NetBSD/gnu/dist/gas/config/tc-i860.c

1291 lines
30 KiB
C
Raw Normal View History

1997-09-24 19:39:15 +04:00
/* tc-i860.c -- Assemble for the I860
Copyright (C) 1989, 1992, 1993 Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "as.h"
#include "opcode/i860.h"
void md_begin ();
void md_number_to_chars ();
void md_assemble ();
char *md_atof ();
void md_convert_frag ();
void md_create_short_jump ();
void md_create_long_jump ();
int md_estimate_size_before_relax ();
void md_number_to_imm ();
void md_number_to_disp ();
void md_number_to_field ();
void md_ri_to_chars ();
static void i860_ip ();
/* void emit_machine_reloc(); */
const int md_reloc_size = sizeof (struct relocation_info);
/* void (*md_emit_relocations)() = emit_machine_reloc; */
/* handle of the OPCODE hash table */
static struct hash_control *op_hash = NULL;
static void s_dual (), s_enddual ();
static void s_atmp ();
const pseudo_typeS
md_pseudo_table[] =
{
{"dual", s_dual, 4},
{"enddual", s_enddual, 4},
{"atmp", s_atmp, 4},
{NULL, 0, 0},
};
int md_short_jump_size = 4;
int md_long_jump_size = 4;
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful */
const char comment_chars[] = "!/"; /* JF removed '|' from comment_chars */
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that comments like this one will always work. */
const char line_comment_chars[] = "#/";
const char line_separator_chars[] = "";
/* Chars that can be used to separate mant from exp in floating point nums */
const char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
const char FLT_CHARS[] = "rRsSfFdDxXpP";
/* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
changed in read.c . Ideally it shouldn't have to know about it at all,
but nothing is ideal around here.
*/
int size_reloc_info = sizeof (struct relocation_info);
static unsigned char octal[256];
#define isoctal(c) octal[c]
static unsigned char toHex[256];
struct i860_it
{
char *error;
unsigned long opcode;
struct nlist *nlistp;
expressionS exp;
int pcrel;
enum expand_type expand;
enum highlow_type highlow;
enum reloc_type reloc;
} the_insn;
#if __STDC__ == 1
static void print_insn (struct i860_it *insn);
static int getExpression (char *str);
#else /* not __STDC__ */
static void print_insn ();
static int getExpression ();
#endif /* not __STDC__ */
static char *expr_end;
static char last_expand; /* error if expansion after branch */
enum dual
{
DUAL_OFF = 0, DUAL_ON, DUAL_DDOT, DUAL_ONDDOT,
};
static enum dual dual_mode = DUAL_OFF; /* dual-instruction mode */
static void
s_dual () /* floating point instructions have dual set */
{
dual_mode = DUAL_ON;
}
static void
s_enddual () /* floating point instructions have dual set */
{
dual_mode = DUAL_OFF;
}
static int atmp = 31; /* temporary register for pseudo's */
static void
s_atmp ()
{
register int temp;
if (strncmp (input_line_pointer, "sp", 2) == 0)
{
input_line_pointer += 2;
atmp = 2;
}
else if (strncmp (input_line_pointer, "fp", 2) == 0)
{
input_line_pointer += 2;
atmp = 3;
}
else if (strncmp (input_line_pointer, "r", 1) == 0)
