NetBSD/sys/arch/powerpc/mpc6xx/pmap.c

2416 lines
56 KiB
C
Raw Normal View History

/* $NetBSD: pmap.c,v 1.1 2001/06/06 17:36:03 matt Exp $ */
/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/systm.h>
#if __NetBSD_Version__ < 105010000
#include <vm/vm.h>
#include <vm/vm_kern.h>
#define splvm() splimp()
#endif
#include <uvm/uvm.h>
#include <machine/pcb.h>
#include <machine/powerpc.h>
#include <powerpc/mpc6xx/bat.h>
struct pteg {
pte_t pt[8];
};
typedef struct pteg pteg_t;
volatile pteg_t *pteg_table;
unsigned int pteg_cnt;
unsigned int pteg_mask;
struct pmap kernel_pmap_;
unsigned int pmap_pages_stolen;
u_long pmap_pte_valid;
u_long pmap_pte_overflow;
u_long pmap_pte_replacements;
u_long pmap_pvo_entries;
u_long pmap_pvo_enter_calls;
u_long pmap_pvo_remove_calls;
u_int64_t pmap_pte_spills = 0;
struct pvo_entry *pmap_pvo_syncicache;
struct pvo_entry *pmap_pvo_zeropage;
struct pvo_entry *pmap_pvo_copypage_src;
struct pvo_entry *pmap_pvo_copypage_dst;
vaddr_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
unsigned int pmap_rkva_count = 4;
int physmem;
static u_int nextavail;
#ifndef MSGBUFADDR
extern paddr_t msgbuf_paddr;
#endif
static struct mem_region *mem, *avail;
#ifdef __HAVE_PMAP_PHYSSEG
/*
* This is a cache of referenced/modified bits.
* Bits herein are shifted by ATTRSHFT.
*/
#define ATTR_SHFT 4
struct pmap_physseg pmap_physseg;
#endif
/*
* The following structure is exactly 32 bytes long (one cacheline).
*/
struct pvo_entry {
LIST_ENTRY(pvo_entry) pvo_vlink; /* Link to common virt page */
LIST_ENTRY(pvo_entry) pvo_olink; /* Link to overflow entry */
struct pte pvo_pte; /* Prebuilt PTE */
pmap_t pvo_pmap; /* ptr to owning pmap */
vaddr_t pvo_vaddr; /* VA of entry */
};
struct pvo_head *pvo_table; /* pvo entries by ptegroup index */
struct pvo_head pvo_kunmanaged = LIST_HEAD_INITIALIZER(pvo_kunmanaged); /* list of unmanaged pages */
struct pvo_head pvo_unmanaged = LIST_HEAD_INITIALIZER(pvo_unmanaged); /* list of unmanaged pages */
struct pool pmap_pl; /* pool for pmap structures */
struct pool pmap_upvo_pl; /* pool for pvo entries for unmanaged pages */
struct pool pmap_mpvo_pl; /* pool for pvo entries for managed pages */
/*
* We keep a cache of unmanaged pages to be used for pvo entries for
* unmanaged pages.
*/
struct pvo_page {
SIMPLEQ_ENTRY(pvo_page) pvop_link;
};
SIMPLEQ_HEAD(pvop_head, pvo_page);
struct pvop_head pmap_pvop_head = SIMPLEQ_HEAD_INITIALIZER(pmap_pvop_head);
void *pmap_pool_ualloc(unsigned long, int, int);
void *pmap_pool_malloc(unsigned long, int, int);
void pmap_pool_ufree(void *, unsigned long, int);
void pmap_pool_mfree(void *, unsigned long, int);
#ifdef DEBUG
void pte_print(volatile pte_t *pt);
void pmap_pvo_check(const struct pvo_entry *);
#define PMAP_PVO_CHECK(pvo) \
do { \
if (pmapdebug > 4) \
pmap_pvo_check(pvo); \
} while (0)
#else
#define PMAP_PVO_CHECK(pvo) do { } while (/*CONSTCOND*/0)
#endif
void pmap_pvo_remove(struct pvo_entry *, int, int);
struct pvo_entry *pmap_pvo_find_va(pmap_t, vaddr_t, int *);
struct pvo_entry *pmap_rkva_alloc(int);
volatile pte_t *pmap_pa_map(struct pvo_entry *, paddr_t);
void pmap_pa_unmap(struct pvo_entry *, volatile pte_t *);
void pmap_pinit (pmap_t);
void pmap_release (pmap_t);
static u_int usedsr[NPMAPS / sizeof(u_int) / 8];
static int pmap_initialized;
#if defined(DEBUG)
unsigned int pmapdebug = 0;
# define DPRINTF(x) printf x
# define DPRINTFN(n, x) if (pmapdebug >= (n)) printf x
#else
# define DPRINTF(x)
# define DPRINTFN(n, x)
#endif
#define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va))
#define TLBSYNC() __asm __volatile("tlbsync")
#define SYNC() __asm __volatile("sync")
#define EIEIO() __asm __volatile("eieio")
#define MFTB() mftb()
static __inline u_int
mftb(void)
{
u_int tb;
__asm __volatile("mftb %0" : "=r"(tb) : );
return tb;
}
/*
* These small routines may have to be replaced,
* if/when we support processors other that the 604.
*/
void
tlbia()
{
caddr_t i;
SYNC();
/* why not use "tlbia"? */
for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000)
TLBIE(i);
TLBSYNC();
}
static __inline int
va_to_sr(sr_t *sr, vaddr_t va)
{
return sr[(uintptr_t)va >> ADDR_SR_SHFT];
}
static __inline int
va_to_pteg(sr_t sr, vaddr_t addr)
{
int hash;
hash = (sr & SR_VSID) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT);
return hash & pteg_mask;
}
#ifdef DEBUG
/*
* Given a PTE in the page table, calculate the VADDR that hashes to it.
* The only bit of magic is that the top 4 bits of the address doesn't
* technically exist in the PTE. But we know we reserved 4 bits of the
* VSID for it so that's how we get it.
*/
static vaddr_t
pte_to_va(volatile const pte_t *pt)
{
vaddr_t va;
/* PPC Bits 10-19 */
va = ((pt->pte_hi >> PTE_VSID_SHFT) ^ ((uintptr_t)pt >> 6)) & 0x3ff;
va <<= ADDR_PIDX_SHFT;
/* PPC Bits 4-9 */
va |= (pt->pte_hi & PTE_API) << ADDR_API_SHFT;
/* PPC Bits 0-3 */
va |= VSID_TO_SR(pt->pte_hi >> PTE_VSID_SHFT) << ADDR_SR_SHFT;
return va;
}
#endif
static __inline struct pvo_head *
pa_to_pvoh(paddr_t pa)
{
#ifdef __HAVE_VM_PAGE_MD
struct vm_page *pg;
pg = PHYS_TO_VM_PAGE(pa);
if (pg == NULL)
return &pvo_unmanaged;
return &pg->mdpage.mdpg_pvoh;
#endif
#ifdef __HAVE_PMAP_PHYSSEG
int bank, pg;
bank = vm_physseg_find(atop(pa), &pg);
if (bank == -1)
return &pvo_unmanaged;
return &vm_physmem[bank].pmseg.pvoh[pg];
#endif
}
static __inline struct pvo_head *
vm_page_to_pvoh(struct vm_page *pg)
{
#ifdef __HAVE_VM_PAGE_MD
return &pg->mdpage.mdpg_pvoh;
#endif
#ifdef __HAVE_PMAP_PHYSSEG
return pa_to_pvoh(VM_PAGE_TO_PHYS(pg));
#endif
}
#ifdef __HAVE_PMAP_PHYSSEG
static __inline char *
pa_to_attr(paddr_t pa)
{
int bank, pg;
bank = vm_physseg_find(atop(pa), &pg);
if (bank == -1)
return NULL;
return &vm_physmem[bank].pmseg.attrs[pg];
}
#endif
static __inline void
pmap_attr_clear(struct vm_page *pg, int ptebit)
{
#ifdef __HAVE_PMAP_PHYSSEG
*pa_to_attr(VM_PAGE_TO_PHYS(pg)) &= ~(ptebit >> ATTR_SHFT);
#endif
#ifdef __HAVE_VM_PAGE_MD
pg->mdpage.mdpg_attrs &= ~ptebit;
#endif
}
static __inline int
pmap_attr_fetch(struct vm_page *pg)
{
#ifdef __HAVE_PMAP_PHYSSEG
return *pa_to_attr(VM_PAGE_TO_PHYS(pg)) << ATTR_SHFT;
#endif
#ifdef __HAVE_VM_PAGE_MD
return pg->mdpage.mdpg_attrs;
#endif
}
static __inline void
pmap_attr_save(struct vm_page *pg, int ptebit)
{
#ifdef __HAVE_PMAP_PHYSSEG
*pa_to_attr(VM_PAGE_TO_PHYS(pg)) |= (ptebit >> ATTR_SHFT);
#endif
#ifdef __HAVE_VM_PAGE_MD
pg->mdpage.mdpg_attrs |= ptebit;
#endif
}
static __inline int
pte_compare(const volatile pte_t *pt, const pte_t *pvo_pt)
{
if (pt->pte_hi == pvo_pt->pte_hi
#if 0
&& ((pt->pte_lo ^ pvo_pt->pte_lo) &
~(PTE_RSVD|PTE_M|PTE_REF|PTE_CHG)) == 0
#endif
)
return 1;
return 0;
}
static __inline int
pte_match(volatile pte_t *pt, sr_t sr, vaddr_t va, int which)
{
return (pt->pte_hi & ~PTE_VALID)
== ( ((sr & SR_VSID) << PTE_VSID_SHFT)
| ((va >> ADDR_API_SHFT) & PTE_API)
| which);
}
static __inline void
pte_create(pte_t *pt, sr_t sr, vaddr_t va, u_int pte_lo)
{
/*
* Construct the PTE. Default to IMB initially. Valid bit
* only gets set when the real pte is set in memory.
