant argument and synchronous IPIs
* with the cross-call support.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_ipi.c,v 1.7 2019/10/16 18:29:49 christos Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/evcnt.h>
#include <sys/cpu.h>
#include <sys/ipi.h>
#include <sys/intr.h>
#include <sys/kcpuset.h>
#include <sys/kmem.h>
#include <sys/lock.h>
#include <sys/mutex.h>
/*
* An array of the IPI handlers used for asynchronous invocation.
* The lock protects the slot allocation.
*/
typedef struct {
ipi_func_t func;
void * arg;
} ipi_intr_t;
static kmutex_t ipi_mngmt_lock;
static ipi_intr_t ipi_intrs[IPI_MAXREG] __cacheline_aligned;
/*
* Per-CPU mailbox for IPI messages: it is a single cache line storing
* up to IPI_MSG_MAX messages. This interface is built on top of the
* synchronous IPIs.
*/
#define IPI_MSG_SLOTS (CACHE_LINE_SIZE / sizeof(ipi_msg_t *))
#define IPI_MSG_MAX IPI_MSG_SLOTS
typedef struct {
ipi_msg_t * msg[IPI_MSG_SLOTS];
} ipi_mbox_t;
/* Mailboxes for the synchronous IPIs. */
static ipi_mbox_t * ipi_mboxes __read_mostly;
static struct evcnt ipi_mboxfull_ev __cacheline_aligned;
static void ipi_msg_cpu_handler(void *);
/* Handler for the synchronous IPIs - it must be zero. */
#define IPI_SYNCH_ID 0
#ifndef MULTIPROCESSOR
#define cpu_ipi(ci) KASSERT(ci == NULL)
#endif
void
ipi_sysinit(void)
{
const size_t len = ncpu * sizeof(ipi_mbox_t);
/* Initialise the per-CPU bit fields. */
for (u_int i = 0; i < ncpu; i++) {
struct cpu_info *ci = cpu_lookup(i);
memset(&ci->ci_ipipend, 0, sizeof(ci->ci_ipipend));
}
mutex_init(&ipi_mngmt_lock, MUTEX_DEFAULT, IPL_NONE);
memset(ipi_intrs, 0, sizeof(ipi_intrs));
/* Allocate per-CPU IPI mailboxes. */
ipi_mboxes = kmem_zalloc(len, KM_SLEEP);
KASSERT(ipi_mboxes != NULL);
/*
* Register the handler for synchronous IPIs. This mechanism
* is built on top of the asynchronous interface. Slot zero is
* reserved permanently; it is also handy to use zero as a failure
* for other registers (as it is potentially less error-prone).
*/
ipi_intrs[IPI_SYNCH_ID].func = ipi_msg_cpu_handler;
evcnt_attach_dynamic(&ipi_mboxfull_ev, EVCNT_TYPE_MISC, NULL,
"ipi", "full");
}
/*
* ipi_register: register an asynchronous IPI handler.
*
* => Returns IPI ID which is greater than zero; on failure - zero.
*/
u_int
ipi_register(ipi_func_t func, void *arg)
{
mutex_enter(&ipi_mngmt_lock);
for (u_int i = 0; i < IPI_MAXREG; i++) {
if (ipi_intrs[i].func == NULL) {
/* Register the function. */
ipi_intrs[i].func = func;
ipi_intrs[i].arg = arg;
mutex_exit(&ipi_mngmt_lock);
KASSERT(i != IPI_SYNCH_ID);
return i;
}
}
mutex_exit(&ipi_mngmt_lock);
printf("WARNING: ipi_register: table full, increase IPI_MAXREG\n");
return 0;
}
/*
* ipi_unregister: release the IPI handler given the ID.
