NetBSD/sys/fs/udf/udf_strat_sequential.c

738 lines
20 KiB
C
Raw Normal View History

/* $NetBSD: udf_strat_sequential.c,v 1.20 2023/06/27 09:58:50 reinoud Exp $ */
/*
* Copyright (c) 2006, 2008 Reinoud Zandijk
* All rights reserved.
2022-08-27 08:31:59 +03:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
2022-08-27 08:31:59 +03:00
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2022-08-27 08:31:59 +03:00
*
*/
#include <sys/cdefs.h>
#ifndef lint
__KERNEL_RCSID(0, "$NetBSD: udf_strat_sequential.c,v 1.20 2023/06/27 09:58:50 reinoud Exp $");
#endif /* not lint */
#if defined(_KERNEL_OPT)
#include "opt_compat_netbsd.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <miscfs/genfs/genfs_node.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/file.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/dirent.h>
#include <sys/stat.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/kthread.h>
#include <dev/clock_subr.h>
#include <fs/udf/ecma167-udf.h>
#include <fs/udf/udf_mount.h>
#include "udf.h"
#include "udf_subr.h"
#include "udf_bswap.h"
#define VTOI(vnode) ((struct udf_node *) vnode->v_data)
#define PRIV(ump) ((struct strat_private *) ump->strategy_private)
/* --------------------------------------------------------------------- */
/* BUFQ's */
#define UDF_SHED_MAX 3
#define UDF_SHED_READING 0
#define UDF_SHED_WRITING 1
#define UDF_SHED_SEQWRITING 2
struct strat_private {
struct pool desc_pool; /* node descriptors */
lwp_t *queue_lwp;
kcondvar_t discstrat_cv; /* to wait on */
kmutex_t discstrat_mutex; /* disc strategy */
int thread_running; /* thread control */
int run_thread; /* thread control */
int thread_finished; /* thread control */
int sync_req; /* thread control */
int cur_queue;
struct disk_strategy old_strategy_setting;
struct bufq_state *queues[UDF_SHED_MAX];
struct timespec last_queued[UDF_SHED_MAX];
};
/* --------------------------------------------------------------------- */
static void
udf_wr_nodedscr_callback(struct buf *buf)
{
struct udf_node *udf_node;
KASSERT(buf);
KASSERT(buf->b_data);
/* called when write action is done */
DPRINTF(WRITE, ("udf_wr_nodedscr_callback(): node written out\n"));
udf_node = VTOI(buf->b_vp);
if (udf_node == NULL) {
putiobuf(buf);
printf("udf_wr_node_callback: NULL node?\n");
return;
}
/* XXX right flags to mark dirty again on error? */
if (buf->b_error) {
udf_node->i_flags |= IN_MODIFIED | IN_ACCESSED;
/* XXX TODO reschedule on error */
}
/* decrement outstanding_nodedscr */
KASSERT(udf_node->outstanding_nodedscr >= 1);
udf_node->outstanding_nodedscr--;
if (udf_node->outstanding_nodedscr == 0) {
/* first unlock the node */
UDF_UNLOCK_NODE(udf_node, 0);
cv_broadcast(&udf_node->node_lock);
}
putiobuf(buf);
}
/* --------------------------------------------------------------------- */
static int
udf_create_logvol_dscr_seq(struct udf_strat_args *args)
{
union dscrptr **dscrptr = &args->dscr;
struct udf_mount *ump = args->ump;
