NetBSD/sys/dev/usb/if_udav.c

871 lines
21 KiB
C
Raw Normal View History

/* $NetBSD: if_udav.c,v 1.77 2020/03/15 23:04:51 thorpej Exp $ */
/* $nabe: if_udav.c,v 1.3 2003/08/21 16:57:19 nabe Exp $ */
/*
* Copyright (c) 2003
* Shingo WATANABE <nabe@nabechan.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* DM9601(DAVICOM USB to Ethernet MAC Controller with Integrated 10/100 PHY)
* The spec can be found at the following url.
* http://www.davicom.com.tw/big5/download/Data%20Sheet/DM9601-DS-F01-062202s.pdf
*/
/*
* TODO:
* Interrupt Endpoint support
* External PHYs
* powerhook() support?
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_udav.c,v 1.77 2020/03/15 23:04:51 thorpej Exp $");
#ifdef _KERNEL_OPT
2016-11-25 15:56:29 +03:00
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <dev/usb/usbnet.h>
#include <dev/usb/if_udavreg.h>
/* Function declarations */
2020-01-07 09:42:26 +03:00
static int udav_match(device_t, cfdata_t, void *);
static void udav_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(udav, sizeof(struct usbnet), udav_match, udav_attach,
usbnet_detach, usbnet_activate);
static void udav_chip_init(struct usbnet *);
static unsigned udav_uno_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static void udav_uno_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
static void udav_uno_stop(struct ifnet *, int);
static int udav_uno_ioctl(struct ifnet *, u_long, void *);
static int udav_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
static int udav_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
static void udav_uno_mii_statchg(struct ifnet *);
static int udav_uno_init(struct ifnet *);
static void udav_setiff_locked(struct usbnet *);
static void udav_reset(struct usbnet *);
static int udav_csr_read(struct usbnet *, int, void *, int);
static int udav_csr_write(struct usbnet *, int, void *, int);
static int udav_csr_read1(struct usbnet *, int);
static int udav_csr_write1(struct usbnet *, int, unsigned char);
#if 0
static int udav_mem_read(struct usbnet *, int, void *, int);
static int udav_mem_write(struct usbnet *, int, void *, int);
static int udav_mem_write1(struct usbnet *, int, unsigned char);
#endif
/* Macros */
#ifdef UDAV_DEBUG
#define DPRINTF(x) if (udavdebug) printf x
#define DPRINTFN(n, x) if (udavdebug >= (n)) printf x
2019-08-16 11:29:20 +03:00
int udavdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
#define UDAV_SETBIT(un, reg, x) \
udav_csr_write1(un, reg, udav_csr_read1(un, reg) | (x))
#define UDAV_CLRBIT(un, reg, x) \
udav_csr_write1(un, reg, udav_csr_read1(un, reg) & ~(x))
static const struct udav_type {
struct usb_devno udav_dev;
uint16_t udav_flags;
#define UDAV_EXT_PHY 0x0001
#define UDAV_NO_PHY 0x0002
} udav_devs [] = {
/* Corega USB-TXC */
{{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_FETHER_USB_TXC }, 0},
/* ShanTou ST268 USB NIC */
{{ USB_VENDOR_SHANTOU, USB_PRODUCT_SHANTOU_ST268_USB_NIC }, 0},
2008-02-19 13:52:44 +03:00
/* ShanTou ADM8515 */
{{ USB_VENDOR_SHANTOU, USB_PRODUCT_SHANTOU_ADM8515 }, 0},
/* SUNRISING SR9600 */
{{ USB_VENDOR_SUNRISING, USB_PRODUCT_SUNRISING_SR9600 }, 0 },
/* SUNRISING QF9700 */
{{ USB_VENDOR_SUNRISING, USB_PRODUCT_SUNRISING_QF9700 }, UDAV_NO_PHY },
/* QUAN DM9601 */
{{USB_VENDOR_QUAN, USB_PRODUCT_QUAN_DM9601 }, 0},