*/
void
ipi_unregister(u_int ipi_id)
{
ipi_msg_t ipimsg = { .func = __FPTRCAST(ipi_func_t, nullop) };
KASSERT(ipi_id != IPI_SYNCH_ID);
KASSERT(ipi_id < IPI_MAXREG);
/* Release the slot. */
mutex_enter(&ipi_mngmt_lock);
KASSERT(ipi_intrs[ipi_id].func != NULL);
ipi_intrs[ipi_id].func = NULL;
/* Ensure that there are no IPIs in flight. */
kpreempt_disable();
ipi_broadcast(&ipimsg, false);
ipi_wait(&ipimsg);
kpreempt_enable();
mutex_exit(&ipi_mngmt_lock);
}
/*
* ipi_mark_pending: internal routine to mark an IPI pending on the
* specified CPU (which might be curcpu()).
*/
static bool
ipi_mark_pending(u_int ipi_id, struct cpu_info *ci)
{
const u_int i = ipi_id >> IPI_BITW_SHIFT;
const uint32_t bitm = 1U << (ipi_id & IPI_BITW_MASK);
KASSERT(ipi_id < IPI_MAXREG);
KASSERT(kpreempt_disabled());
/* Mark as pending and send an IPI. */
if (membar_consumer(), (ci->ci_ipipend[i] & bitm) == 0) {
atomic_or_32(&ci->ci_ipipend[i], bitm);
return true;
}
return false;
}
/*
* ipi_trigger: asynchronously send an IPI to the specified CPU.
*/
void
ipi_trigger(u_int ipi_id, struct cpu_info *ci)
{
KASSERT(curcpu() != ci);
if (ipi_mark_pending(ipi_id, ci)) {
cpu_ipi(ci);
}
}
/*
* ipi_trigger_multi_internal: the guts of ipi_trigger_multi() and
* ipi_trigger_broadcast().
*/
static void
ipi_trigger_multi_internal(u_int ipi_id, const kcpuset_t *target,
bool skip_self)
{
const cpuid_t selfid = cpu_index(curcpu());
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
KASSERT(kpreempt_disabled());
KASSERT(target != NULL);
for (CPU_INFO_FOREACH(cii, ci)) {
const cpuid_t cpuid = cpu_index(ci);
if (!kcpuset_isset(target, cpuid) || cpuid == selfid) {
continue;
}
ipi_trigger(ipi_id, ci);
}
if (!skip_self && kcpuset_isset(target, selfid)) {
ipi_mark_pending(ipi_id, curcpu());
int s = splhigh();
ipi_cpu_handler();
splx(s);
}
}
/*
* ipi_trigger_multi: same as ipi_trigger() but sends to the multiple
* CPUs given the target CPU set.
*/
void
ipi_trigger_multi(u_int ipi_id, const kcpuset_t *target)
{
ipi_trigger_multi_internal(ipi_id, target, false);
}
/*
* ipi_trigger_broadcast: same as ipi_trigger_multi() to kcpuset_attached,
* optionally skipping the sending CPU.
*/
void
ipi_trigger_broadcast(u_int ipi_id, bool skip_self)
{
ipi_trigger_multi_internal(ipi_id, kcpuset_attached, skip_self);
}
/*
* put_msg: insert message into the mailbox.
*/
static inline void
put_msg(ipi_mbox_t *mbox, ipi_msg_t *msg)
{
int count = SPINLOCK_BACKOFF_MIN;
again:
for (u_int i = 0; i < IPI_MSG_MAX; i++) {
if (__predict_true(mbox->msg[i] == NULL) &&
atomic_cas_ptr(&mbox->msg[i], NULL, msg) == NULL) {
return;
}
}
/* All slots are full: we have to spin-wait. */
ipi_mboxfull_ev.ev_count++;
SPINLOCK_BACKOFF(count);
goto again;
}
/*
* ipi_cpu_handler: the IPI handler.
*/
void
ipi_cpu_handler(void)
{
struct cpu_info * const ci = curcpu();
/*
* Handle asynchronous IPIs: inspect per-CPU bit field, extract
* IPI ID numbers and execute functions in those slots.