*
* Note: Don't set the valid bit for correct operation of tlb update.
*/
pt->pte_hi = ((sr & SR_VSID) << PTE_VSID_SHFT)
| (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
pt->pte_lo = pte_lo;
}
static __inline void
pte_synch(volatile pte_t *pt, pte_t *pvo_pt)
{
pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF|PTE_CHG);
}
static __inline void
pte_clear(volatile pte_t *pt, int ptebit)
{
pt->pte_lo &= ~ptebit;
TLBIE(pt);
TLBSYNC();
}
static __inline void
pte_set(volatile pte_t *pt, pte_t *pvo_pt)
{
if (pvo_pt->pte_hi & PTE_VALID)
panic("pte_set: setting an already valid pte %p", pvo_pt);
pvo_pt->pte_hi |= PTE_VALID;
/*
* Update the PTE as defined in section 7.6.3.1
* Note that the REF/CHG bits are from pvo_pt and thus should
* have been saved so this routine can restore them (if desired).
*/
pt->pte_lo = pvo_pt->pte_lo & ~(PTE_RSVD|PTE_M);
EIEIO();
pt->pte_hi = pvo_pt->pte_hi;
SYNC();
TLBSYNC();
pmap_pte_valid++;
}
static __inline void
pte_setidx(volatile pte_t *pt, pte_t *pvo_pt, int idx)
{
/*
* Set the pte itself.
*/
pte_set(pt, pvo_pt);
/*
* Save the index where we the pte was placed.
*/
if (((((uintptr_t) pt) >> 3) & 7) != idx)
panic("pte_setidx: inconsistent idx %d pte %p", idx, pt);
pvo_pt->pte_lo &= ~PTE_GIDX_MASK;
pvo_pt->pte_lo |= (idx << PTE_GIDX_SHFT);
}
static __inline void
pte_unset(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va)
{
if ((pvo_pt->pte_hi & PTE_VALID) == 0)
panic("pte_unset: attempt to unset an inactive pte#1 %p/%p", pvo_pt, pt);
if ((pt->pte_hi & PTE_VALID) == 0)
panic("pte_unset: attempt to unset an inactive pte#2 %p/%p", pvo_pt, pt);
pvo_pt->pte_hi &= ~PTE_VALID;
/*
* Force the ref & chg bits back into the PTEs.
*/
SYNC();
/*
* Invalidate the pte (and, if requested, the tlb)...
*/
pt->pte_hi &= ~PTE_VALID;
SYNC();
TLBIE(va);
TLBSYNC();
/*
* Save the ref & chg bits ...
*/
pte_synch(pt, pvo_pt);
pmap_pte_valid--;
}
static __inline void
pte_change(volatile pte_t *pt, pte_t *pvo_pt, vaddr_t va)
{
/*
* Invalidate the PTE
*/
pte_unset(pt, pvo_pt, va);
pte_set(pt, pvo_pt);
}
/*
* Try to insert page table entry *pt into the pteg_table at idx.
*
* Note: *pt mustn't have PTE_VALID set.
* This is done here as required by Book III, 4.12.
*/
static int
pte_insert(int ptegidx, pte_t *pvo_pt)
{
volatile pte_t *pt;
int i;
#if defined(DEBUG)
DPRINTFN(7, ("pte_insert: idx 0x%x, pte 0x%x 0x%x\n",
ptegidx, pvo_pt->pte_hi, pvo_pt->pte_lo));
#endif
/*
* First try primary hash.
*/
for (pt = pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi &= ~PTE_HID;
pte_setidx(pt, pvo_pt, i);
return 1;
}
}
/*
* Now try secondary hash.
*/
ptegidx ^= pteg_mask;
for (pt = pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
if ((pt->pte_hi & PTE_VALID) == 0) {
pvo_pt->pte_hi |= PTE_HID;
pte_setidx(pt, pvo_pt, i);
return 1;
}
}
return 0;
}
/*
* Spill handler.
*
* Tries to spill a page table entry from the overflow area.
* Note that this routine runs in real mode on a separate stack,
* with interrupts disabled.
*/
int
pte_spill(vaddr_t addr)
{
struct pvo_entry *source_pvo, *victim_pvo;
struct pvo_entry *pvo;
int ptegidx, i;
sr_t sr;
volatile pteg_t *pteg;
volatile pte_t *pt;
pmap_pte_spills++;
__asm __volatile ("mfsrin %0,%1" : "=r"(sr) : "r"(addr));
ptegidx = va_to_pteg(sr, addr);
/*
* Have to substitute some entry. Use the primary hash for this.
*
* Use low bits of timebase as random generator
*/
__asm __volatile ("mftb %0" : "=r"(i));
pteg = &pteg_table[ptegidx];
pt = &pteg->pt[i & 7];
source_pvo = NULL;
victim_pvo = NULL;
LIST_FOREACH(pvo, &pvo_table[ptegidx], pvo_olink) {
/*
* We need to find pvo entry for this address...
*/
PMAP_PVO_CHECK(pvo); /* sanity check */
if (source_pvo == NULL &&
pte_match(&pvo->pvo_pte, sr, addr, pvo->pvo_pte.pte_hi & PTE_HID)) {
/*
* Now found an entry to be spilled into the pteg.
* The PTE is now be valid, so we know it's active;
*/
if (pte_insert(ptegidx, &pvo->pvo_pte)) {
pmap_pte_overflow--;
return 1;
}
source_pvo = pvo;
if (victim_pvo != NULL)
break;
}
/*
* We also need the pvo entry of the victim we are replacing
* so save the R & C bits of the PTE.
*/
if (victim_pvo == NULL &&
pte_compare(pt, &pvo->pvo_pte)) {
victim_pvo = pvo;
if (source_pvo != NULL)
break;
}
}
if (source_pvo == NULL)
return 0;
if (victim_pvo == NULL)
panic("pte_spill: victim pte has no pvo entry!");
/*
* We are invalidating the TLB entry for the EA for the
* we are replacing even though its valid; If we don't
* we lose any ref/chg bit changes contained in the TLB
* entry.
*/
pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
pte_setidx(pt, &source_pvo->pvo_pte, i);
pmap_pte_replacements++;
return 1;
}
/*
* Restrict given range to physical memory
*/
void
pmap_real_memory(start, size)
paddr_t *start;
psize_t *size;
{
struct mem_region *mp;
for (mp = mem; mp->size; mp++) {
if (*start + *size > mp->start
&& *start < mp->start + mp->size) {
if (*start < mp->start) {
*size -= mp->start - *start;
*start = mp->start;
}
if (*start + *size > mp->start + mp->size)
*size = mp->start + mp->size - *start;
return;
}
}
*size = 0;
}
/*
* Initialize anything else for pmap handling.
* Called during vm_init().
*/
void
pmap_init(void)
{
int s;
#ifdef __HAVE_PMAP_PHYSSEG
struct pvo_head *pvoh;
int bank;
long sz;
char *attr;
s = splvm();
pvoh = pmap_physseg.pvoh;
attr = pmap_physseg.attrs;
for (bank = 0; bank < vm_nphysseg; bank++) {
sz = vm_physmem[bank].end - vm_physmem[bank].start;
vm_physmem[bank].pmseg.pvoh = pvoh;
vm_physmem[bank].pmseg.attrs = attr;
for (; sz > 0; sz--, pvoh++, attr++) {
LIST_INIT(pvoh);
*attr = 0;
}
}
#endif
pool_init(&pmap_mpvo_pl, sizeof(struct pvo_entry),
sizeof(struct pvo_entry), 0, 0, "pmap_mpvopl", NBPG,
pmap_pool_malloc, pmap_pool_mfree, M_VMPMAP);
pool_setlowat(&pmap_mpvo_pl, 1008);
pmap_initialized = 1;
splx(s);
}
/*
* How much virtual space is available to the kernel?
