NetBSD/sbin/fsck_lfs/utilities.c

571 lines
13 KiB
C
Raw Normal View History

Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
/* $NetBSD: utilities.c,v 1.8 2001/07/13 20:30:19 perseant Exp $ */
/*
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/time.h>
#include <ufs/ufs/dinode.h>
#include <ufs/ufs/dir.h>
#include <sys/mount.h>
#include <ufs/lfs/lfs.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <signal.h>
#include "fsutil.h"
#include "fsck.h"
#include "extern.h"
2000-05-23 05:48:52 +04:00
long diskreads, totalreads; /* Disk cache statistics */
2000-05-23 05:48:52 +04:00
static void rwerror(char *, daddr_t);
2001-02-05 00:52:02 +03:00
extern int returntosingle;
int
2000-05-23 05:48:52 +04:00
ftypeok(struct dinode * dp)
{
switch (dp->di_mode & IFMT) {
2000-05-23 05:48:52 +04:00
case IFDIR:
case IFREG:
case IFBLK:
case IFCHR:
case IFLNK:
case IFSOCK:
case IFIFO:
return (1);
default:
if (debug)
printf("bad file type 0%o\n", dp->di_mode);
return (0);
}
}
int
2000-05-23 05:48:52 +04:00
reply(char *question)
{
2000-05-23 05:48:52 +04:00
int persevere;
char c;
if (preen)
pfatal("INTERNAL ERROR: GOT TO reply()");
persevere = !strcmp(question, "CONTINUE");
printf("\n");
if (!persevere && (nflag || fswritefd < 0)) {
printf("%s? no\n\n", question);
return (0);
}
if (yflag || (persevere && nflag)) {
printf("%s? yes\n\n", question);
return (1);
}
2000-05-23 05:48:52 +04:00
do {
printf("%s? [yn] ", question);
2000-05-23 05:48:52 +04:00
(void)fflush(stdout);
c = getc(stdin);
while (c != '\n' && getc(stdin) != '\n')
if (feof(stdin))
return (0);
} while (c != 'y' && c != 'Y' && c != 'n' && c != 'N');
printf("\n");
if (c == 'y' || c == 'Y')
return (1);
return (0);
}
/*
* Malloc buffers and set up cache.
*/
void
bufinit()
{
register struct bufarea *bp;
2000-05-23 05:48:52 +04:00
long bufcnt, i;
char *bufp;
pbp = pdirbp = (struct bufarea *)0;
bufp = malloc((unsigned int)sblock.lfs_bsize);
if (bufp == 0)
errexit("cannot allocate buffer pool\n");
/* cgblk.b_un.b_buf = bufp; */
/* initbarea(&cgblk); */
bufhead.b_next = bufhead.b_prev = &bufhead;
bufcnt = MAXBUFSPACE / sblock.lfs_bsize;
if (bufcnt < MINBUFS)
bufcnt = MINBUFS;
for (i = 0; i < bufcnt; i++) {
bp = (struct bufarea *)malloc(sizeof(struct bufarea));
bufp = malloc((unsigned int)sblock.lfs_bsize);
if (bp == NULL || bufp == NULL) {
if (i >= MINBUFS)
break;
errexit("cannot allocate buffer pool\n");
}
bp->b_un.b_buf = bufp;
bp->b_prev = &bufhead;
bp->b_next = bufhead.b_next;
bufhead.b_next->b_prev = bp;
bufhead.b_next = bp;
initbarea(bp);
}
bufhead.b_size = i; /* save number of buffers */
}
/*
* Manage a cache of directory blocks.
*/
struct bufarea *
2000-05-23 05:48:52 +04:00
getddblk(daddr_t blkno, long size)
{
register struct bufarea *bp;
for (bp = bufhead.b_next; bp != &bufhead; bp = bp->b_next)
if (bp->b_bno == blkno) {
2000-05-23 05:48:52 +04:00
if (bp->b_size <= size)
getdblk(bp, blkno, size);
goto foundit;
}
for (bp = bufhead.b_prev; bp != &bufhead; bp = bp->b_prev)
if ((bp->b_flags & B_INUSE) == 0)
break;
if (bp == &bufhead)
errexit("deadlocked buffer pool\n");
getdblk(bp, blkno, size);
/* fall through */
foundit:
totalreads++;
bp->b_prev->b_next = bp->b_next;
bp->b_next->b_prev = bp->b_prev;
bp->b_prev = &bufhead;
bp->b_next = bufhead.b_next;
bufhead.b_next->b_prev = bp;
bufhead.b_next = bp;
bp->b_flags |= B_INUSE;
return (bp);
}
struct bufarea *
2000-05-23 05:48:52 +04:00
getdatablk(daddr_t blkno, long size)
{
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
return getddblk(blkno, size);
}
2000-05-23 05:48:52 +04:00
void
getdblk(struct bufarea * bp, daddr_t blk, long size)
{
if (bp->b_bno != blk) {
flush(fswritefd, bp);
diskreads++;
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
bp->b_errs = bread(fsreadfd, bp->b_un.b_buf,
fsbtodb(&sblock, blk), size);
bp->b_bno = blk;
bp->b_size = size;
}
}
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
void
2000-05-23 05:48:52 +04:00
getblk(struct bufarea * bp, daddr_t blk, long size)
{
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
getdblk(bp, blk, size);
}
void
2000-05-23 05:48:52 +04:00
flush(int fd, struct bufarea * bp)
{
if (!bp->b_dirty)
return;
if (bp->b_errs != 0)
pfatal("WRITING %sZERO'ED BLOCK %d TO DISK\n",
2000-05-23 05:48:52 +04:00
(bp->b_errs == bp->b_size / dev_bsize) ? "" : "PARTIALLY ",
bp->b_bno);
bp->b_dirty = 0;
bp->b_errs = 0;
bwrite(fd, bp->b_un.b_buf, bp->b_bno, (long)bp->b_size);
if (bp != &sblk)
return;
2000-05-23 05:48:52 +04:00
#if 0 /* XXX - FFS */
for (i = 0, j = 0; i < sblock.lfs_cssize; i += sblock.lfs_bsize, j++) {
bwrite(fswritefd, (char *)sblock.lfs_csp[j],
2000-05-23 05:48:52 +04:00
fsbtodb(&sblock, sblock.lfs_csaddr + j * sblock.lfs_frag),
sblock.lfs_cssize - i < sblock.lfs_bsize ?