*/
for (u_int i = 0; i < IPI_BITWORDS; i++) {
uint32_t pending, bit;
if (ci->ci_ipipend[i] == 0) {
continue;
}
pending = atomic_swap_32(&ci->ci_ipipend[i], 0);
#ifndef __HAVE_ATOMIC_AS_MEMBAR
membar_producer();
#endif
while ((bit = ffs(pending)) != 0) {
const u_int ipi_id = (i << IPI_BITW_SHIFT) | --bit;
ipi_intr_t *ipi_hdl = &ipi_intrs[ipi_id];
pending &= ~(1U << bit);
KASSERT(ipi_hdl->func != NULL);
ipi_hdl->func(ipi_hdl->arg);
}
}
}
/*
* ipi_msg_cpu_handler: handle synchronous IPIs - iterate mailbox,
* execute the passed functions and acknowledge the messages.
*/
static void
ipi_msg_cpu_handler(void *arg __unused)
{
const struct cpu_info * const ci = curcpu();
ipi_mbox_t *mbox = &ipi_mboxes[cpu_index(ci)];
for (u_int i = 0; i < IPI_MSG_MAX; i++) {
ipi_msg_t *msg;
/* Get the message. */
if ((msg = mbox->msg[i]) == NULL) {
continue;
}
mbox->msg[i] = NULL;
/* Execute the handler. */
KASSERT(msg->func);
msg->func(msg->arg);
/* Ack the request. */
#ifndef __HAVE_ATOMIC_AS_MEMBAR
membar_producer();
#endif
atomic_dec_uint(&msg->_pending);
}
}
/*
* ipi_unicast: send an IPI to a single CPU.
*
* => The CPU must be remote; must not be local.
* => The caller must ipi_wait() on the message for completion.
*/
void
ipi_unicast(ipi_msg_t *msg, struct cpu_info *ci)
{
const cpuid_t id = cpu_index(ci);
KASSERT(msg->func != NULL);
KASSERT(kpreempt_disabled());
KASSERT(curcpu() != ci);
msg->_pending = 1;
membar_producer();
put_msg(&ipi_mboxes[id], msg);
ipi_trigger(IPI_SYNCH_ID, ci);
}
/*
* ipi_multicast: send an IPI to each CPU in the specified set.
*
* => The caller must ipi_wait() on the message for completion.
*/
void
ipi_multicast(ipi_msg_t *msg, const kcpuset_t *target)
{
const struct cpu_info * const self = curcpu();
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
u_int local;
KASSERT(msg->func != NULL);
KASSERT(kpreempt_disabled());
local = !!kcpuset_isset(target, cpu_index(self));
msg->_pending = kcpuset_countset(target) - local;
membar_producer();
for (CPU_INFO_FOREACH(cii, ci)) {
cpuid_t id;
if (__predict_false(ci == self)) {
continue;
}
id = cpu_index(ci);
if (!kcpuset_isset(target, id)) {
continue;
}
put_msg(&ipi_mboxes[id], msg);
ipi_trigger(IPI_SYNCH_ID, ci);
}
if (local) {
msg->func(msg->arg);
}
}
/*
* ipi_broadcast: send an IPI to all CPUs.
*
* => The caller must ipi_wait() on the message for completion.
*/
void
ipi_broadcast(ipi_msg_t *msg, bool skip_self)
{
const struct cpu_info * const self = curcpu();
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
KASSERT(msg->func != NULL);
KASSERT(kpreempt_disabled());
msg->_pending = ncpu - 1;
membar_producer();
/* Broadcast IPIs for remote CPUs. */
for (CPU_INFO_FOREACH(cii, ci)) {
cpuid_t id;
if (__predict_false(ci == self)) {
continue;
}
id = cpu_index(ci);
put_msg(&ipi_mboxes[id], msg);
ipi_trigger(IPI_SYNCH_ID, ci);
}
if (!skip_self) {
/* Finally, execute locally. */
msg->func(msg->arg);
}
}
/*
* ipi_wait: spin-wait until the message is processed.
*/
void
ipi_wait(ipi_msg_t *msg)
{
int count = SPINLOCK_BACKOFF_MIN;
while (msg->_pending) {
KASSERT(msg->_pending < ncpu);
SPINLOCK_BACKOFF(count);
}
}