*/
void
pmap_virtual_space(vaddr_t *start, vaddr_t *end)
{
/*
* Reserve one segment for kernel virtual memory
*/
*start = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG;
*end = VM_MAX_KERNEL_ADDRESS;
}
/*
* Create and return a physical map.
*/
pmap_t
pmap_create(void)
{
pmap_t pm;
pm = pool_get(&pmap_pl, PR_WAITOK);
bzero((caddr_t)pm, sizeof *pm);
pmap_pinit(pm);
DPRINTFN(7,("pmap_create: pm %p:\n"
"\t%06x %06x %06x %06x %06x %06x %06x %06x\n"
"\t%06x %06x %06x %06x %06x %06x %06x %06x\n", pm,
pm->pm_sr[0], pm->pm_sr[1], pm->pm_sr[2], pm->pm_sr[3],
pm->pm_sr[4], pm->pm_sr[5], pm->pm_sr[6], pm->pm_sr[7],
pm->pm_sr[8], pm->pm_sr[9], pm->pm_sr[10], pm->pm_sr[11],
pm->pm_sr[12], pm->pm_sr[13], pm->pm_sr[14], pm->pm_sr[15]));
return pm;
}
/*
* Initialize a preallocated and zeroed pmap structure.
*/
unsigned short pmap_context = 0;
void
pmap_pinit(pmap_t pm)
{
int i, j;
unsigned int entropy = MFTB();
/*
* Allocate some segment registers for this pmap.
*/
pm->pm_refs = 1;
for (i = 0; i < sizeof usedsr / sizeof usedsr[0]; i++) {
static unsigned int pmap_srcontext;
unsigned int hash, n;
/* Create a new value by multiplying by a prime adding in
* entropy from the timebase register. This is to make the
* VSID more random so that the PT Hash function collides
* less often. (note that the prime causes gcc to do shifts
* instead of a multiply)
*/
pmap_srcontext = (pmap_srcontext * 0x1105) + entropy;
hash = pmap_srcontext & (NPMAPS - 1);
if (hash == 0) /* 0 is special, avoid it */
continue;
n = hash >> 5;
j = 1 << (hash & 0x1f);
hash = (pmap_srcontext & 0xfffff);
if (usedsr[n] & j) { /* collision? */
/* anything free in this bucket? */
if (usedsr[n] == 0xffffffff) {
entropy = (pmap_srcontext >> 20);
continue;
}
i = ffs(~usedsr[i]) - 1;
j = 1 << i;
hash &= 0xfffe0;
hash |= i;
}
usedsr[n] |= j;
for (i = 0; i < 16; i++)
pm->pm_sr[i] = VSID_MAKE(i, hash);
return;
}
panic("out of segments");
}
/*
* Add a reference to the given pmap.
*/
void
pmap_reference(pmap_t pm)
{
pm->pm_refs++;
}
/*
* Retire the given pmap from service.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_destroy(pmap_t pm)
{
if (--pm->pm_refs == 0) {
pmap_release(pm);
pool_put(&pmap_pl, pm);
}
}
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
*/
void
pmap_release(pmap_t pm)
{
int i, j;
if (!pm->pm_sr[0])
panic("pmap_release");
i = VSID_TO_HASH(pm->pm_sr[0]);
j = i % (sizeof usedsr[0] * 8);
i /= sizeof usedsr[0] * 8;
usedsr[i] &= ~(1 << j);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr,
vsize_t len, vaddr_t src_addr)
{
}
/*
* Require that all active physical maps contain no
* incorrect entries NOW.
*/
void
pmap_update(void)
{
#ifdef MULTIPROCESSOR
TLBSYNC();
#endif
tlbia();
}
/*
* Garbage collects the physical map system for
* pages which are no longer used.
* Success need not be guaranteed -- that is, there
* may well be pages which are not referenced, but
* others may be collected.
* Called by the pageout daemon when pages are scarce.
*/
void
pmap_collect(pmap_t pm)
{
}
/*
* Fill the given physical page with zeroes.
*/
void
pmap_zero_page(paddr_t pa)
{
volatile pte_t *pt;
caddr_t va;
int i;
if (pa < SEGMENT_LENGTH) {
va = (caddr_t) pa;
} else if (pmap_initialized) {
if (__predict_false(pmap_pvo_zeropage == NULL))
pmap_pvo_zeropage = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
pt = pmap_pa_map(pmap_pvo_zeropage, pa);
va = (caddr_t) pmap_pvo_zeropage->pvo_vaddr;
} else {
panic("pmap_zero_page: can't zero pa %#x", pa);
}
#if 0
bzero(va, NBPG);
#else
for (i = NBPG/CACHELINESIZE; i > 0; i--) {
__asm __volatile ("dcbz 0,%0" :: "r"(va));
va += CACHELINESIZE;
}
#endif
if (pa >= SEGMENT_LENGTH)
pmap_pa_unmap(pmap_pvo_zeropage, pt);
}
/*
* Copy the given physical source page to its destination.
*/
void
pmap_copy_page(paddr_t src, paddr_t dst)
{
if (src < SEGMENT_LENGTH && dst < SEGMENT_LENGTH) {
memcpy((void *) dst, (void *) src, NBPG);
return;
}
if (pmap_initialized) {
volatile pte_t *src_pt, *dst_pt;
if (__predict_false(pmap_pvo_copypage_src == NULL))
pmap_pvo_copypage_src = pmap_rkva_alloc(VM_PROT_READ);
if (__predict_false(pmap_pvo_copypage_dst == NULL))
pmap_pvo_copypage_dst = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
src_pt = pmap_pa_map(pmap_pvo_copypage_src, src);
dst_pt = pmap_pa_map(pmap_pvo_copypage_dst, dst);
memcpy((caddr_t)pmap_pvo_copypage_dst->pvo_vaddr,
(caddr_t)pmap_pvo_copypage_src->pvo_vaddr,
NBPG);
pmap_pa_unmap(pmap_pvo_copypage_src, src_pt);
pmap_pa_unmap(pmap_pvo_copypage_dst, dst_pt);
return;
}
panic("pmap_copy_page: failed to copy contents of pa %#x to pa %#x", src, dst);
}
static __inline int
pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
{
int pteidx;
/*
* We can find the actual pte entry without searching by
* grabbing the PTEG index from 3 unused bits in pte_lo[11:9]
* and by noticing the HID bit.
*/
pteidx = ptegidx * 8 + ((pvo->pvo_pte.pte_lo & PTE_GIDX_MASK) >> PTE_GIDX_SHFT);
if (pvo->pvo_pte.pte_hi & PTE_HID)
pteidx ^= pteg_mask * 8;
return pteidx;
}
volatile pte_t *
pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
{
volatile pteg_t *pteg;
volatile pte_t *pt;
int idx;
/*
* If we haven't been supplied the ptegidx, calculate it.
*/
if (pteidx == -1) {
int ptegidx;
sr_t sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
pteidx = pmap_pvo_pte_index(pvo, ptegidx);
}
pt = &pteg_table[pteidx >> 3].pt[pteidx & 7];
if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID &&
((pt->pte_lo ^ pvo->pvo_pte.pte_lo) >> PTE_RPGN_SHFT) == 0) {
#ifdef DIAGNOSTIC
if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0)
panic("pmap_pvo_to_pte: pvo %p: has valid "
"pte in pteg_table but invalid in pvo",
pvo);
#endif
return pt;
}
#ifdef DIAGNOSTIC
if (pvo->pvo_pte.pte_hi & PTE_VALID)
panic("pmap_pvo_to_pte: pvo %p: has invalid pte in "
"pteg_table but valid in pvo", pvo);
#endif
return NULL;
}
struct pvo_entry *
pmap_pvo_find_va(pmap_t pm, vaddr_t va, int *pteidx_p)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo;
int ptegidx;
sr_t sr;
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
LIST_FOREACH(pvo, &pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && pvo->pvo_vaddr == va) {
if (pteidx_p)
*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
return pvo;
}
}
return NULL;
}
volatile pte_t *
pmap_pa_map(struct pvo_entry *pvo, paddr_t pa)
{
volatile pte_t *pt;
pvo->pvo_pte.pte_lo |= pa;
if (!pte_spill(pvo->pvo_vaddr))
panic("pmap_pa_map: could not spill pvo %p", pvo);
return pmap_pvo_to_pte(pvo, -1);
}
void
pmap_pa_unmap(struct pvo_entry *pvo, volatile pte_t *pt)
{
pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
pmap_pte_overflow++;
}
void
pmap_syncicache(paddr_t pa)
{
DPRINTFN(6,("pmap_syncicache: pa %#x\n", pa));
if (pa < SEGMENT_LENGTH) {
__syncicache((void *)pa, NBPG);
return;
}
if (pmap_initialized) {
struct pvo_entry * const pvo;
volatile pte_t *pt;
if (__predict_false(pmap_pvo_syncicache == NULL))
pmap_pvo_syncicache = pmap_rkva_alloc(VM_PROT_READ|VM_PROT_WRITE);
pt = pmap_pa_map(pmap_pvo_syncicache, pa);
__syncicache((void *)pmap_pvo_syncicache->pvo_vaddr, NBPG);
pmap_pa_unmap(pmap_pvo_syncicache, pt);
return;
}
panic("pmap_syncicache: can't sync the icache @ pa %#x", pa);
}
/*
* Return a unmapped pvo for a kernel virtual address.