#if 0
/* DAVICOM DM9601 Generic? */
/* XXX: The following ids was obtained from the data sheet. */
{{ 0x0a46, 0x9601 }, 0},
#endif
};
#define udav_lookup(v, p) ((const struct udav_type *)usb_lookup(udav_devs, v, p))
2020-01-07 09:42:26 +03:00
static const struct usbnet_ops udav_ops = {
.uno_stop = udav_uno_stop,
.uno_ioctl = udav_uno_ioctl,
.uno_read_reg = udav_uno_mii_read_reg,
.uno_write_reg = udav_uno_mii_write_reg,
.uno_statchg = udav_uno_mii_statchg,
.uno_tx_prepare = udav_uno_tx_prepare,
.uno_rx_loop = udav_uno_rx_loop,
.uno_init = udav_uno_init,
};
/* Probe */
2020-01-07 09:42:26 +03:00
static int
udav_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return udav_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/* Attach */
2020-01-07 09:42:26 +03:00
static void
udav_attach(device_t parent, device_t self, void *aux)
{
USBNET_MII_DECL_DEFAULT(unm);
struct usbnet_mii *unmp;
struct usbnet * const un = device_private(self);
struct usb_attach_arg *uaa = aux;
struct usbd_device *dev = uaa->uaa_device;
struct usbd_interface *iface;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
char *devinfop;
int i;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
un->un_dev = self;
un->un_udev = dev;
un->un_sc = un;
un->un_ops = &udav_ops;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = UDAV_RX_LIST_CNT;
un->un_tx_list_cnt = UDAV_TX_LIST_CNT;
un->un_rx_bufsz = UDAV_BUFSZ;
un->un_tx_bufsz = UDAV_BUFSZ;
/* Move the device into the configured state. */
2008-02-19 13:52:44 +03:00
err = usbd_set_config_no(dev, UDAV_CONFIG_NO, 1); /* idx 0 */
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
/* get control interface */
err = usbd_device2interface_handle(dev, UDAV_IFACE_INDEX, &iface);
if (err) {
aprint_error_dev(self, "failed to get interface, err=%s\n",
usbd_errstr(err));
return;
}
un->un_iface = iface;
un->un_flags = udav_lookup(uaa->uaa_vendor,
uaa->uaa_product)->udav_flags;
/* get interface descriptor */
id = usbd_get_interface_descriptor(un->un_iface);
/* find endpoints */
un->un_ed[USBNET_ENDPT_RX] = un->un_ed[USBNET_ENDPT_TX] =
un->un_ed[USBNET_ENDPT_INTR] = -1;
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get endpoint %d\n", i);
return;
}
if ((ed->bmAttributes & UE_XFERTYPE) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
else if ((ed->bmAttributes & UE_XFERTYPE) == UE_BULK &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT)
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
else if ((ed->bmAttributes & UE_XFERTYPE) == UE_INTERRUPT &&
UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN)
un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
}
if (un->un_ed[USBNET_ENDPT_RX] == 0 ||
un->un_ed[USBNET_ENDPT_TX] == 0 ||
un->un_ed[USBNET_ENDPT_INTR] == 0) {
aprint_error_dev(self, "missing endpoint\n");
return;
}
/* Not supported yet. */
un->un_ed[USBNET_ENDPT_INTR] = 0;
usbnet_lock_core(un);
usbnet_busy(un);
// /* reset the adapter */
// udav_reset(un);
usbnet_attach(un, "udavdet");
/* Get Ethernet Address */
err = udav_csr_read(un, UDAV_PAR, un->un_eaddr, ETHER_ADDR_LEN);
usbnet_unbusy(un);
usbnet_unlock_core(un);
if (err) {
aprint_error_dev(self, "read MAC address failed\n");
return;
}
if (ISSET(un->un_flags, UDAV_NO_PHY))
unmp = NULL;
else
unmp = &unm;
/* initialize interface information */
usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, unmp);
return;
}
#if 0
/* read memory */
static int
udav_mem_read(struct usbnet *un, int offset, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
if (usbnet_isdying(un))
return 0;
offset &= 0xffff;
len &= 0xff;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_MEM_READ;
USETW(req.wValue, 0x0000);
USETW(req.wIndex, offset);
USETW(req.wLength, len);
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("%s: %s: read failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
/* write memory */
static int
udav_mem_write(struct usbnet *un, int offset, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
if (usbnet_isdying(un))
return 0;
offset &= 0xffff;
len &= 0xff;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_MEM_WRITE;
USETW(req.wValue, 0x0000);
USETW(req.wIndex, offset);
USETW(req.wLength, len);
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("%s: %s: write failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
/* write memory */
static int
udav_mem_write1(struct usbnet *un, int offset, unsigned char ch)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
if (usbnet_isdying(un))
return 0;
offset &= 0xffff;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_MEM_WRITE1;
USETW(req.wValue, ch);
USETW(req.wIndex, offset);
USETW(req.wLength, 0x0000);
err = usbd_do_request(un->un_udev, &req, NULL);
if (err) {
DPRINTF(("%s: %s: write failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
#endif
/* read register(s) */
static int
udav_csr_read(struct usbnet *un, int offset, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
usbnet_isowned_core(un);
KASSERT(!usbnet_isdying(un));
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
offset &= 0xff;
len &= 0xff;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_REG_READ;
USETW(req.wValue, 0x0000);
USETW(req.wIndex, offset);
USETW(req.wLength, len);
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("%s: %s: read failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
/* write register(s) */
static int
udav_csr_write(struct usbnet *un, int offset, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
usbnet_isowned_core(un);
KASSERT(!usbnet_isdying(un));
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
offset &= 0xff;
len &= 0xff;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_REG_WRITE;
USETW(req.wValue, 0x0000);
USETW(req.wIndex, offset);
USETW(req.wLength, len);
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("%s: %s: write failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
static int
udav_csr_read1(struct usbnet *un, int offset)
{
uint8_t val = 0;
2005-02-27 03:26:58 +03:00
usbnet_isowned_core(un);
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
if (usbnet_isdying(un))
return 0;
return udav_csr_read(un, offset, &val, 1) ? 0 : val;
}
/* write a register */
static int
udav_csr_write1(struct usbnet *un, int offset, unsigned char ch)
{
usb_device_request_t req;
usbd_status err;
usbnet_isowned_core(un);
KASSERT(!usbnet_isdying(un));
DPRINTFN(0x200,
("%s: %s: enter\n", device_xname(un->un_dev), __func__));
offset &= 0xff;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = UDAV_REQ_REG_WRITE1;
USETW(req.wValue, ch);
USETW(req.wIndex, offset);