{
input_line_pointer += 1;
temp = get_absolute_expression ();
if (temp >= 0 && temp <= 31)
atmp = temp;
else
as_bad ("Unknown temporary pseudo register");
}
else
{
as_bad ("Unknown temporary pseudo register");
}
demand_empty_rest_of_line ();
}
/* This function is called once, at assembler startup time. It should
set up all the tables, etc. that the MD part of the assembler will need. */
void
md_begin ()
{
register char *retval = NULL;
int lose = 0;
register unsigned int i = 0;
op_hash = hash_new ();
while (i < NUMOPCODES)
{
const char *name = i860_opcodes[i].name;
retval = hash_insert (op_hash, name, &i860_opcodes[i]);
if (retval != NULL)
{
fprintf (stderr, "internal error: can't hash `%s': %s\n",
i860_opcodes[i].name, retval);
lose = 1;
}
do
{
if (i860_opcodes[i].match & i860_opcodes[i].lose)
{
fprintf (stderr, "internal error: losing opcode: `%s' \"%s\"\n",
i860_opcodes[i].name, i860_opcodes[i].args);
lose = 1;
}
++i;
}
while (i < NUMOPCODES
&& !strcmp (i860_opcodes[i].name, name));
}
if (lose)
as_fatal ("Broken assembler. No assembly attempted.");
for (i = '0'; i < '8'; ++i)
octal[i] = 1;
for (i = '0'; i <= '9'; ++i)
toHex[i] = i - '0';
for (i = 'a'; i <= 'f'; ++i)
toHex[i] = i + 10 - 'a';
for (i = 'A'; i <= 'F'; ++i)
toHex[i] = i + 10 - 'A';
}
void
md_assemble (str)
char *str;
{
char *toP;
int rsd;
int no_opcodes = 1;
int i;
struct i860_it pseudo[3];
assert (str);
i860_ip (str);
/* check for expandable flag to produce pseudo-instructions */
if (the_insn.expand != 0 && the_insn.highlow == NO_SPEC)
{
for (i = 0; i < 3; i++)
pseudo[i] = the_insn;
switch (the_insn.expand)
{
case E_DELAY:
no_opcodes = 1;
break;
case E_MOV:
if (the_insn.exp.X_add_symbol == NULL &&
the_insn.exp.X_op_symbol == NULL &&
(the_insn.exp.X_add_number < (1 << 15) &&
the_insn.exp.X_add_number >= -(1 << 15)))
break;
/* or l%const,r0,ireg_dest */
pseudo[0].opcode = (the_insn.opcode & 0x001f0000) | 0xe4000000;
pseudo[0].highlow = PAIR;
/* orh h%const,ireg_dest,ireg_dest */
pseudo[1].opcode = (the_insn.opcode & 0x03ffffff) | 0xec000000 |
((the_insn.opcode & 0x001f0000) << 5);
pseudo[1].highlow = HIGH;
no_opcodes = 2;
break;
case E_ADDR:
if (the_insn.exp.X_add_symbol == NULL &&
the_insn.exp.X_op_symbol == NULL)
break;
/* orh ha%addr_expr,r0,r31 */
pseudo[0].opcode = 0xec000000 | (atmp << 16);
pseudo[0].highlow = HIGHADJ;
pseudo[0].reloc = LOW0; /* must overwrite */
/* l%addr_expr(r31),ireg_dest */
pseudo[1].opcode = (the_insn.opcode & ~0x003e0000) | (atmp << 21);
pseudo[1].highlow = PAIR;
no_opcodes = 2;
break;
case E_U32: /* 2nd version emulates Intel as, not doc. */
if (the_insn.exp.X_add_symbol == NULL &&
the_insn.exp.X_op_symbol == NULL &&
(the_insn.exp.X_add_number < (1 << 16) &&
the_insn.exp.X_add_number >= 0))
break;
/* $(opcode)h h%const,ireg_src2,ireg_dest
pseudo[0].opcode = (the_insn.opcode & 0xf3ffffff) | 0x0c000000; */
/* $(opcode)h h%const,ireg_src2,r31 */
pseudo[0].opcode = (the_insn.opcode & 0xf3e0ffff) | 0x0c000000 |
(atmp << 16);
pseudo[0].highlow = HIGH;
/* $(opcode) l%const,ireg_dest,ireg_dest
pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000 |
((the_insn.opcode & 0x001f0000) << 5); */
/* $(opcode) l%const,r31,ireg_dest */
pseudo[1].opcode = (the_insn.opcode & 0xf01f0000) | 0x04000000 |
(atmp << 21);
pseudo[1].highlow = PAIR;
no_opcodes = 2;
break;
case E_AND: /* 2nd version emulates Intel as, not doc. */
if (the_insn.exp.X_add_symbol == NULL &&
the_insn.exp.X_op_symbol == NULL &&
(the_insn.exp.X_add_number < (1 << 16) &&
the_insn.exp.X_add_number >= 0))
break;
/* andnot h%const,ireg_src2,ireg_dest
pseudo[0].opcode = (the_insn.opcode & 0x03ffffff) | 0xd4000000; */
/* andnot h%const,ireg_src2,r31 */
pseudo[0].opcode = (the_insn.opcode & 0x03e0ffff) | 0xd4000000 |
(atmp << 16);
pseudo[0].highlow = HIGH;
pseudo[0].exp.X_add_number = -1 - the_insn.exp.X_add_number;
/* andnot l%const,ireg_dest,ireg_dest
pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000 |
((the_insn.opcode & 0x001f0000) << 5); */
/* andnot l%const,r31,ireg_dest */
pseudo[1].opcode = (the_insn.opcode & 0x001f0000) | 0xd4000000 |
(atmp << 21);
pseudo[1].highlow = PAIR;
pseudo[1].exp.X_add_number = -1 - the_insn.exp.X_add_number;
no_opcodes = 2;
break;
case E_S32:
if (the_insn.exp.X_add_symbol == NULL &&
the_insn.exp.X_op_symbol == NULL &&
(the_insn.exp.X_add_number < (1 << 15) &&
the_insn.exp.X_add_number >= -(1 << 15)))
break;
/* orh h%const,r0,r31 */
pseudo[0].opcode = 0xec000000 | (atmp << 16);
pseudo[0].highlow = HIGH;
/* or l%const,r31,r31 */
pseudo[1].opcode = 0xe4000000 | (atmp << 21) | (atmp << 16);
pseudo[1].highlow = PAIR;
/* r31,ireg_src2,ireg_dest */
pseudo[2].opcode = (the_insn.opcode & ~0x0400ffff) | (atmp << 11);
pseudo[2].reloc = NO_RELOC;
no_opcodes = 3;
break;
default:
as_fatal ("failed sanity check.");
}
the_insn = pseudo[0];
/* check for expanded opcode after branch or in dual */
if (no_opcodes > 1 && last_expand == 1)
as_warn ("Expanded opcode after delayed branch: `%s'", str);
if (no_opcodes > 1 && dual_mode != DUAL_OFF)
as_warn ("Expanded opcode in dual mode: `%s'", str);
}
i = 0;
do
{ /* always produce at least one opcode */
toP = frag_more (4);
/* put out the opcode */
md_number_to_chars (toP, the_insn.opcode, 4);
/* check for expanded opcode after branch or in dual */
last_expand = the_insn.pcrel;
/* put out the symbol-dependent stuff */
if (the_insn.reloc != NO_RELOC)
{
fix_new (frag_now, /* which frag */
(toP - frag_now->fr_literal), /* where */
4, /* size */
&the_insn.exp,
the_insn.pcrel,
/* merge bit fields into one argument */
(int) (((the_insn.highlow & 0x3) << 4) | (the_insn.reloc & 0xf)));
}
the_insn = pseudo[++i];
}
while (--no_opcodes > 0);
}
static void
i860_ip (str)
char *str;
{
char *s;
const char *args;
char c;
unsigned long i;
struct i860_opcode *insn;
char *argsStart;
unsigned long opcode;
unsigned int mask;
int match = 0;
int comma = 0;
for (s = str; islower (*s) || *s == '.' || *s == '3'; ++s)
;
switch (*s)
{
case '\0':
break;
case ',':
comma = 1;
/*FALLTHROUGH*/
case ' ':
*s++ = '\0';
break;
default:
as_fatal ("Unknown opcode: `%s'", str);