* Used by pmap function that operate of physical pages.
*/
struct pvo_entry *
pmap_rkva_alloc(int prot)
{
struct pvo_entry *pvo;
volatile pte_t *pt;
vaddr_t kva;
int pteidx;
if (pmap_rkva_count == 0)
panic("pmap_kva_alloc: no more reserved KVAs!");
kva = pmap_rkva_start + (NBPG * --pmap_rkva_count);
pmap_kenter_pa(kva, 0, prot);
pvo = pmap_pvo_find_va(pmap_kernel(), kva, &pteidx);
if (pvo == NULL)
panic("pmap_kva_alloc: pmap_pvo_find_va failed!");
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt == NULL)
panic("pmap_kva_alloc: pmap_pvo_to_pte failed!");
pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
pmap_pte_overflow++;
return pvo;
}
#ifdef DEBUG
void
pmap_pvo_check(const struct pvo_entry *pvo)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo0;
volatile pte_t *pt;
int failed = 0;
if (pvo->pvo_pte.pte_lo & PTE_M) {
pvo_head = pa_to_pvoh(pvo->pvo_pte.pte_lo & PTE_RPGN);
} else {
if (pvo->pvo_vaddr < VM_MIN_KERNEL_ADDRESS) {
printf("pmap_pvo_check: pvo %p: non kernel address "
"on kernel unmanaged list\n", pvo);
failed = 1;
}
pvo_head = &pvo_kunmanaged;
}
LIST_FOREACH(pvo0, pvo_head, pvo_vlink) {
if (pvo0 == pvo)
break;
}
if (pvo0 == NULL) {
printf("pmap_pvo_check: pvo %p: not present "
"on its vlist head %p\n", pvo, pvo_head);
failed = 1;
}
if (pvo != pmap_pvo_find_va(pvo->pvo_pmap, pvo->pvo_vaddr, NULL)) {
printf("pmap_pvo_check: pvo %p: not present "
"on its olist head %p\n", pvo);
failed = 1;
}
pt = pmap_pvo_to_pte(pvo, -1);
if (pt == NULL) {
if (pvo->pvo_pte.pte_hi & PTE_VALID) {
printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo);
failed = 1;
}
} else {
if (((((uintptr_t) pt) >> 3) & 7) !=
((pvo->pvo_pte.pte_lo & PTE_GIDX_MASK) >> PTE_GIDX_SHFT)) {
printf("pmap_pvo_check: pvo %p: pte_hi VALID but no PTE\n", pvo);
failed = 1;
}
if (pvo->pvo_pte.pte_hi != pt->pte_hi) {
printf("pmap_pvo_check: pvo %p: pte_hi differ: %#x/%#x\n", pvo,
pvo->pvo_pte.pte_hi, pt->pte_hi);
failed = 1;
}
if (((pvo->pvo_pte.pte_lo ^ pt->pte_lo) &
(PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN)) != 0) {
printf("pmap_pvo_check: pvo %p: pte_lo differ: %#x/%#x\n",
pvo,
pvo->pvo_pte.pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN),
pt->pte_lo & (PTE_PP|PTE_W|PTE_I|PTE_G|PTE_RPGN));
failed = 1;
}
if (pte_to_va(pt) != pvo->pvo_vaddr) {
printf("pmap_pvo_check: pvo %p: PTE calculated VA %#x"
" doesn't not match PVO's VA %#x\n",
pvo, pte_to_va(pt), pvo->pvo_vaddr);
failed = 1;
}
}
if (failed)
panic("pmap_pvo_check: bugcheck!");
}
#endif /* DEBUG */
/*
* This returns whether this is the first mapping of a page.
*/
int
pmap_pvo_enter(pmap_t pm, struct pool *pl, struct pvo_head *pvo_head,
vaddr_t va, vaddr_t pa, u_int pte_lo, int flags)
{
struct pvo_entry *pvo;
sr_t sr;
int first;
int ptegidx;
pmap_pvo_enter_calls++;
/*
* Compute the HTAB index.
*/
sr = va_to_sr(pm->pm_sr, va);
ptegidx = va_to_pteg(sr, va);
/*
* Remove any existing mapping for this page. Reuse the
* pvo entry if there a mapping.
*/
LIST_FOREACH(pvo, &pvo_table[ptegidx], pvo_olink) {
if (pvo->pvo_pmap == pm && pvo->pvo_vaddr == va) {
#ifdef DEBUG
if (((pvo->pvo_pte.pte_lo ^ (pa|pte_lo)) &
(PTE_RPGN|PTE_M|PTE_I|PTE_G|PTE_WIRED|PTE_PP)) == 0 &&
va < VM_MIN_KERNEL_ADDRESS) {
printf("pmap_pvo_enter: pvo %p: dup %#x/%#x\n",
pvo, pvo->pvo_pte.pte_lo, pte_lo|pa);
printf("pmap_pvo_enter: pte_hi=%#x sr=%#x\n",
pvo->pvo_pte.pte_hi,
pm->pm_sr[va >> ADDR_SR_SHFT]);
pte_print(pmap_pvo_to_pte(pvo, -1));
#ifdef DDB
Debugger();
#endif
}
#endif
pmap_pvo_remove(pvo, -1, FALSE);
break;
}
}
/*
* Remember is the list was empty and therefore will be
* the first item.
*/
first = LIST_FIRST(pvo_head) == NULL;
/*
* If we aren't overwriting an mapping, try to allocate
*/
if (pvo == NULL) {
int poolflags = PR_NOWAIT;
if ((flags & PMAP_CANFAIL) == 0)
poolflags |= PR_URGENT;
pvo = pool_get(pl, poolflags);
if (pvo == NULL) {
#if 0
pvo = pmap_pvo_reclaim(pm);
if (pvo == NULL) {
#endif
if ((flags & PMAP_CANFAIL) == 0)
panic("pmap_pvo_enter: failed");
return ENOMEM;
#if 0
}
#endif
}
pmap_pvo_entries++;
pvo->pvo_vaddr = va;
pvo->pvo_pmap = pm;
LIST_INSERT_HEAD(&pvo_table[ptegidx], pvo, pvo_olink);
#if 0
} else {
if (pmap_initialized && pm != pmap_kernel())
printf("pmap_pvo_enter: pmap %p: reusing pvo %p for va %#x\n", pm, pvo, va);
#endif
}
pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
if (pvo->pvo_pte.pte_lo & PMAP_WIRED)
pvo->pvo_pmap->pm_stats.wired_count++;
pvo->pvo_pmap->pm_stats.resident_count++;
#if defined(DEBUG)
if (pm != pmap_kernel() && va < VM_MIN_KERNEL_ADDRESS)
DPRINTFN(4,("pmap_pvo_enter: pvo %p: pm %p va %#x pa %#x\n",
pvo, pm, va, pa));
#endif
/*
* We hope this succeeds but it isn't required.
*/
if (!pte_insert(ptegidx, &pvo->pvo_pte)) {
pmap_pte_overflow++;
#if 0
if ((flags & VM_PROT_ALL) != VM_PROT_NONE)
pmap_pte_evict(pvo, ptegidx, MFTB() & 7);
#endif
}
PMAP_PVO_CHECK(pvo); /* sanity check */
return first ? ENOENT : 0;
}
void
pmap_pvo_remove(struct pvo_entry *pvo, int pteidx, int freeit)
{
volatile pte_t *pt;
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* If there is an active pte entry, we need to deactivate it
* (and save the ref & chg bits).
*/
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt != NULL) {
pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
} else {
pmap_pte_overflow--;
}
/*
* Update our statistics
*/
pvo->pvo_pmap->pm_stats.resident_count--;
if (pvo->pvo_pte.pte_lo & PMAP_WIRED)
pvo->pvo_pmap->pm_stats.wired_count--;
/*
* Save the REF/CHG bits into their cache if the page is managed.
*/
if (pvo->pvo_pte.pte_lo & PTE_M) {
struct vm_page *pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
if (pg != NULL) {
pmap_attr_save(pg, pvo->pvo_pte.pte_lo & (PTE_REF|PTE_CHG));
}
}
/*
* Remove this PVO from the PV list
*/
LIST_REMOVE(pvo, pvo_vlink);
/*
* Remove this from the Overflow list and return it to the pool...