struct strat_private *priv = PRIV(ump);
uint32_t lb_size;
lb_size = udf_rw32(ump->logical_vol->lb_size);
*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
memset(*dscrptr, 0, lb_size);
return 0;
}
static void
udf_free_logvol_dscr_seq(struct udf_strat_args *args)
{
union dscrptr *dscr = args->dscr;
struct udf_mount *ump = args->ump;
struct strat_private *priv = PRIV(ump);
pool_put(&priv->desc_pool, dscr);
}
static int
udf_read_logvol_dscr_seq(struct udf_strat_args *args)
{
union dscrptr **dscrptr = &args->dscr;
union dscrptr *tmpdscr;
struct udf_mount *ump = args->ump;
struct long_ad *icb = args->icb;
struct strat_private *priv = PRIV(ump);
uint32_t lb_size;
uint32_t sector, dummy;
int error;
lb_size = udf_rw32(ump->logical_vol->lb_size);
error = udf_translate_vtop(ump, icb, &sector, &dummy);
if (error)
return error;
/* try to read in fe/efe */
error = udf_read_phys_dscr(ump, sector, M_UDFTEMP, &tmpdscr);
if (error)
return error;
*dscrptr = pool_get(&priv->desc_pool, PR_WAITOK);
memcpy(*dscrptr, tmpdscr, lb_size);
free(tmpdscr, M_UDFTEMP);
return 0;
}
static int
udf_write_logvol_dscr_seq(struct udf_strat_args *args)
{
union dscrptr *dscr = args->dscr;
struct udf_mount *ump = args->ump;
struct udf_node *udf_node = args->udf_node;
struct long_ad *icb = args->icb;
int waitfor = args->waitfor;
uint32_t logsectornr, sectornr, dummy;
int error, vpart;
/*
2022-08-27 08:31:59 +03:00
* we have to decide if we write it out sequential or at its fixed
* position by examining the partition its (to be) written on.
*/
vpart = udf_rw16(udf_node->loc.loc.part_num);
logsectornr = udf_rw32(icb->loc.lb_num);
sectornr = 0;
if (ump->vtop_tp[vpart] != UDF_VTOP_TYPE_VIRT) {
error = udf_translate_vtop(ump, icb, &sectornr, &dummy);
if (error)
goto out;
}
if (waitfor) {
DPRINTF(WRITE, ("udf_write_logvol_dscr: sync write\n"));
error = udf_write_phys_dscr_sync(ump, udf_node, UDF_C_NODE,
dscr, sectornr, logsectornr);
} else {
DPRINTF(WRITE, ("udf_write_logvol_dscr: no wait, async write\n"));
error = udf_write_phys_dscr_async(ump, udf_node, UDF_C_NODE,
dscr, sectornr, logsectornr, udf_wr_nodedscr_callback);
/* will be UNLOCKED in call back */
return error;
}
out:
udf_node->outstanding_nodedscr--;
if (udf_node->outstanding_nodedscr == 0) {
UDF_UNLOCK_NODE(udf_node, 0);
cv_broadcast(&udf_node->node_lock);
}
return error;
}
/* --------------------------------------------------------------------- */
/*
* Main file-system specific scheduler. Due to the nature of optical media
* scheduling can't be performed in the traditional way. Most OS
* implementations i've seen thus read or write a file atomically giving all
* kinds of side effects.
*
* This implementation uses a kernel thread to schedule the queued requests in
2022-08-27 08:32:41 +03:00
* such a way that is semi-optimal for optical media; this means approximately
* (R*|(Wr*|Ws*))* since switching between reading and writing is expensive in
* time.