}
if (strncmp (str, "d.", 2) == 0)
{ /* check for d. opcode prefix */
if (dual_mode == DUAL_ON)
dual_mode = DUAL_ONDDOT;
else
dual_mode = DUAL_DDOT;
str += 2;
}
if ((insn = (struct i860_opcode *) hash_find (op_hash, str)) == NULL)
{
if (dual_mode == DUAL_DDOT || dual_mode == DUAL_ONDDOT)
str -= 2;
as_bad ("Unknown opcode: `%s'", str);
return;
}
if (comma)
{
*--s = ',';
}
argsStart = s;
for (;;)
{
opcode = insn->match;
memset (&the_insn, '\0', sizeof (the_insn));
the_insn.reloc = NO_RELOC;
/*
* Build the opcode, checking as we go to make
* sure that the operands match
*/
for (args = insn->args;; ++args)
{
switch (*args)
{
case '\0': /* end of args */
if (*s == '\0')
{
match = 1;
}
break;
case '+':
case '(': /* these must match exactly */
case ')':
case ',':
case ' ':
if (*s++ == *args)
continue;
break;
case '#': /* must be at least one digit */
if (isdigit (*s++))
{
while (isdigit (*s))
{
++s;
}
continue;
}
break;
case '1': /* next operand must be a register */
case '2':
case 'd':
switch (*s)
{
case 'f': /* frame pointer */
s++;
if (*s++ == 'p')
{
mask = 0x3;
break;
}
goto error;
case 's': /* stack pointer */
s++;
if (*s++ == 'p')
{
mask = 0x2;
break;
}
goto error;
case 'r': /* any register */
s++;
if (!isdigit (c = *s++))
{
goto error;
}
if (isdigit (*s))
{
if ((c = 10 * (c - '0') + (*s++ - '0')) >= 32)
{
goto error;
}
}
else
{
c -= '0';
}
mask = c;
break;
default: /* not this opcode */
goto error;
}
/*
* Got the register, now figure out where
* it goes in the opcode.
*/
switch (*args)
{
case '1':
opcode |= mask << 11;
continue;
case '2':
opcode |= mask << 21;
continue;
case 'd':
opcode |= mask << 16;
continue;
}
break;
case 'e': /* next operand is a floating point register */
case 'f':
case 'g':
if (*s++ == 'f' && isdigit (*s))
{
mask = *s++;
if (isdigit (*s))
{
mask = 10 * (mask - '0') + (*s++ - '0');
if (mask >= 32)
{
break;
}
}
else
{
mask -= '0';
}
switch (*args)
{
case 'e':
opcode |= mask << 11;
continue;
case 'f':
opcode |= mask << 21;
continue;
case 'g':
opcode |= mask << 16;
if (dual_mode != DUAL_OFF)
opcode |= (1 << 9); /* dual mode instruction */
if (dual_mode == DUAL_DDOT)
dual_mode = DUAL_OFF;
if (dual_mode == DUAL_ONDDOT)
dual_mode = DUAL_ON;
if ((opcode & (1 << 10)) && (mask == ((opcode >> 11) & 0x1f)))
as_warn ("Fsr1 equals fdest with Pipelining");
continue;
}
}
break;
case 'c': /* next operand must be a control register */
if (strncmp (s, "fir", 3) == 0)
{
opcode |= 0x0 << 21;
s += 3;
continue;
}
if (strncmp (s, "psr", 3) == 0)
{
opcode |= 0x1 << 21;
s += 3;
continue;
}
if (strncmp (s, "dirbase", 7) == 0)
{
opcode |= 0x2 << 21;
s += 7;
continue;
}
if (strncmp (s, "db", 2) == 0)
{
opcode |= 0x3 << 21;
s += 2;
continue;
}
if (strncmp (s, "fsr", 3) == 0)
{
opcode |= 0x4 << 21;
s += 3;
continue;
}
if (strncmp (s, "epsr", 4) == 0)
{
opcode |= 0x5 << 21;
s += 4;
continue;
}
break;
case '5': /* 5 bit immediate in src1 */
memset (&the_insn, '\0', sizeof (the_insn));
if (!getExpression (s))
{
s = expr_end;
if (the_insn.exp.X_add_number & ~0x1f)