* ... if we aren't going to reuse it.
*/
if (freeit) {
LIST_REMOVE(pvo, pvo_olink);
pool_put(pvo->pvo_pte.pte_lo & PTE_M
? &pmap_mpvo_pl
: &pmap_upvo_pl,
pvo);
pmap_pvo_entries--;
pmap_pvo_remove_calls++;
}
}
/*
* Insert physical page at pa into the given pmap at virtual address va.
*/
int
pmap_enter(pmap_t pm, vaddr_t va, paddr_t pa, vm_prot_t prot, int flags)
{
struct mem_region *mp;
struct pvo_head *pvo_head;
struct pool *pl;
u_int pte_lo;
int s;
int error;
if (__predict_false(!pmap_initialized)) {
pvo_head = &pvo_kunmanaged;
pl = &pmap_upvo_pl;
pte_lo = 0;
} else {
pvo_head = pa_to_pvoh(pa);
pl = &pmap_mpvo_pl;
pte_lo = PTE_M;
}
DPRINTFN(16, ("pmap_enter(0x%x, 0x%x, 0x%x, 0x%x, 0x%x) ",
pm, va, pa, prot, flags));
pte_lo |= PTE_I | PTE_G;
if ((flags & PMAP_NC) == 0) {
for (mp = mem; mp->size; mp++) {
if (pa >= mp->start && pa < mp->start + mp->size) {
pte_lo &= ~(PTE_I | PTE_G);
break;
}
}
}
if (prot & VM_PROT_WRITE)
pte_lo |= PTE_RW;
else
pte_lo |= PTE_RO;
if (flags & PMAP_WIRED)
pte_lo |= PTE_WIRED;
/*
* Record mapping for later back-translation and pte spilling.
* This will overwrite any existing mapping.
*/
s = splvm();
error = pmap_pvo_enter(pm, pl, pvo_head, va, pa, pte_lo, flags);
splx(s);
if (error == ENOENT) {
/*
* Flush the real memory from the cache.
*/
if (((prot|flags) & VM_PROT_EXECUTE)
&& (pte_lo & (PTE_I|PTE_G)) == 0) {
s = splvm();
pmap_syncicache(pa);
splx(s);
}
error = 0;
}
return error;
}
void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
struct mem_region *mp;
u_int pte_lo;
int error;
if (va < VM_MIN_KERNEL_ADDRESS)
panic("pmap_kenter_pa: attempt to enter "
"non-kernel address %#x!", va);
#if 0
printf("pmap_kenter_pa(%#x,%#x,%#x)\n", va, pa, prot);
#endif
pte_lo = PTE_I | PTE_G | PTE_WIRED;
for (mp = mem; mp->size; mp++) {
if (pa >= mp->start && pa < mp->start + mp->size) {
pte_lo &= ~(PTE_I | PTE_G);
break;
}
}
if (prot & VM_PROT_WRITE)
pte_lo |= PTE_RW;
else
pte_lo |= PTE_RO;
error = pmap_pvo_enter(pmap_kernel(), &pmap_upvo_pl, &pvo_kunmanaged,
va, pa, pte_lo, PMAP_WIRED);
if (error != 0 && error != ENOENT)
panic("pmap_kenter_pa: failed to enter va %#x pa %#x: %d", va, pa, error);
#if 0
/*
* Flush the real memory from the cache.
*/
if ((prot & VM_PROT_EXECUTE)
&& (pte_lo & (PTE_I|PTE_G)) == 0) {
pmap_syncicache(pa);
}
#endif
}
void
pmap_kremove(vaddr_t va, vsize_t len)
{
#if 0
printf("pmap_kenter_pa(%#x,%#x)\n", va, len);
#endif
pmap_remove(pmap_kernel(), va, va + len);
}
/*
* Remove the given range of mapping entries.
*/
void
pmap_remove(pmap_t pm, vaddr_t va, vaddr_t endva)
{
struct pvo_entry *pvo;
int pteidx;
int s;
for (; va < endva; va += PAGE_SIZE) {
s = splvm();
pvo = pmap_pvo_find_va(pm, va, &pteidx);
if (pvo != NULL)
pmap_pvo_remove(pvo, pteidx, TRUE);
splx(s);
}
}
/*
* Get the physical page address for the given pmap/virtual address.
*/
boolean_t
pmap_extract(pmap_t pm, vaddr_t va, paddr_t *pap)
{
struct pvo_entry *pvo;
int s;
s = splvm();
pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
if (pvo != NULL) {
PMAP_PVO_CHECK(pvo); /* sanity check */
*pap = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
#ifdef DEBUG
} else {
if (pm == pmap_kernel()) {
if (va >= VM_MIN_KERNEL_ADDRESS) {
printf("pmap_extract: va=%#x: no pa\n", va);
#ifdef DDB
Debugger();
#endif
}
}
#endif
}
splx(s);
return pvo != NULL;
}
/*
* Lower the protection on the specified range of this pmap.
*
* There are only two cases: either the protection is going to 0,
* or it is going to read-only.
*/
void
pmap_protect(pmap_t pm, vaddr_t va, vaddr_t endva, vm_prot_t prot)
{
struct pvo_entry *pvo;
volatile pte_t *pt;
int s;
int pteidx;
#if 0
/*
* Since this routine only downgrades protection, if the
* maximal protection is desired, there isn't any change
* to be made.
*/
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
return;
#endif
/*
* If there is no protection, this is equivalent to
* remove the pmap from the pmap.
*/
if ((prot & VM_PROT_READ) == 0) {
pmap_remove(pm, va, endva);
return;
}
s = splvm();
for (; va < endva; va += NBPG) {
pvo = pmap_pvo_find_va(pm, va, &pteidx);
if (pvo == NULL)
continue;
PMAP_PVO_CHECK(pvo); /* sanity check */
#if 0
/*
* If the page is already read-only, no change
* needs to be made.
*/
if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RO)
continue;
#endif
/*
* Change the protection of the page.
*/
pvo->pvo_pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte_lo |= PTE_RO;
/*
* If the PVO is in the page table, update
* that pte at well.
*/
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt != NULL)
pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PMAP_PVO_CHECK(pvo); /* sanity check */
}
splx(s);
}
void
pmap_unwire(pmap_t pm, vaddr_t va)
{
struct pvo_entry *pvo;
pvo = pmap_pvo_find_va(pm, va, NULL);
if (pvo == NULL)
return;
if (pvo->pvo_pte.pte_lo & PTE_WIRED) {
pvo->pvo_pte.pte_lo &= ~PTE_WIRED;
pm->pm_stats.wired_count--;
}
PMAP_PVO_CHECK(pvo); /* sanity check */
}
/*
* Lower the protection on the specified physical page.
*
* There are only two cases: either the protection is going to 0,
* or it is going to read-only.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
struct pvo_head *pvo_head;
struct pvo_entry *pvo, *next_pvo;
volatile pte_t *pt;
int s;
/*
* Since this routine only downgrades protection, if the
* maximal protection is desired, there isn't any change
* to be made.
*/
if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == (VM_PROT_READ|VM_PROT_WRITE))
return;
s = splvm();
pvo_head = vm_page_to_pvoh(pg);
for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
next_pvo = LIST_NEXT(pvo, pvo_vlink);
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* Downgrading to no mapping at all, we just remove
* the entry EXCEPT if its WIRED. If it WIRED, we
* just leave it alone.
*/
if ((prot & VM_PROT_READ) == 0) {
if ((pvo->pvo_pte.pte_lo & PTE_WIRED) == 0)
pmap_pvo_remove(pvo, -1, TRUE);
continue;
}
pvo->pvo_pte.pte_lo &= ~PTE_PP;
pvo->pvo_pte.pte_lo |= PTE_RO;
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL)
pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
PMAP_PVO_CHECK(pvo); /* sanity check */
}
splx(s);
}
/*
* Activate the address space for the specified process. If the process
* is the current process, load the new MMU context.
*/
void
pmap_activate(struct proc *p)
{
struct pcb *pcb = &p->p_addr->u_pcb;
pmap_t pmap = p->p_vmspace->vm_map.pmap, rpm;
int psl, i, ksr, seg;
DPRINTFN(6,("pmap_activate: proc %p (curproc %p)\n", p, curproc));
/*
* XXX Normally performed in cpu_fork().
*/
if (pcb->pcb_pm != pmap) {
pcb->pcb_pm = pmap;
pcb->pcb_pmreal = pmap;
}
if (p == curproc) {
/* Disable interrupts while switching. */
__asm __volatile("mfmsr %0" : "=r"(psl) :);
psl &= ~PSL_EE;
__asm __volatile("mtmsr %0" :: "r"(psl));
__asm __volatile("isync");
/* Store pointer to new current pmap. */
curpm = pcb->pcb_pmreal;
/*
* Set new segment registers. Pmap's are always in
* BAT0 so they are always accessible. Don't load
* the kernel SR.