*/
static void
udf_queuebuf_seq(struct udf_strat_args *args)
{
struct udf_mount *ump = args->ump;
struct buf *nestbuf = args->nestbuf;
struct strat_private *priv = PRIV(ump);
int queue;
int what;
KASSERT(ump);
KASSERT(nestbuf);
KASSERT(nestbuf->b_iodone == nestiobuf_iodone);
what = nestbuf->b_udf_c_type;
queue = UDF_SHED_READING;
if ((nestbuf->b_flags & B_READ) == 0) {
/* writing */
queue = UDF_SHED_SEQWRITING;
if (what == UDF_C_ABSOLUTE)
queue = UDF_SHED_WRITING;
}
/* use our own scheduler lists for more complex scheduling */
mutex_enter(&priv->discstrat_mutex);
bufq_put(priv->queues[queue], nestbuf);
vfs_timestamp(&priv->last_queued[queue]);
mutex_exit(&priv->discstrat_mutex);
/* signal our thread that there might be something to do */
cv_signal(&priv->discstrat_cv);
}
/* --------------------------------------------------------------------- */
static void
udf_sync_caches_seq(struct udf_strat_args *args)
{
struct udf_mount *ump = args->ump;
struct strat_private *priv = PRIV(ump);
/* we might be called during unmount inadvertedly, be on safe side */
if (!priv)
return;
/* signal our thread that there might be something to do */
priv->sync_req = 1;
cv_signal(&priv->discstrat_cv);
mutex_enter(&priv->discstrat_mutex);
while (priv->sync_req) {
cv_timedwait(&priv->discstrat_cv,
&priv->discstrat_mutex, hz/8);
}
mutex_exit(&priv->discstrat_mutex);
}
/* --------------------------------------------------------------------- */
/* TODO convert to lb_size */
static void
udf_VAT_mapping_update(struct udf_mount *ump, struct buf *buf, uint32_t lb_map)
{
union dscrptr *fdscr = (union dscrptr *) buf->b_data;
struct vnode *vp = buf->b_vp;
struct udf_node *udf_node = VTOI(vp);
uint32_t lb_num;
uint32_t udf_rw32_lbmap;
int c_type = buf->b_udf_c_type;
int error;
/* only interested when we're using a VAT */
KASSERT(ump->vat_node);
KASSERT(ump->vtop_alloc[ump->node_part] == UDF_ALLOC_VAT);
/* only nodes are recorded in the VAT */
/* NOTE: and the fileset descriptor (FIXME ?) */
if (c_type != UDF_C_NODE)
return;
udf_rw32_lbmap = udf_rw32(lb_map);
/* if we're the VAT itself, only update our assigned sector number */
if (udf_node == ump->vat_node) {
fdscr->tag.tag_loc = udf_rw32_lbmap;
udf_validate_tag_sum(fdscr);
DPRINTF(TRANSLATE, ("VAT assigned to sector %u\n",
udf_rw32(udf_rw32_lbmap)));
/* no use mapping the VAT node in the VAT */
return;
}
/* record new position in VAT file */
lb_num = udf_rw32(fdscr->tag.tag_loc);
/* lb_num = udf_rw32(udf_node->write_loc.loc.lb_num); */
DPRINTF(TRANSLATE, ("VAT entry change (log %u -> phys %u)\n",
lb_num, lb_map));
/* VAT should be the longer than this write, can't go wrong */
KASSERT(lb_num <= ump->vat_entries);
mutex_enter(&ump->allocate_mutex);
error = udf_vat_write(ump->vat_node,
(uint8_t *) &udf_rw32_lbmap, 4,
ump->vat_offset + lb_num * 4);
mutex_exit(&ump->allocate_mutex);
if (error)
panic( "udf_VAT_mapping_update: HELP! i couldn't "
"write in the VAT file ?\n");
}
static void
udf_issue_buf(struct udf_mount *ump, int queue, struct buf *buf)
{
union dscrptr *dscr;
struct long_ad *node_ad_cpy;
struct part_desc *pdesc;
2013-10-18 23:56:55 +04:00
uint64_t *lmapping, *lmappos;
uint32_t sectornr, bpos;
uint32_t ptov;
uint16_t vpart_num;
uint8_t *fidblk;
int sector_size = ump->discinfo.sector_size;
int blks = sector_size / DEV_BSIZE;
int len, buf_len;
/* if reading, just pass to the device's STRATEGY */
if (queue == UDF_SHED_READING) {
DPRINTF(SHEDULE, ("\nudf_issue_buf READ %p : sector %d type %d,"
"b_resid %d, b_bcount %d, b_bufsize %d\n",
buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
buf->b_resid, buf->b_bcount, buf->b_bufsize));
VOP_STRATEGY(ump->devvp, buf);
return;
}
if (queue == UDF_SHED_WRITING) {
DPRINTF(SHEDULE, ("\nudf_issue_buf WRITE %p : sector %d "
"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
buf, (uint32_t) buf->b_blkno / blks, buf->b_udf_c_type,
buf->b_resid, buf->b_bcount, buf->b_bufsize));
KASSERT(buf->b_udf_c_type == UDF_C_ABSOLUTE);
// udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
VOP_STRATEGY(ump->devvp, buf);
return;
}
KASSERT(queue == UDF_SHED_SEQWRITING);
DPRINTF(SHEDULE, ("\nudf_issue_buf SEQWRITE %p : sector XXXX "
"type %d, b_resid %d, b_bcount %d, b_bufsize %d\n",
buf, buf->b_udf_c_type, buf->b_resid, buf->b_bcount,
buf->b_bufsize));
/*
* Buffers should not have been allocated to disc addresses yet on
* this queue. Note that a buffer can get multiple extents allocated.