as_bad ("5-bit immediate too large");
opcode |= (the_insn.exp.X_add_number & 0x1f) << 11;
memset (&the_insn, '\0', sizeof (the_insn));
the_insn.reloc = NO_RELOC;
continue;
}
break;
case 'l': /* 26 bit immediate, relative branch */
the_insn.reloc = BRADDR;
the_insn.pcrel = 1;
goto immediate;
case 's': /* 16 bit immediate, split relative branch */
/* upper 5 bits of offset in dest field */
the_insn.pcrel = 1;
the_insn.reloc = SPLIT0;
goto immediate;
case 'S': /* 16 bit immediate, split (st), aligned */
if (opcode & (1 << 28))
if (opcode & 0x1)
the_insn.reloc = SPLIT2;
else
the_insn.reloc = SPLIT1;
else
the_insn.reloc = SPLIT0;
goto immediate;
case 'I': /* 16 bit immediate, aligned */
if (opcode & (1 << 28))
if (opcode & 0x1)
the_insn.reloc = LOW2;
else
the_insn.reloc = LOW1;
else
the_insn.reloc = LOW0;
goto immediate;
case 'i': /* 16 bit immediate */
the_insn.reloc = LOW0;
/*FALLTHROUGH*/
immediate:
if (*s == ' ')
s++;
if (strncmp (s, "ha%", 3) == 0)
{
the_insn.highlow = HIGHADJ;
s += 3;
}
else if (strncmp (s, "h%", 2) == 0)
{
the_insn.highlow = HIGH;
s += 2;
}
else if (strncmp (s, "l%", 2) == 0)
{
the_insn.highlow = PAIR;
s += 2;
}
the_insn.expand = insn->expand;
/* Note that if the getExpression() fails, we will still have
created U entries in the symbol table for the 'symbols'
in the input string. Try not to create U symbols for
registers, etc. */
if (!getExpression (s))
{
s = expr_end;
continue;
}
break;
default:
as_fatal ("failed sanity check.");
}
break;
}
error:
if (match == 0)
{
/* Args don't match. */
if (&insn[1] - i860_opcodes < NUMOPCODES
&& !strcmp (insn->name, insn[1].name))
{
++insn;
s = argsStart;
continue;
}
else
{
as_bad ("Illegal operands");
return;
}
}
break;
}
the_insn.opcode = opcode;
}
static int
getExpression (str)
char *str;
{
char *save_in;
segT seg;
save_in = input_line_pointer;
input_line_pointer = str;
seg = expression (&the_insn.exp);
if (seg != absolute_section
&& seg != undefined_section
&& ! SEG_NORMAL (seg))
{
the_insn.error = "bad segment";
expr_end = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
expr_end = input_line_pointer;
input_line_pointer = save_in;
return 0;
}
/*
This is identical to the md_atof in m68k.c. I think this is right,
but I'm not sure.
Turn a string in input_line_pointer into a floating point constant of type
type, and store the appropriate bytes in *litP. The number of LITTLENUMS
emitted is stored in *sizeP . An error message is returned, or NULL on OK.
*/
/* Equal to MAX_PRECISION in atof-ieee.c */
#define MAX_LITTLENUMS 6
char *
md_atof (type, litP, sizeP)
char type;
char *litP;
int *sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
LITTLENUM_TYPE *wordP;
char *t;
char *atof_ieee ();
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return "Bad call to MD_ATOF()";
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * sizeof (LITTLENUM_TYPE);
for (wordP = words; prec--;)
{
md_number_to_chars (litP, (long) (*wordP++), sizeof (LITTLENUM_TYPE));
litP += sizeof (LITTLENUM_TYPE);
}
return 0;
}
/*
* Write out big-endian.