*/
rpm = pcb->pcb_pmreal;
DPRINTFN(7,("pmap_activate: pm %p:", pmap));
for (i = 0; i < 16; i++) {
if (i == KERNEL_SR)
continue;
seg = pmap->pm_sr[i];
__asm __volatile("mtsrin %0,%1"
:: "r"(seg), "r"(i << ADDR_SR_SHFT));
DPRINTFN(7,(" sr[%d]=%#x", i, seg));
}
DPRINTFN(7,("\n"));
/* Interrupts are OK again. */
psl |= PSL_EE;
__asm __volatile("mtmsr %0" :: "r"(psl));
__asm __volatile("isync");
}
}
/*
* Deactivate the specified process's address space.
*/
void
pmap_deactivate(struct proc *p)
{
}
boolean_t
pmap_query_bit(struct vm_page *pg, int ptebit)
{
struct pvo_entry *pvo;
volatile pte_t *pt;
if (pmap_attr_fetch(pg) & ptebit)
return TRUE;
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* See if we saved the bit off. If so cache, it and return
* success.
*/
if (pvo->pvo_pte.pte_lo & ptebit) {
pmap_attr_save(pg, ptebit);
PMAP_PVO_CHECK(pvo); /* sanity check */
return TRUE;
}
}
/*
* No luck, now go thru the hard part of looking at the ptes
* themselves. Sync so any pending REF/CHG bits are flushed
* to the PTEs.
*/
__asm __volatile("sync");
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
/*
* See if this pvo have a valid PTE. If so, fetch the
* REF/CHG bits from the valid PTE. If the appropriate
* ptebit is set, cache, it and return success.
*/
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL) {
pte_synch(pt, &pvo->pvo_pte);
if (pvo->pvo_pte.pte_lo & ptebit) {
pmap_attr_save(pg, ptebit);
PMAP_PVO_CHECK(pvo); /* sanity check */
return TRUE;
}
}
}
return FALSE;
}
void
pmap_clear_bit(struct vm_page *pg, int ptebit)
{
struct pvo_entry *pvo;
volatile pte_t *pt;
/*
* Clear the cached value.
*/
pmap_attr_clear(pg, ptebit);
/*
* Sync so any pending REF/CHG bits are flushed to the PTEs (so we
* can reset the right ones). Note that since the pvo entries and
* list heads are accessed via BAT0 and are never placed in the
* page table, we don't have to worry about further accesses setting
* the REF/CHG bits.
*/
__asm __volatile("sync");
/*
* For each pvo entry, clear pvo's ptebit. If this pvo have a
* valid PTE. If so, clear the ptebit from the valid PTE.
*/
LIST_FOREACH(pvo, vm_page_to_pvoh(pg), pvo_vlink) {
PMAP_PVO_CHECK(pvo); /* sanity check */
pvo->pvo_pte.pte_lo &= ~ptebit;
pt = pmap_pvo_to_pte(pvo, -1);
if (pt != NULL)
pte_clear(pt, ptebit);
PMAP_PVO_CHECK(pvo); /* sanity check */
}
}
#ifdef ALLEGRO
/*
* for ALLEGRO large memory suport, do pmap_procwr()
* icache invalidation through user mappings via USER_SR
* following the method used in copyout()\trap.c
*/
static __inline unsigned int
setusr(int content)
{
unsigned int usr;
unsigned int psl;
/* Disable interrupts while switching. */
__asm __volatile("mfmsr %0" : "=r"(psl) :);
psl &= ~PSL_EE;
__asm __volatile("mtmsr %0" :: "r"(psl));
__asm __volatile("mfsr %0,13" : "=r"(usr) :);
__asm __volatile ("isync; mtsr %0,%1; isync"
:: "n"(USER_SR), "r"(content));
/* Interrupts are OK again. */
psl |= PSL_EE;
__asm __volatile("mtmsr %0" :: "r"(psl));
return usr;
}
void
pmap_procwr(struct proc *p, vaddr_t uva, size_t len)
{
vaddr_t kva;
unsigned int usr, ssr;
faultbuf env;
paddr_t pa;
int s;
s = splvm();
#ifdef DIAGNOSTIC
if (trunc_page(uva + len - 1) != trunc_page(uva))
panic("pmap_procwr >1 pg");
#endif
/*
* if page is not mapped, nothing to invalidate
* this happens sometimes in the procfs_domem() case
* (we don't actually use pa)
*/
if (! pmap_extract(p->p_vmspace->vm_map.pmap, uva, &pa)){
splx(s);
return;
}
if (setfault(env)) {
curpcb->pcb_onfault = 0;
splx(s);
return; /* EFAULT XXX */
}
kva = (vaddr_t)USER_ADDR + ((u_int)uva & ~SEGMENT_MASK);
ssr = p->p_vmspace->vm_map.pmap->pm_sr[(u_int)uva >> ADDR_SR_SHFT];
ssr &= SR_VSID;
ssr |= SR_SUKEY;
usr = setusr(ssr);
__syncicache((void *)kva, len);
(void)setusr(usr);
curpcb->pcb_onfault = 0;
splx(s);
}
#else
void
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
{
paddr_t pa;
(void) pmap_extract(p->p_vmspace->vm_map.pmap, va, &pa);
__syncicache((void *)pa, len);
}
#endif /* ALLEGRO */
#if defined(DEBUG)
void
pte_print(volatile pte_t *pt)
{
printf("PTE %p: ", pt);
/* High word: */
printf("0x%08x: [", pt->pte_hi);
printf("%c ", (pt->pte_hi & PTE_VALID) ? 'v' : 'i');
printf("%c ", (pt->pte_hi & PTE_HID) ? 'h' : '-');
printf("0x%06x 0x%02X",
(pt->pte_hi &~ PTE_VALID)>>PTE_VSID_SHFT,
pt->pte_hi & PTE_API);
printf(" (va 0x%1x%04x000)] ", pte_to_va(pt));
/* Low word: */
printf(" 0x%08x: [", pt->pte_lo);
printf("0x%05x... ", pt->pte_lo >> 12);
printf("%c ", (pt->pte_lo & PTE_REF) ? 'r' : 'u');
printf("%c ", (pt->pte_lo & PTE_CHG) ? 'c' : 'n');
printf("%c", (pt->pte_lo & PTE_W) ? 'w' : '.');
printf("%c", (pt->pte_lo & PTE_I) ? 'i' : '.');
printf("%c", (pt->pte_lo & PTE_M) ? 'm' : '.');
printf("%c ", (pt->pte_lo & PTE_G) ? 'g' : '.');
switch (pt->pte_lo & PTE_PP) {
case PTE_RO:
printf("ro]\n");
break;
case PTE_RW:
printf("rw]\n");
break;
default:
printf("na]\n");
break;
}
}
void
pteg_check(void)
{
volatile pte_t *pt;
int i;
int ptegidx;
u_int p_valid = 0;
u_int s_valid = 0;
u_int invalid = 0;
for (ptegidx = 0; ptegidx < pteg_cnt; ptegidx++) {
for (pt = pteg_table[ptegidx].pt, i = 8; --i >= 0; pt++) {
if (pt->pte_hi & PTE_VALID) {
if (pt->pte_hi & PTE_HID)
s_valid++;
else
p_valid++;
} else
invalid++;
}
}
printf("pteg_check: v(p) %#x (%d), v(s) %#x (%d), i %#x (%d)\n",
p_valid, p_valid, s_valid, s_valid,
invalid, invalid);
}
void
print_mmuregs(void)
{
int i;
sr_t sr;
u_int32_t x;
unsigned int addr;
sr_t soft_sr[16];
struct bat soft_ibat[4];
struct bat soft_dbat[4];
u_int32_t sdr1;
asm ("mfsdr1 %0" : "=r"(sdr1));
for (i=0; i<16; i++) {
asm ("mfsrin %0,%1" : "=r"(sr) : "r"(addr));
soft_sr[i] = sr;
addr += 0x10000000;
}
/* read iBAT registers */
i = 0;
asm ("mfibatu %0,0" : "=r"(x));
soft_ibat[i].batu = x;
asm ("mfibatl %0,0" : "=r"(x));
soft_ibat[i++].batl = x;
asm ("mfibatu %0,1" : "=r"(x));
soft_ibat[i].batu = x;
asm ("mfibatl %0,1" : "=r"(x));
soft_ibat[i++].batl = x;
asm ("mfibatu %0,2" : "=r"(x));
soft_ibat[i].batu = x;
asm ("mfibatl %0,2" : "=r"(x));
soft_ibat[i++].batl = x;
asm ("mfibatu %0,3" : "=r"(x));
soft_ibat[i].batu = x;
asm ("mfibatl %0,3" : "=r"(x));
soft_ibat[i].batl = x;
/* read dBAT registers */
i = 0;