*
* lmapping contains lb_num relative to base partition.
*/
lmapping = ump->la_lmapping;
node_ad_cpy = ump->la_node_ad_cpy;
/* logically allocate buf and map it in the file */
udf_late_allocate_buf(ump, buf, lmapping, node_ad_cpy, &vpart_num);
/*
* NOTE We are using the knowledge here that sequential media will
* always be mapped linearly. Thus no use to explicitly translate the
* lmapping list.
*/
/* calculate offset from physical base partition */
pdesc = ump->partitions[ump->vtop[vpart_num]];
ptov = udf_rw32(pdesc->start_loc);
/* set buffers blkno to the physical block number */
buf->b_blkno = (*lmapping + ptov) * blks;
/* fixate floating descriptors */
if (buf->b_udf_c_type == UDF_C_FLOAT_DSCR) {
/* set our tag location to the absolute position */
dscr = (union dscrptr *) buf->b_data;
dscr->tag.tag_loc = udf_rw32(*lmapping + ptov);
udf_validate_tag_and_crc_sums(dscr);
}
/* update mapping in the VAT */
if (buf->b_udf_c_type == UDF_C_NODE) {
udf_VAT_mapping_update(ump, buf, *lmapping);
udf_fixup_node_internals(ump, buf->b_data, buf->b_udf_c_type);
}
/* if we have FIDs, fixup using the new allocation table */
if (buf->b_udf_c_type == UDF_C_FIDS) {
buf_len = buf->b_bcount;
bpos = 0;
lmappos = lmapping;
while (buf_len) {
sectornr = *lmappos++;
len = MIN(buf_len, sector_size);
fidblk = (uint8_t *) buf->b_data + bpos;
udf_fixup_fid_block(fidblk, sector_size,
0, len, sectornr);
bpos += len;
buf_len -= len;
}
}
VOP_STRATEGY(ump->devvp, buf);
}
static void
udf_doshedule(struct udf_mount *ump)
{
struct buf *buf;
struct timespec now, *last;
struct strat_private *priv = PRIV(ump);
void (*b_callback)(struct buf *);
int new_queue;
int error;
buf = bufq_get(priv->queues[priv->cur_queue]);
if (buf) {
/* transfer from the current queue to the device queue */
mutex_exit(&priv->discstrat_mutex);
/* transform buffer to synchronous; XXX needed? */
b_callback = buf->b_iodone;
buf->b_iodone = NULL;
CLR(buf->b_flags, B_ASYNC);
/* issue and wait on completion */
udf_issue_buf(ump, priv->cur_queue, buf);
biowait(buf);
mutex_enter(&priv->discstrat_mutex);
/* if there is an error, repair this error, otherwise propagate */
if (buf->b_error && ((buf->b_flags & B_READ) == 0)) {
/* check what we need to do */
panic("UDF write error, can't handle yet!\n");
}
/* propagate result to higher layers */
if (b_callback) {
buf->b_iodone = b_callback;
(*buf->b_iodone)(buf);
}
return;
}
/* Check if we're idling in this state */
vfs_timestamp(&now);
last = &priv->last_queued[priv->cur_queue];
if (ump->discinfo.mmc_class == MMC_CLASS_CD) {
/* dont switch too fast for CD media; its expensive in time */
if (now.tv_sec - last->tv_sec < 3)
return;
}
/* check if we can/should switch */
new_queue = priv->cur_queue;
if (bufq_peek(priv->queues[UDF_SHED_READING]))