*/
void
md_number_to_chars (buf, val, n)
char *buf;
valueT val;
int n;
{
number_to_chars_bigendian (buf, val, n);
}
void
md_number_to_imm (buf, val, n, fixP)
char *buf;
long val;
int n;
fixS *fixP;
{
enum reloc_type reloc = fixP->fx_r_type & 0xf;
enum highlow_type highlow = (fixP->fx_r_type >> 4) & 0x3;
assert (buf);
assert (n == 4); /* always on i860 */
switch (highlow)
{
case HIGHADJ: /* adjusts the high-order 16-bits */
if (val & (1 << 15))
val += (1 << 16);
/*FALLTHROUGH*/
case HIGH: /* selects the high-order 16-bits */
val >>= 16;
break;
case PAIR: /* selects the low-order 16-bits */
val = val & 0xffff;
break;
default:
break;
}
switch (reloc)
{
case BRADDR: /* br,call,bc,bc.t,bnc,bnc.t w/26-bit immediate */
if (fixP->fx_pcrel != 1)
as_bad ("26-bit branch w/o pc relative set: 0x%08x", val);
val >>= 2; /* align pcrel offset, see manual */
if (val >= (1 << 25) || val < -(1 << 25)) /* check for overflow */
as_bad ("26-bit branch offset overflow: 0x%08x", val);
buf[0] = (buf[0] & 0xfc) | ((val >> 24) & 0x3);
buf[1] = val >> 16;
buf[2] = val >> 8;
buf[3] = val;
break;
case SPLIT2: /* 16 bit immediate, 4-byte aligned */
if (val & 0x3)
as_bad ("16-bit immediate 4-byte alignment error: 0x%08x", val);
val &= ~0x3; /* 4-byte align value */
/*FALLTHROUGH*/
case SPLIT1: /* 16 bit immediate, 2-byte aligned */
if (val & 0x1)
as_bad ("16-bit immediate 2-byte alignment error: 0x%08x", val);
val &= ~0x1; /* 2-byte align value */
/*FALLTHROUGH*/
case SPLIT0: /* st,bla,bte,btne w/16-bit immediate */
if (fixP->fx_pcrel == 1)
val >>= 2; /* align pcrel offset, see manual */
/* check for bounds */
if (highlow != PAIR && (val >= (1 << 16) || val < -(1 << 15)))
as_bad ("16-bit branch offset overflow: 0x%08x", val);
buf[1] = (buf[1] & ~0x1f) | ((val >> 11) & 0x1f);
buf[2] = (buf[2] & ~0x7) | ((val >> 8) & 0x7);
buf[3] |= val; /* perserve bottom opcode bits */
break;
case LOW4: /* fld,pfld,pst,flush 16-byte aligned */
if (val & 0xf)
as_bad ("16-bit immediate 16-byte alignment error: 0x%08x", val);
val &= ~0xf; /* 16-byte align value */
/*FALLTHROUGH*/
case LOW3: /* fld,pfld,pst,flush 8-byte aligned */
if (val & 0x7)
as_bad ("16-bit immediate 8-byte alignment error: 0x%08x", val);
val &= ~0x7; /* 8-byte align value */
/*FALLTHROUGH*/
case LOW2: /* 16 bit immediate, 4-byte aligned */
if (val & 0x3)
as_bad ("16-bit immediate 4-byte alignment error: 0x%08x", val);
val &= ~0x3; /* 4-byte align value */
/*FALLTHROUGH*/
case LOW1: /* 16 bit immediate, 2-byte aligned */
if (val & 0x1)
as_bad ("16-bit immediate 2-byte alignment error: 0x%08x", val);
val &= ~0x1; /* 2-byte align value */
/*FALLTHROUGH*/
case LOW0: /* 16 bit immediate, byte aligned */
/* check for bounds */
if (highlow != PAIR && (val >= (1 << 16) || val < -(1 << 15)))
as_bad ("16-bit immediate overflow: 0x%08x", val);
buf[2] = val >> 8;
buf[3] |= val; /* perserve bottom opcode bits */
break;
case NO_RELOC:
default:
as_bad ("bad relocation type: 0x%02x", reloc);
break;
}
}
/* should never be called for i860 */
void
md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("i860_create_short_jmp\n");
}
/* should never be called for i860 */
void
md_number_to_disp (buf, val, n)
char *buf;
long val;
{
as_fatal ("md_number_to_disp\n");
}