USETW(req.wLength, 0x0000);
err = usbd_do_request(un->un_udev, &req, NULL);
if (err) {
DPRINTF(("%s: %s: write failed. off=%04x, err=%d\n",
device_xname(un->un_dev), __func__, offset, err));
}
return err;
}
static int
udav_uno_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct mii_data * const mii = usbnet_mii(un);
uint8_t eaddr[ETHER_ADDR_LEN];
int rc = 0;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
usbnet_lock_core(un);
if (usbnet_isdying(un)) {
usbnet_unlock_core(un);
return EIO;
}
/* Cancel pending I/O and free all TX/RX buffers */
if (ifp->if_flags & IFF_RUNNING)
usbnet_stop(un, ifp, 1);
usbnet_busy(un);
memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
udav_csr_write(un, UDAV_PAR, eaddr, ETHER_ADDR_LEN);
/* Initialize network control register */
/* Disable loopback */
UDAV_CLRBIT(un, UDAV_NCR, UDAV_NCR_LBK0 | UDAV_NCR_LBK1);
/* Initialize RX control register */
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_DIS_LONG | UDAV_RCR_DIS_CRC);
/* If we want promiscuous mode, accept all physical frames. */
if (ifp->if_flags & IFF_PROMISC)
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_ALL | UDAV_RCR_PRMSC);
else
UDAV_CLRBIT(un, UDAV_RCR, UDAV_RCR_ALL | UDAV_RCR_PRMSC);
/* Load the multicast filter */
udav_setiff_locked(un);
/* Enable RX */
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_RXEN);
/* clear POWER_DOWN state of internal PHY */
UDAV_SETBIT(un, UDAV_GPCR, UDAV_GPCR_GEP_CNTL0);
UDAV_CLRBIT(un, UDAV_GPR, UDAV_GPR_GEPIO0);
if (mii && (rc = mii_mediachg(mii)) == ENXIO)
rc = 0;
if (rc != 0) {
usbnet_unbusy(un);
usbnet_unlock_core(un);
return rc;
}
if (usbnet_isdying(un))
rc = EIO;
else
rc = usbnet_init_rx_tx(un);
usbnet_unbusy(un);
usbnet_unlock_core(un);
return rc;
}
static void
udav_reset(struct usbnet *un)
{
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
udav_chip_init(un);
}
static void
udav_chip_init(struct usbnet *un)
{
usbnet_isowned_core(un);
/* Select PHY */
#if 1
/*
* XXX: force select internal phy.
* external phy routines are not tested.
*/
UDAV_CLRBIT(un, UDAV_NCR, UDAV_NCR_EXT_PHY);
#else
if (un->un_flags & UDAV_EXT_PHY) {
UDAV_SETBIT(un, UDAV_NCR, UDAV_NCR_EXT_PHY);
} else {
UDAV_CLRBIT(un, UDAV_NCR, UDAV_NCR_EXT_PHY);
}
#endif
UDAV_SETBIT(un, UDAV_NCR, UDAV_NCR_RST);
for (int i = 0; i < UDAV_TX_TIMEOUT; i++) {
if (!(udav_csr_read1(un, UDAV_NCR) & UDAV_NCR_RST))
break;
delay(10); /* XXX */
}
delay(10000); /* XXX */
}
#define UDAV_BITS 6
#define UDAV_CALCHASH(addr) \
(ether_crc32_le((addr), ETHER_ADDR_LEN) & ((1 << UDAV_BITS) - 1))
static void
udav_setiff_locked(struct usbnet *un)
{
struct ethercom *ec = usbnet_ec(un);
struct ifnet * const ifp = usbnet_ifp(un);
struct ether_multi *enm;
struct ether_multistep step;
uint8_t hashes[8];
int h = 0;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
usbnet_isowned_core(un);
if (usbnet_isdying(un))
return;
if (ISSET(un->un_flags, UDAV_NO_PHY)) {
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_ALL);
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_PRMSC);
return;
}
if (ifp->if_flags & IFF_PROMISC) {
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_ALL | UDAV_RCR_PRMSC);
return;
} else if (ifp->if_flags & IFF_ALLMULTI) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
UDAV_SETBIT(un, UDAV_RCR, UDAV_RCR_ALL);