__asm __volatile ("mfdbatu %0,0" : "=r"(x));
soft_ibat[i].batu = x;
__asm __volatile ("mfdbatl %0,0" : "=r"(x));
soft_ibat[i++].batl = x;
__asm __volatile ("mfdbatu %0,1" : "=r"(x));
soft_ibat[i].batu = x;
__asm __volatile ("mfdbatl %0,1" : "=r"(x));
soft_ibat[i++].batl = x;
__asm __volatile ("mfdbatu %0,2" : "=r"(x));
soft_ibat[i].batu = x;
__asm __volatile ("mfdbatl %0,2" : "=r"(x));
soft_ibat[i++].batl = x;
__asm __volatile ("mfdbatu %0,3" : "=r"(x));
soft_ibat[i].batu = x;
__asm __volatile ("mfdbatl %0,3" : "=r"(x));
soft_ibat[i].batl = x;
printf("SDR1 0x%x\n", sdr1);
printf("SR[]:\t");
addr = 0;
for (i=0; i<4; i++)
printf("0x%06x, ", soft_sr[i]);
printf("\n\t");
for ( ; i<8; i++)
printf("0x%06x, ", soft_sr[i]);
printf("\n\t");
for ( ; i<12; i++)
printf("0x%06x, ", soft_sr[i]);
printf("\n\t");
for ( ; i<16; i++)
printf("0x%06x, ", soft_sr[i]);
printf("\n");
printf("iBAT[]:\t");
for (i=0; i<4; i++)
printf("0x%-8x 0x%-8x, ",
soft_ibat[i].batu, soft_ibat[i].batl);
printf("\ndBAT[]:\t");
for (i=0; i<4; i++)
printf("0x%-8x 0x%-8x, ",
soft_ibat[i].batu, soft_dbat[i].batl);
printf("\n");
}
void
print_pte(pmap_t pm, vaddr_t va)
{
struct pvo_entry *pvo;
volatile pte_t *pt;
int pteidx;
pvo = pmap_pvo_find_va(pm, va, &pteidx);
if (pvo != NULL) {
pt = pmap_pvo_to_pte(pvo, pteidx);
if (pt != NULL) {
printf("VA %#x -> %p -> %s %#x, %#x\n",
va, pt,
pt->pte_hi & PTE_HID ? "(sec)" : "(pri)",
pt->pte_hi, pt->pte_lo);
} else {
printf("No valid PTE found\n");
}
} else {
printf("Address not in pmap\n");
}
}
void
pteg_dist(void)
{
struct pvo_entry *pvo;
int ptegidx;
int depth;
int max_depth = 0;
unsigned int depths[64];
memset(depths, 0, sizeof(depths));
for (ptegidx = 0; ptegidx < pteg_cnt; ptegidx++) {
depth = 0;
LIST_FOREACH(pvo, &pvo_table[ptegidx], pvo_olink) {
depth++;
}
if (depth > max_depth)
max_depth = depth;
if (depth > 63)
depth = 63;
depths[depth]++;
}
for (depth = 0; depth < 64; depth++) {
printf(" [%2d]: %8u", depth, depths[depth]);
if ((depth & 3) == 3)
printf("\n");
if (depth == max_depth)
break;
}
if ((depth & 3) != 3)
printf("\n");
printf("Max depth found was %d\n", max_depth);
}
#endif /* DEBUG */
void *
pmap_pool_ualloc(unsigned long size, int flags, int tag)
{
struct pvo_page *pvop;
static u_int cnt;
cnt++;
if (size != PAGE_SIZE)
panic("pmap_pool_alloc: size(%d) != PAGE_SIZE", size);
pvop = SIMPLEQ_FIRST(&pmap_pvop_head);
if (pvop != NULL) {
SIMPLEQ_REMOVE_HEAD(&pmap_pvop_head, pvop, pvop_link);
return pvop;
}
if (uvm.page_init_done != TRUE) {
return (void *) uvm_pageboot_alloc(PAGE_SIZE);
}
return pmap_pool_malloc(size, flags, tag);
}
void *
pmap_pool_malloc(unsigned long size, int flags, int tag)
{
struct vm_page *pg;
if (size != PAGE_SIZE)
panic("pmap_pool_alloc: size(%d) != PAGE_SIZE", size);
again:
pg = uvm_pagealloc_strat(NULL, 0, NULL, UVM_PGA_USERESERVE,
UVM_PGA_STRAT_ONLY, VM_FREELIST_FIRST256);
if (__predict_false(pg == NULL)) {
if (flags & PR_WAITOK) {
uvm_wait("plpg");
goto again;
} else {
return (0);
}
}
return (void *) VM_PAGE_TO_PHYS(pg);
}
void
pmap_pool_ufree(void *va, unsigned long size, int tag)
{
struct pvo_page *pvop;
if (PHYS_TO_VM_PAGE((paddr_t) va) != NULL) {
pmap_pool_mfree(va, size, tag);
return;
}
pvop = va;
SIMPLEQ_INSERT_HEAD(&pmap_pvop_head, pvop, pvop_link);
}
void
pmap_pool_mfree(void *va, unsigned long size, int tag)
{
if (size != PAGE_SIZE)
panic("pmap_pool_alloc: size(%d) != PAGE_SIZE", size);
uvm_pagefree(PHYS_TO_VM_PAGE((paddr_t) va));
}
/*
* This routine in bootstraping to steal to-be-managed memory (which will
* then be unmanaged). We use it to grab from the first 256MB for our
* pmap needs and above 256MB for other stuff.
*/
vaddr_t
pmap_steal_memory(vsize_t vsize, vaddr_t *vstartp, vaddr_t *vendp)
{
vsize_t size;
vaddr_t va;
paddr_t pa = 0;
int npgs, bank;
struct vm_physseg *ps;
if (uvm.page_init_done == TRUE)
panic("pmap_steal_memory: called _after_ bootstrap");
*vstartp = VM_MIN_KERNEL_ADDRESS + pmap_rkva_count * NBPG;
*vendp = VM_MAX_KERNEL_ADDRESS;
size = round_page(vsize);
npgs = atop(size);
/*
* PA 0 will never be among those given to UVM so we can use it
* to indicate we couldn't steal any memory.
*/
for (ps = vm_physmem, bank = 0; bank < vm_nphysseg; bank++, ps++) {
if (ps->free_list == VM_FREELIST_FIRST256 &&
ps->avail_end - ps->avail_start >= npgs) {
pa = ptoa(ps->avail_start);
break;
}
}
if (pa == 0)
panic("pmap_steal_memory: no approriate memory to steal!");
ps->avail_start += npgs;
ps->start += npgs;
/*
* If we've used up all the pages in the segment, remove it and
* compact the list.
*/
if (ps->avail_start == ps->end) {
/*
* If this was the last one, then a very bad thing has occured
*/
if (--vm_nphysseg == 0)
panic("pmap_steal_memory: out of memory!");
printf("pmap_steal_memory: consumed bank %d\n", bank);
for (; bank < vm_nphysseg; bank++, ps++) {
ps[0] = ps[1];
}
}
va = (vaddr_t) pa;
memset((caddr_t) va, 0, size);
pmap_pages_stolen += npgs;
#ifdef DEBUG
if (pmapdebug && npgs > 1) {
u_int cnt = 0;
for (bank = 0, ps = vm_physmem; bank < vm_nphysseg; bank++, ps++)
cnt += ps->avail_end - ps->avail_start;
printf("pmap_steal_memory: stole %u (total %u) pages (%u left)\n",
npgs, pmap_pages_stolen, cnt);
}
#endif
return va;
}
/*
* This is not part of the defined PMAP interface and is specific to the
* PowerPC architecture.
* This is called during initppc, before the system is really initialized.
*/
void
pmap_bootstrap(vaddr_t kernelstart, vaddr_t kernelend)
{
struct mem_region *mp, *mp1;
int cnt, i;
u_int npgs = 0;
u_int s, e, sz;
/*
* Get memory.
*/
mem_regions(&mem, &avail);
#if defined(DEBUG)
printf("pmap_bootstrap: memory configuration:\n");
for (mp = mem; mp->size; mp++) {
printf("pmap_bootstrap: mem start 0x%x size 0x%x\n",
mp->start, mp->size);
}
for (mp = avail; mp->size; mp++) {
printf("pmap_bootstrap: avail start 0x%x size 0x%x\n",
mp->start, mp->size);
}
#endif
for (mp = mem; mp->size; mp++)
physmem += btoc(mp->size);
/*
* Count the number of available entries.
*/
for (cnt = 0, mp = avail; mp->size; mp++)
cnt++;
/*
* Page align all regions.
* Non-page aligned memory isn't very interesting to us.
* Also, sort the entries for ascending addresses.