/* should never be called for i860 */
void
md_number_to_field (buf, val, fix)
char *buf;
long val;
void *fix;
{
as_fatal ("i860_number_to_field\n");
}
/* the bit-field entries in the relocation_info struct plays hell
with the byte-order problems of cross-assembly. So as a hack,
I added this mach. dependent ri twiddler. Ugly, but it gets
you there. -KWK */
/* on i860: first 4 bytes are normal unsigned long address, next three
bytes are index, most sig. byte first. Byte 7 is broken up with
bit 7 as pcrel, bit 6 as extern, and the lower six bits as
relocation type (highlow 5-4). Next 4 bytes are long addend. */
/* Thanx and a tip of the hat to Michael Bloom, mb@ttidca.tti.com */
void
md_ri_to_chars (ri_p, ri)
struct relocation_info *ri_p, ri;
{
#if 0
unsigned char the_bytes[sizeof (*ri_p)];
/* this is easy */
md_number_to_chars (the_bytes, ri.r_address, sizeof (ri.r_address));
/* now the fun stuff */
the_bytes[4] = (ri.r_index >> 16) & 0x0ff;
the_bytes[5] = (ri.r_index >> 8) & 0x0ff;
the_bytes[6] = ri.r_index & 0x0ff;
the_bytes[7] = ((ri.r_extern << 7) & 0x80) | (0 & 0x60) | (ri.r_type & 0x1F);
/* Also easy */
md_number_to_chars (&the_bytes[8], ri.r_addend, sizeof (ri.r_addend));
/* now put it back where you found it, Junior... */
memcpy ((char *) ri_p, the_bytes, sizeof (*ri_p));
#endif
}
/* should never be called for i860 */
void
md_convert_frag (headers, seg, fragP)
object_headers *headers;
segT seg;
register fragS *fragP;
{
as_fatal ("i860_convert_frag\n");
}
/* should never be called for i860 */
void
md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
char *ptr;
addressT from_addr, to_addr;
fragS *frag;
symbolS *to_symbol;
{
as_fatal ("i860_create_long_jump\n");
}
/* should never be called for i860 */
int
md_estimate_size_before_relax (fragP, segtype)
register fragS *fragP;
segT segtype;
{
as_fatal ("i860_estimate_size_before_relax\n");
}
/* for debugging only, must match enum reloc_type */
static char *Reloc[] =
{
"NO_RELOC",
"BRADDR",
"LOW0",
"LOW1",
"LOW2",
"LOW3",
"LOW4",
"SPLIT0",
"SPLIT1",
"SPLIT2",
"RELOC_32",
};
static char *Highlow[] =
{
"NO_SPEC",
"PAIR",
"HIGH",
"HIGHADJ",
};
static void
print_insn (insn)
struct i860_it *insn;
{
if (insn->error)
{
fprintf (stderr, "ERROR: %s\n");
}
fprintf (stderr, "opcode=0x%08x\t", insn->opcode);
fprintf (stderr, "expand=0x%08x\t", insn->expand);
fprintf (stderr, "reloc = %s\t", Reloc[insn->reloc]);
fprintf (stderr, "highlow = %s\n", Highlow[insn->highlow]);
fprintf (stderr, "exp = {\n");
fprintf (stderr, "\t\tX_add_symbol = %s\n",
insn->exp.X_add_symbol ?
(S_GET_NAME (insn->exp.X_add_symbol) ?
S_GET_NAME (insn->exp.X_add_symbol) : "???") : "0");
fprintf (stderr, "\t\tX_op_symbol = %s\n",
insn->exp.X_op_symbol ?
(S_GET_NAME (insn->exp.X_op_symbol) ?
S_GET_NAME (insn->exp.X_op_symbol) : "???") : "0");
fprintf (stderr, "\t\tX_add_number = %d\n",
insn->exp.X_add_number);
fprintf (stderr, "}\n");
}
CONST char *md_shortopts = "";
struct option md_longopts[] = {
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof(md_longopts);
int
md_parse_option (c, arg)
int c;
char *arg;
{
return 0;
}
void
md_show_usage (stream)
FILE *stream;
{
}
#ifdef comment
/*
* I860 relocations are completely different, so it needs
* this machine dependent routine to emit them.