UDAV_CLRBIT(un, UDAV_RCR, UDAV_RCR_PRMSC);
return;
}
/* first, zot all the existing hash bits */
memset(hashes, 0x00, sizeof(hashes));
hashes[7] |= 0x80; /* broadcast address */
udav_csr_write(un, UDAV_MAR, hashes, sizeof(hashes));
/* now program new ones */
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
ETHER_UNLOCK(ec);
goto allmulti;
}
h = UDAV_CALCHASH(enm->enm_addrlo);
hashes[h>>3] |= 1 << (h & 0x7);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
/* disable all multicast */
ifp->if_flags &= ~IFF_ALLMULTI;
UDAV_CLRBIT(un, UDAV_RCR, UDAV_RCR_ALL);
/* write hash value to the register */
udav_csr_write(un, UDAV_MAR, hashes, sizeof(hashes));
}
static unsigned
udav_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
int total_len;
uint8_t *buf = c->unc_buf;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
2019-08-11 11:56:53 +03:00
if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - 2)
return 0;
/* Copy the mbuf data into a contiguous buffer */
m_copydata(m, 0, m->m_pkthdr.len, buf + 2);
total_len = m->m_pkthdr.len;
if (total_len < UDAV_MIN_FRAME_LEN) {
memset(buf + 2 + total_len, 0,
UDAV_MIN_FRAME_LEN - total_len);
total_len = UDAV_MIN_FRAME_LEN;
}
/* Frame length is specified in the first 2bytes of the buffer */
buf[0] = (uint8_t)total_len;
buf[1] = (uint8_t)(total_len >> 8);
total_len += 2;
DPRINTF(("%s: %s: send %d bytes\n", device_xname(un->un_dev),
__func__, total_len));
return total_len;
}
static void
udav_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
uint16_t pkt_len;
uint8_t pktstat;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
/* first byte in received data */
pktstat = *buf;
total_len -= sizeof(pktstat);
buf += sizeof(pktstat);
DPRINTF(("%s: RX Status: 0x%02x\n", device_xname(un->un_dev), pktstat));
pkt_len = UGETW(buf);
total_len -= sizeof(pkt_len);
buf += sizeof(pkt_len);
DPRINTF(("%s: RX Length: 0x%02x\n", device_xname(un->un_dev), pkt_len));
if (pktstat & UDAV_RSR_LCS) {
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_collisions);
return;
}
if (pkt_len < sizeof(struct ether_header) ||
pkt_len > total_len ||
(pktstat & UDAV_RSR_ERR)) {
2020-01-29 09:35:28 +03:00
if_statinc(ifp, if_ierrors);
return;
}
pkt_len -= ETHER_CRC_LEN;
DPRINTF(("%s: Rx deliver: 0x%02x\n", device_xname(un->un_dev), pkt_len));
usbnet_enqueue(un, buf, pkt_len, 0, 0, 0);
}
static int
udav_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock_core(un);
usbnet_busy(un);
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
udav_setiff_locked(un);
break;
default:
break;
}
usbnet_unbusy(un);
usbnet_unlock_core(un);
return 0;
}
/* Stop the adapter and free any mbufs allocated to the RX and TX lists. */
static void
udav_uno_stop(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
DPRINTF(("%s: %s: enter\n", device_xname(un->un_dev), __func__));
udav_reset(un);
}
static int
udav_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
{