new_queue = UDF_SHED_READING;
if (bufq_peek(priv->queues[UDF_SHED_WRITING])) /* only for unmount */
new_queue = UDF_SHED_WRITING;
if (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]))
new_queue = UDF_SHED_SEQWRITING;
if (priv->cur_queue == UDF_SHED_READING) {
if (new_queue == UDF_SHED_SEQWRITING) {
/* TODO use flag to signal if this is needed */
mutex_exit(&priv->discstrat_mutex);
/* update trackinfo for data and metadata */
error = udf_update_trackinfo(ump,
&ump->data_track);
assert(error == 0);
error = udf_update_trackinfo(ump,
&ump->metadata_track);
assert(error == 0);
mutex_enter(&priv->discstrat_mutex);
2014-03-23 13:30:59 +04:00
__USE(error);
}
}
if (new_queue != priv->cur_queue) {
DPRINTF(SHEDULE, ("switching from %d to %d\n",
priv->cur_queue, new_queue));
if (new_queue == UDF_SHED_READING)
udf_mmc_synchronise_caches(ump);
}
priv->cur_queue = new_queue;
}
static void
udf_discstrat_thread(void *arg)
{
struct udf_mount *ump = (struct udf_mount *) arg;
struct strat_private *priv = PRIV(ump);
int empty;
empty = 1;
priv->thread_running = 1;
cv_broadcast(&priv->discstrat_cv);
mutex_enter(&priv->discstrat_mutex);
while (priv->run_thread || !empty || priv->sync_req) {
/* process the current selected queue */
udf_doshedule(ump);
empty = (bufq_peek(priv->queues[UDF_SHED_READING]) == NULL);
empty &= (bufq_peek(priv->queues[UDF_SHED_WRITING]) == NULL);
empty &= (bufq_peek(priv->queues[UDF_SHED_SEQWRITING]) == NULL);
/* wait for more if needed */
if (empty) {
if (priv->sync_req) {
/* on sync, we need to simulate a read->write transition */
udf_mmc_synchronise_caches(ump);
priv->cur_queue = UDF_SHED_READING;
priv->sync_req = 0;
}
cv_timedwait(&priv->discstrat_cv,
&priv->discstrat_mutex, hz/8);
}
}
mutex_exit(&priv->discstrat_mutex);
priv->thread_running = 0;
priv->thread_finished = 1;
cv_broadcast(&priv->discstrat_cv);
kthread_exit(0);
/* not reached */
}
/* --------------------------------------------------------------------- */
static void
udf_discstrat_init_seq(struct udf_strat_args *args)
{
struct udf_mount *ump = args->ump;
struct strat_private *priv = PRIV(ump);
struct disk_strategy dkstrat;
uint32_t lb_size;
KASSERT(ump);
KASSERT(ump->logical_vol);
KASSERT(priv == NULL);
lb_size = udf_rw32(ump->logical_vol->lb_size);
KASSERT(lb_size > 0);
/* initialise our memory space */
ump->strategy_private = malloc(sizeof(struct strat_private),
M_UDFTEMP, M_WAITOK);
priv = ump->strategy_private;
memset(priv, 0 , sizeof(struct strat_private));
/* initialise locks */
cv_init(&priv->discstrat_cv, "udfstrat");
mutex_init(&priv->discstrat_mutex, MUTEX_DEFAULT, IPL_NONE);
/*
* Initialise pool for descriptors associated with nodes. This is done
* in lb_size units though currently lb_size is dictated to be
* sector_size.