*/
void
emit_machine_reloc (fixP, segment_address_in_file)
register fixS *fixP;
relax_addressT segment_address_in_file;
{
struct reloc_info_i860 ri;
register symbolS *symbolP;
extern char *next_object_file_charP;
long add_number;
memset ((char *) &ri, '\0', sizeof (ri));
for (; fixP; fixP = fixP->fx_next)
{
if (fixP->fx_r_type & ~0x3f)
{
as_fatal ("fixP->fx_r_type = %d\n", fixP->fx_r_type);
}
ri.r_pcrel = fixP->fx_pcrel;
ri.r_type = fixP->fx_r_type;
if ((symbolP = fixP->fx_addsy) != NULL)
{
ri.r_address = fixP->fx_frag->fr_address +
fixP->fx_where - segment_address_in_file;
if (!S_IS_DEFINED (symbolP))
{
ri.r_extern = 1;
ri.r_symbolnum = symbolP->sy_number;
}
else
{
ri.r_extern = 0;
ri.r_symbolnum = S_GET_TYPE (symbolP);
}
if (symbolP && symbolP->sy_frag)
{
ri.r_addend = symbolP->sy_frag->fr_address;
}
ri.r_type = fixP->fx_r_type;
if (fixP->fx_pcrel)
{
/* preserve actual offset vs. pc + 4 */
ri.r_addend -= (ri.r_address + 4);
}
else
{
ri.r_addend = fixP->fx_addnumber;
}
md_ri_to_chars ((char *) &ri, ri);
append (&next_object_file_charP, (char *) &ri, sizeof (ri));
}
}
}
#endif /* comment */
#ifdef OBJ_AOUT
/* on i860: first 4 bytes are normal unsigned long address, next three
bytes are index, most sig. byte first. Byte 7 is broken up with
bit 7 as pcrel, bit 6 as extern, and the lower six bits as
relocation type (highlow 5-4). Next 4 bytes are long addend. */
void
tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
char *where;
fixS *fixP;
relax_addressT segment_address_in_file;
{
long r_index;
long r_extern;
long r_addend = 0;
long r_address;
know (fixP->fx_addsy);
know (!(fixP->fx_r_type & ~0x3f));
if (!S_IS_DEFINED (fixP->fx_addsy))
{
r_extern = 1;
r_index = fixP->fx_addsy->sy_number;
}
else
{
r_extern = 0;
r_index = S_GET_TYPE (fixP->fx_addsy);
}
md_number_to_chars (where,
r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file,
4);
where[4] = (r_index >> 16) & 0x0ff;
where[5] = (r_index >> 8) & 0x0ff;
where[6] = r_index & 0x0ff;
where[7] = (((fixP->fx_pcrel << 7) & 0x80)
| ((r_extern << 6) & 0x40)
| (fixP->fx_r_type & 0x3F));
if (fixP->fx_addsy->sy_frag)
{
r_addend = fixP->fx_addsy->sy_frag->fr_address;
}
if (fixP->fx_pcrel)
{
/* preserve actual offset vs. pc + 4 */
r_addend -= (r_address + 4);
}
else
{
r_addend = fixP->fx_addnumber;
}
md_number_to_chars (&where[8], r_addend, 4);
}
#endif /* OBJ_AOUT */
/* We have no need to default values of symbols. */
/* ARGSUSED */
symbolS *
md_undefined_symbol (name)
char *name;
{
return 0;
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment;
valueT size;
{
return size; /* Byte alignment is fine */
}
/* Exactly what point is a PC-relative offset relative TO?
On the i860, they're relative to the address of the offset, plus
its size. (??? Is this right? FIXME-SOON!) */
long
md_pcrel_from (fixP)
fixS *fixP;
{
return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
void
md_apply_fix (fixP, val)
fixS *fixP;
long val;
{
char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
/* looks to me like i860 never has bit fixes. Let's see. xoxorich. */
know (fixP->fx_bit_fixP == NULL);
if (!fixP->fx_bit_fixP)
{
fixP->fx_addnumber = val;
md_number_to_imm (place, val, fixP->fx_size, fixP);
}
else
{
md_number_to_field (place, val, fixP->fx_bit_fixP);
}
}
/*
* Local Variables:
* fill-column: 131
* comment-column: 0
* End:
*/
/* end of tc-i860.c */