Change MII PHY read/write API from: int (*mii_readreg_t)(device_t, int, int); void (*mii_writereg_t)(device_t, int, int, int); to: int (*mii_readreg_t)(device_t, int, int, uint16_t *); int (*mii_writereg_t)(device_t, int, int, uint16_t); Now we can test if a read/write operation failed or not by the return value. In 802.3 spec says that the PHY shall not respond to read/write transaction to the unimplemented register(22.2.4.3). Detecting timeout can be used to check whether a register is implemented or not (if the register conforms to the spec). ukphy(4) can be used this for MII_MMDACR and MII_MMDAADR. Note that I noticed that the following code do infinite loop in the read/wirte function. If it accesses unimplemented PHY register, it will hang. It should be fixed: arm/at91/at91emac.c arm/ep93xx/epe.c arm/omap/omapl1x_emac.c mips/ralink/ralink_eth.c arch/powerpc/booke/dev/pq3etsec.c(read) dev/cadence/if_cemac.c <- hkenken dev/ic/lan9118.c Tested with the following device: axe+ukphy axe+rgephy axen+rgephy (tested by Andrius V) wm+atphy wm+ukphy wm+igphy wm+ihphy wm+makphy sk+makphy sk+brgphy sk+gentbi msk+makphy sip+icsphy sip+ukphy re+rgephy bge+brgphy bnx+brgphy gsip+gphyter rtk+rlphy fxp+inphy (tested by Andrius V) tlp+acphy ex+exphy epic+qsphy vge+ciphy (tested by Andrius V) vr+ukphy (tested by Andrius V) vte+ukphy (tested by Andrius V) Not tested (MAC): arm:at91emac arm:cemac arm:epe arm:geminigmac arm:enet arm:cpsw arm:emac(omac) arm:emac(sunxi) arm:npe evbppc:temac macppc:bm macppc:gm mips:aumac mips:ae mips:cnmac mips:reth mips:sbmac playstation2:smap powerpc:tsec powerpc:emac(ibm4xx) sgimips:mec sparc:be sf ne(ax88190, dl10019) awge ep gem hme smsh mtd sm age alc ale bce cas et jme lii nfe pcn ste stge tl xi aue mue smsc udav url Not tested (PHY): amhphy bmtphy dmphy etphy glxtphy ikphy iophy lxtphy nsphyter pnaphy rdcphy sqphy tlphy tqphy urlphy
2019-01-22 06:42:24 +03:00
uint8_t data[2];
DPRINTFN(0xff, ("%s: %s: enter, phy=%d reg=0x%04x\n",
device_xname(un->un_dev), __func__, phy, reg));
if (usbnet_isdying(un)) {
#ifdef DIAGNOSTIC
printf("%s: %s: dying\n", device_xname(un->un_dev),
__func__);
#endif
return EINVAL;
}
/* XXX: one PHY only for the internal PHY */
if (phy != 0) {
DPRINTFN(0xff, ("%s: %s: phy=%d is not supported\n",
device_xname(un->un_dev), __func__, phy));
return EINVAL;
}
/* select internal PHY and set PHY register address */
udav_csr_write1(un, UDAV_EPAR,
UDAV_EPAR_PHY_ADR0 | (reg & UDAV_EPAR_EROA_MASK));
/* select PHY operation and start read command */
udav_csr_write1(un, UDAV_EPCR, UDAV_EPCR_EPOS | UDAV_EPCR_ERPRR);
/* XXX: should be wait? */
/* end read command */
UDAV_CLRBIT(un, UDAV_EPCR, UDAV_EPCR_ERPRR);
/* retrieve the result from data registers */
udav_csr_read(un, UDAV_EPDRL, data, 2);
Change MII PHY read/write API from: int (*mii_readreg_t)(device_t, int, int); void (*mii_writereg_t)(device_t, int, int, int); to: int (*mii_readreg_t)(device_t, int, int, uint16_t *); int (*mii_writereg_t)(device_t, int, int, uint16_t); Now we can test if a read/write operation failed or not by the return value. In 802.3 spec says that the PHY shall not respond to read/write transaction to the unimplemented register(22.2.4.3). Detecting timeout can be used to check whether a register is implemented or not (if the register conforms to the spec). ukphy(4) can be used this for MII_MMDACR and MII_MMDAADR. Note that I noticed that the following code do infinite loop in the read/wirte function. If it accesses unimplemented PHY register, it will hang. It should be fixed: arm/at91/at91emac.c arm/ep93xx/epe.c arm/omap/omapl1x_emac.c mips/ralink/ralink_eth.c