*/
kernelstart &= ~PGOFSET;
kernelend = (kernelend + PGOFSET) & ~PGOFSET;
for (mp = avail; mp->size; mp++) {
s = mp->start;
e = mp->start + mp->size;
#if defined(ALLEGRO) && defined(discovery)
#define HOLESTART 0x1fa6000
#define HOLEEND 0x2000000
/*
* Check whether this region holds all of
* the mysterious discovery memory hole
*/
if (s < HOLESTART && e > HOLEEND) {
avail[cnt].start = HOLESTART;
avail[cnt++].size = e - HOLEEND;
e = HOLESTART;
}
/*
* Look whether this regions starts within
* the mysterious discovery memory hole
*/
if (s >= HOLESTART && s < HOLEEND) {
if (e <= HOLEEND)
goto empty;
s = HOLEEND;
}
/*
* Now look whether this region ends within
* the mysterious discovery memory hole
*/
if (e > HOLESTART && e <= HOLEEND) {
if (s >= HOLESTART)
goto empty;
e = HOLESTART;
}
#endif
/*
* Check whether this region holds all of the kernel.
*/
if (s < kernelstart && e > kernelend) {
avail[cnt].start = kernelend;
avail[cnt++].size = e - kernelend;
e = kernelstart;
}
/*
* Look whether this regions starts within the kernel.
*/
if (s >= kernelstart && s < kernelend) {
if (e <= kernelend)
goto empty;
s = kernelend;
}
/*
* Now look whether this region ends within the kernel.
*/
if (e > kernelstart && e <= kernelend) {
if (s >= kernelstart)
goto empty;
e = kernelstart;
}
/*
* Now page align the start and size of the region.
*/
s = round_page(s);
e = trunc_page(e);
if (e < s)
e = s;
sz = e - s;
/*
* Check whether some memory is left here.
*/
if (sz == 0) {
empty:
bcopy(mp + 1, mp,
(cnt - (mp - avail)) * sizeof *mp);
cnt--;
mp--;
continue;
}
/*
* Do an insertion sort.
*/
npgs += btoc(sz);
for (mp1 = avail; mp1 < mp; mp1++)
if (s < mp1->start)
break;
if (mp1 < mp) {
bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1);
mp1->start = s;
mp1->size = sz;
} else {
mp->start = s;
mp->size = sz;
}
}
#ifdef HTABENTS
pteg_cnt = HTABENTS;
#else /* HTABENTS */
pteg_cnt = 1024;
while ((pteg_cnt * sizeof(pteg_t) << 7) < ctob((u_int)physmem))
pteg_cnt <<= 1;
#ifdef ALLEGRO
#ifndef discovery
pteg_cnt <<= 1; /* twice the minimum size */
#endif
#endif
#endif /* HTABENTS */
/*
* Find suitably aligned memory for HTAB.
*/
for (mp = avail; mp->size; mp++) {
s = roundup(mp->start, pteg_cnt * sizeof(pteg_t)) - mp->start;
if (mp->size < s + pteg_cnt * sizeof(pteg_t))
continue;
pteg_table = (volatile pteg_t *)(mp->start + s);
#ifdef ALLEGRO
if ((((uintptr_t)pteg_table) + pteg_cnt * sizeof(pteg_t)) > 0x10000000) /* sanity */
panic("pmap_bootstrap: pteg_table end > 256MB");
#endif
if (mp->size == s + pteg_cnt * sizeof(pteg_t)) {
if (s)
mp->size = s;
else {
bcopy(mp + 1, mp,
(cnt - (mp - avail)) * sizeof *mp);
mp = avail;
}
break;
}
if (s != 0) {
bcopy(mp, mp + 1,
(cnt - (mp - avail)) * sizeof *mp);
mp++->size = s;
cnt++;
}
mp->start += s + pteg_cnt * sizeof(pteg_t);
mp->size -= s + pteg_cnt * sizeof(pteg_t);
break;
}
if (!mp->size)
panic("not enough memory?");
npgs -= btoc(pteg_cnt * sizeof(pteg_t));
bzero((void *)pteg_table, pteg_cnt * sizeof(pteg_t));
pteg_mask = pteg_cnt - 1;
/*
* We cannot do pmap_steal_memory here,
* since we don't run with translation enabled yet.
*/
s = sizeof(struct pvo_head) * pteg_cnt;
sz = round_page(s);
for (mp = avail; mp->size; mp++)
if (mp->size >= sz)
break;
if (!mp->size)
panic("not enough memory?");
npgs -= btoc(sz);
pvo_table = (struct pvo_head *)mp->start;
mp->size -= sz;
mp->start += sz;
if (mp->size <= 0)
bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp);
for (i = 0; i < pteg_cnt; i++)
LIST_INIT(&pvo_table[i]);
#ifndef MSGBUFADDR
/*
* allow for msgbuf
*/
sz = round_page(MSGBUFSIZE);
mp = NULL;
for (mp1 = avail; mp1->size; mp1++)
if (mp1->size >= sz)
mp = mp1;
if (mp == NULL)
panic("not enough memory?");
npgs -= btoc(sz);
msgbuf_paddr = mp->start + mp->size - sz;
mp->size -= sz;
if (mp->size <= 0)
bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp);
#endif
sz = (sizeof(struct pvo_head *) + 1) * npgs;
for (mp = avail; mp->size; mp++)
if (mp->size >= sz)
break;
if (!mp->size)
panic("pmap_bootstrap: not enough memory for (BAT) buffers");
#ifdef __HAVE_PMAP_PHYSSEG
pmap_physseg.pvoh = (struct pvo_head *) mp->start;
pmap_physseg.attrs = (char *) &pmap_physseg.pvoh[npgs];
mp->size -= sz;
mp->start += sz;
if (mp->size == 0)
bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp);
if (((unsigned int)pmap_physseg.pvoh + sz) > 0x10000000) /* sanity */
panic("pmap_bootstrap: PVO list end > 256MB");
#endif
for (mp = avail; mp->size; mp++) {
paddr_t pfstart = atop(mp->start);
paddr_t pfend = atop(mp->start + mp->size);
if (mp->start + mp->size <= SEGMENT_LENGTH) {
uvm_page_physload(pfstart, pfend, pfstart, pfend,
VM_FREELIST_FIRST256);
} else if (mp->start >= 0x10000000) {
uvm_page_physload(pfstart, pfend, pfstart, pfend,
VM_FREELIST_DEFAULT);
} else {
pfend = atop(SEGMENT_LENGTH);
uvm_page_physload(pfstart, pfend, pfstart, pfend,
VM_FREELIST_FIRST256);
pfstart = atop(SEGMENT_LENGTH);
pfend = atop(mp->start + mp->size);
uvm_page_physload(pfstart, pfend, pfstart, pfend,
VM_FREELIST_DEFAULT);
}
}
/*
* Initialize kernel pmap and hardware.
*/
#if NPMAPS >= KERNEL_SEGMENT / 16
usedsr[KERNEL_SEGMENT / 16 / (sizeof usedsr[0] * 8)]
|= 1 << ((KERNEL_SEGMENT / 16) % (sizeof usedsr[0] * 8));
#endif
for (i = 0; i < 16; i++) {
pmap_kernel()->pm_sr[i] = EMPTY_SEGMENT;
__asm __volatile ("mtsrin %0,%1"
:: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
}
pmap_kernel()->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
__asm __volatile ("mtsr %0,%1"
:: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
__asm __volatile ("sync; mtsdr1 %0; isync"
:: "r"((u_int)pteg_table | (pteg_mask >> 10)));
tlbia();
#ifdef DEBUG
if (pmapdebug > 3) {
u_int cnt;
int bank;
char pbuf[9];
for (cnt = 0, bank = 0; bank < vm_nphysseg; bank++) {
cnt += vm_physmem[bank].avail_end - vm_physmem[bank].avail_start;
printf("pmap_bootstrap: vm_physmem[%d]=%#x-%#x/%#x\n",
bank,
ptoa(vm_physmem[bank].avail_start),
ptoa(vm_physmem[bank].avail_end),
ptoa(vm_physmem[bank].avail_end - vm_physmem[bank].avail_start));
}
format_bytes(pbuf, sizeof(pbuf), ptoa((u_int64_t) cnt));
printf("pmap_bootstrap: UVM memory = %s (%u pages)\n",
pbuf, cnt);
}
#endif
pool_init(&pmap_upvo_pl, sizeof(struct pvo_entry),
sizeof(struct pvo_entry), 0, 0, "pmap_upvopl", NBPG,
pmap_pool_ualloc, pmap_pool_ufree, M_VMPMAP);
pool_setlowat(&pmap_upvo_pl, 252);
pool_init(&pmap_pl, sizeof(struct pmap),
sizeof(void *), 0, 0, "pmap_pl", NBPG,
pmap_pool_ualloc, pmap_pool_ufree, M_VMPMAP);
nextavail = avail->start;
}