*/
pool_init(&priv->desc_pool, lb_size, 0, 0, 0, "udf_desc_pool", NULL,
IPL_NONE);
/*
* remember old device strategy method and explicit set method
* `discsort' since we have our own more complex strategy that is not
* implementable on the CD device and other strategies will get in the
* way.
*/
memset(&priv->old_strategy_setting, 0,
sizeof(struct disk_strategy));
VOP_IOCTL(ump->devvp, DIOCGSTRATEGY, &priv->old_strategy_setting,
FREAD | FKIOCTL, NOCRED);
memset(&dkstrat, 0, sizeof(struct disk_strategy));
strcpy(dkstrat.dks_name, "discsort");
VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &dkstrat, FWRITE | FKIOCTL,
NOCRED);
/* initialise our internal scheduler */
priv->cur_queue = UDF_SHED_READING;
bufq_alloc(&priv->queues[UDF_SHED_READING], "disksort",
BUFQ_SORT_RAWBLOCK);
bufq_alloc(&priv->queues[UDF_SHED_WRITING], "disksort",
BUFQ_SORT_RAWBLOCK);
bufq_alloc(&priv->queues[UDF_SHED_SEQWRITING], "fcfs", 0);
vfs_timestamp(&priv->last_queued[UDF_SHED_READING]);
vfs_timestamp(&priv->last_queued[UDF_SHED_WRITING]);
vfs_timestamp(&priv->last_queued[UDF_SHED_SEQWRITING]);
/* create our disk strategy thread */
priv->thread_finished = 0;
priv->thread_running = 0;
priv->run_thread = 1;
priv->sync_req = 0;
if (kthread_create(PRI_NONE, 0 /* KTHREAD_MPSAFE*/, NULL /* cpu_info*/,
udf_discstrat_thread, ump, &priv->queue_lwp,
"%s", "udf_rw")) {
panic("fork udf_rw");
}
/* wait for thread to spin up */
mutex_enter(&priv->discstrat_mutex);
while (!priv->thread_running) {
cv_timedwait(&priv->discstrat_cv, &priv->discstrat_mutex, hz);
}
mutex_exit(&priv->discstrat_mutex);
}
static void
udf_discstrat_finish_seq(struct udf_strat_args *args)
{
struct udf_mount *ump = args->ump;
struct strat_private *priv = PRIV(ump);
if (ump == NULL)
return;
/* stop our scheduling thread */
KASSERT(priv->run_thread == 1);
priv->run_thread = 0;
mutex_enter(&priv->discstrat_mutex);
while (!priv->thread_finished) {
cv_broadcast(&priv->discstrat_cv);
cv_timedwait(&priv->discstrat_cv, &priv->discstrat_mutex, hz);
}
mutex_exit(&priv->discstrat_mutex);
/* kthread should be finished now */
/* set back old device strategy method */
VOP_IOCTL(ump->devvp, DIOCSSTRATEGY, &priv->old_strategy_setting,
FWRITE, NOCRED);
/* destroy our pool */
pool_destroy(&priv->desc_pool);
mutex_destroy(&priv->discstrat_mutex);
cv_destroy(&priv->discstrat_cv);
/* free our private space */
free(ump->strategy_private, M_UDFTEMP);
ump->strategy_private = NULL;
}
/* --------------------------------------------------------------------- */
struct udf_strategy udf_strat_sequential =
{
udf_create_logvol_dscr_seq,
udf_free_logvol_dscr_seq,
udf_read_logvol_dscr_seq,
udf_write_logvol_dscr_seq,
udf_queuebuf_seq,
udf_sync_caches_seq,
udf_discstrat_init_seq,
udf_discstrat_finish_seq
};
2022-08-27 08:31:59 +03:00