arch/powerpc/booke/dev/pq3etsec.c(read) dev/cadence/if_cemac.c <- hkenken dev/ic/lan9118.c Tested with the following device: axe+ukphy axe+rgephy axen+rgephy (tested by Andrius V) wm+atphy wm+ukphy wm+igphy wm+ihphy wm+makphy sk+makphy sk+brgphy sk+gentbi msk+makphy sip+icsphy sip+ukphy re+rgephy bge+brgphy bnx+brgphy gsip+gphyter rtk+rlphy fxp+inphy (tested by Andrius V) tlp+acphy ex+exphy epic+qsphy vge+ciphy (tested by Andrius V) vr+ukphy (tested by Andrius V) vte+ukphy (tested by Andrius V) Not tested (MAC): arm:at91emac arm:cemac arm:epe arm:geminigmac arm:enet arm:cpsw arm:emac(omac) arm:emac(sunxi) arm:npe evbppc:temac macppc:bm macppc:gm mips:aumac mips:ae mips:cnmac mips:reth mips:sbmac playstation2:smap powerpc:tsec powerpc:emac(ibm4xx) sgimips:mec sparc:be sf ne(ax88190, dl10019) awge ep gem hme smsh mtd sm age alc ale bce cas et jme lii nfe pcn ste stge tl xi aue mue smsc udav url Not tested (PHY): amhphy bmtphy dmphy etphy glxtphy ikphy iophy lxtphy nsphyter pnaphy rdcphy sqphy tlphy tqphy urlphy
2019-01-22 06:42:24 +03:00
*val = data[0] | (data[1] << 8);
DPRINTFN(0xff, ("%s: %s: phy=%d reg=0x%04x => 0x%04hx\n",
device_xname(un->un_dev), __func__, phy, reg, *val));
return 0;
}
static int
udav_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
{
Change MII PHY read/write API from: int (*mii_readreg_t)(device_t, int, int); void (*mii_writereg_t)(device_t, int, int, int); to: int (*mii_readreg_t)(device_t, int, int, uint16_t *); int (*mii_writereg_t)(device_t, int, int, uint16_t); Now we can test if a read/write operation failed or not by the return value. In 802.3 spec says that the PHY shall not respond to read/write transaction to the unimplemented register(22.2.4.3). Detecting timeout can be used to check whether a register is implemented or not (if the register conforms to the spec). ukphy(4) can be used this for MII_MMDACR and MII_MMDAADR. Note that I noticed that the following code do infinite loop in the read/wirte function. If it accesses unimplemented PHY register, it will hang. It should be fixed: arm/at91/at91emac.c arm/ep93xx/epe.c arm/omap/omapl1x_emac.c mips/ralink/ralink_eth.c arch/powerpc/booke/dev/pq3etsec.c(read) dev/cadence/if_cemac.c <- hkenken dev/ic/lan9118.c Tested with the following device: axe+ukphy axe+rgephy axen+rgephy (tested by Andrius V) wm+atphy wm+ukphy wm+igphy wm+ihphy wm+makphy sk+makphy sk+brgphy sk+gentbi msk+makphy sip+icsphy sip+ukphy re+rgephy bge+brgphy bnx+brgphy gsip+gphyter rtk+rlphy fxp+inphy (tested by Andrius V) tlp+acphy ex+exphy epic+qsphy vge+ciphy (tested by Andrius V) vr+ukphy (tested by Andrius V) vte+ukphy (tested by Andrius V) Not tested (MAC): arm:at91emac arm:cemac arm:epe arm:geminigmac arm:enet arm:cpsw arm:emac(omac) arm:emac(sunxi) arm:npe evbppc:temac macppc:bm macppc:gm mips:aumac mips:ae mips:cnmac mips:reth mips:sbmac playstation2:smap powerpc:tsec powerpc:emac(ibm4xx) sgimips:mec sparc:be sf ne(ax88190, dl10019) awge ep gem hme smsh mtd sm age alc ale bce cas et jme lii nfe pcn ste stge tl xi aue mue smsc udav url Not tested (PHY): amhphy bmtphy dmphy etphy glxtphy ikphy iophy lxtphy nsphyter pnaphy rdcphy sqphy tlphy tqphy urlphy
2019-01-22 06:42:24 +03:00
uint8_t data[2];
DPRINTFN(0xff, ("%s: %s: enter, phy=%d reg=0x%04x val=0x%04hx\n",
device_xname(un->un_dev), __func__, phy, reg, val));
if (usbnet_isdying(un)) {
#ifdef DIAGNOSTIC
printf("%s: %s: dying\n", device_xname(un->un_dev),
__func__);
#endif
return EIO;
}
/* XXX: one PHY only for the internal PHY */
if (phy != 0) {
DPRINTFN(0xff, ("%s: %s: phy=%d is not supported\n",
device_xname(un->un_dev), __func__, phy));
return EIO;
}
/* select internal PHY and set PHY register address */
udav_csr_write1(un, UDAV_EPAR,
UDAV_EPAR_PHY_ADR0 | (reg & UDAV_EPAR_EROA_MASK));
/* put the value to the data registers */
Change MII PHY read/write API from: int (*mii_readreg_t)(device_t, int, int); void (*mii_writereg_t)(device_t, int, int, int); to: int (*mii_readreg_t)(device_t, int, int, uint16_t *); int (*mii_writereg_t)(device_t, int, int, uint16_t); Now we can test if a read/write operation failed or not by the return value. In 802.3 spec says that the PHY shall not respond to read/write transaction to the unimplemented register(22.2.4.3). Detecting timeout can be used to check whether a register is implemented or not (if the register conforms to the spec). ukphy(4) can be used this for MII_MMDACR and MII_MMDAADR. Note that I noticed that the following code do infinite loop in the read/wirte function. If it accesses unimplemented PHY register, it will hang. It should be fixed: arm/at91/at91emac.c arm/ep93xx/epe.c arm/omap/omapl1x_emac.c mips/ralink/ralink_eth.c arch/powerpc/booke/dev/pq3etsec.c(read) dev/cadence/if_cemac.c <- hkenken dev/ic/lan9118.c Tested with the following device: axe+ukphy axe+rgephy axen+rgephy (tested by Andrius V) wm+atphy wm+ukphy wm+igphy wm+ihphy wm+makphy sk+makphy sk+brgphy sk+gentbi msk+makphy sip+icsphy sip+ukphy re+rgephy bge+brgphy bnx+brgphy gsip+gphyter rtk+rlphy fxp+inphy (tested by Andrius V) tlp+acphy ex+exphy epic+qsphy vge+ciphy (tested by Andrius V) vr+ukphy (tested by Andrius V) vte+ukphy (tested by Andrius V) Not tested (MAC): arm:at91emac arm:cemac arm:epe arm:geminigmac arm:enet arm:cpsw arm:emac(omac) arm:emac(sunxi) arm:npe evbppc:temac macppc:bm macppc:gm mips:aumac mips:ae mips:cnmac mips:reth mips:sbmac playstation2:smap powerpc:tsec powerpc:emac(ibm4xx) sgimips:mec sparc:be sf ne(ax88190, dl10019) awge ep gem hme smsh mtd sm age alc ale bce cas et jme lii nfe pcn ste stge tl xi aue mue smsc udav url Not tested (PHY): amhphy bmtphy dmphy etphy glxtphy ikphy iophy lxtphy nsphyter pnaphy rdcphy sqphy tlphy tqphy urlphy
2019-01-22 06:42:24 +03:00
data[0] = val & 0xff;
data[1] = (val >> 8) & 0xff;
udav_csr_write(un, UDAV_EPDRL, data, 2);
/* select PHY operation and start write command */
udav_csr_write1(un, UDAV_EPCR, UDAV_EPCR_EPOS | UDAV_EPCR_ERPRW);
/* XXX: should be wait? */
/* end write command */
UDAV_CLRBIT(un, UDAV_EPCR, UDAV_EPCR_ERPRW);
return 0;
}
static void
udav_uno_mii_statchg(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
struct mii_data * const mii = usbnet_mii(un);
DPRINTF(("%s: %s: enter\n", ifp->if_xname, __func__));
if (usbnet_isdying(un))
return;
2019-10-07 12:37:16 +03:00
if ((mii->mii_media_status & IFM_ACTIVE) &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
DPRINTF(("%s: %s: got link\n",
device_xname(un->un_dev), __func__));
usbnet_set_link(un, true);
}
}
#ifdef _MODULE
#include "ioconf.c"
#endif
USBNET_MODULE(udav)