sblock.lfs_cssize - i : sblock.lfs_bsize);
}
#endif
}
static void
2000-05-23 05:48:52 +04:00
rwerror(char *mesg, daddr_t blk)
{
if (preen == 0)
printf("\n");
pfatal("CANNOT %s: BLK %d", mesg, blk);
if (reply("CONTINUE") == 0)
errexit("Program terminated\n");
}
void
2000-05-23 05:48:52 +04:00
ckfini(int markclean)
{
register struct bufarea *bp, *nbp;
2000-05-23 05:48:52 +04:00
int cnt = 0;
if (fswritefd < 0) {
(void)close(fsreadfd);
return;
}
flush(fswritefd, &sblk);
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
if (havesb && sblk.b_bno != sblock.lfs_sboffs[0] &&
sblk.b_bno != sblock.lfs_sboffs[1] &&
!preen && reply("UPDATE STANDARD SUPERBLOCKS")) {
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
sblk.b_bno = fsbtodb(&sblock, sblock.lfs_sboffs[0]);
sbdirty();
flush(fswritefd, &sblk);
}
if (havesb) {
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
if (sblk.b_bno == fsbtodb(&sblock, sblock.lfs_sboffs[0])) {
/* Do the first alternate */
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
sblk.b_bno = fsbtodb(&sblock, sblock.lfs_sboffs[1]);
sbdirty();
flush(fswritefd, &sblk);
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
} else if (sblk.b_bno ==
fsbtodb(&sblock, sblock.lfs_sboffs[1])) {
/* Do the primary */
sblk.b_bno = LFS_LABELPAD / dev_bsize;
sbdirty();
flush(fswritefd, &sblk);
}
}
/* flush(fswritefd, &cgblk); */
/* free(cgblk.b_un.b_buf); */
for (bp = bufhead.b_prev; bp && bp != &bufhead; bp = nbp) {
cnt++;
flush(fswritefd, bp);
nbp = bp->b_prev;
free(bp->b_un.b_buf);
free((char *)bp);
}
if (bufhead.b_size != cnt)
errexit("Panic: lost %d buffers\n", bufhead.b_size - cnt);
pbp = pdirbp = (struct bufarea *)0;
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
if (markclean && !(sblock.lfs_pflags & LFS_PF_CLEAN)) {
/*
* Mark the file system as clean, and sync the superblock.
*/
if (preen)
pwarn("MARKING FILE SYSTEM CLEAN\n");
else if (!reply("MARK FILE SYSTEM CLEAN"))
markclean = 0;
if (markclean) {
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
sblock.lfs_pflags |= LFS_PF_CLEAN;
sbdirty();
flush(fswritefd, &sblk);
2000-05-23 05:48:52 +04:00
if (sblk.b_bno == LFS_LABELPAD / dev_bsize) {
/* Do the first alternate */
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
sblk.b_bno = fsbtodb(&sblock,
sblock.lfs_sboffs[0]);
flush(fswritefd, &sblk);
Merge the short-lived perseant-lfsv2 branch into the trunk. Kernels and tools understand both v1 and v2 filesystems; newfs_lfs generates v2 by default. Changes for the v2 layout include: - Segments of non-PO2 size and arbitrary block offset, so these can be matched to convenient physical characteristics of the partition (e.g., stripe or track size and offset). - Address by fragment instead of by disk sector, paving the way for non-512-byte-sector devices. In theory fragments can be as large as you like, though in reality they must be smaller than MAXBSIZE in size. - Use serial number and filesystem identifier to ensure that roll-forward doesn't get old data and think it's new. Roll-forward is enabled for v2 filesystems, though not for v1 filesystems by default. - The inode free list is now a tailq, paving the way for undelete (undelete is not yet implemented, but can be without further non-backwards-compatible changes to disk structures). - Inode atime information is kept in the Ifile, instead of on the inode; that is, the inode is never written *just* because atime was changed. Because of this the inodes remain near the file data on the disk, rather than wandering all over as the disk is read repeatedly. This speeds up repeated reads by a small but noticeable amount. Other changes of note include: - The ifile written by newfs_lfs can now be of arbitrary length, it is no longer restricted to a single indirect block. - Fixed an old bug where ctime was changed every time a vnode was created. I need to look more closely to make sure that the times are only updated during write(2) and friends, not after-the-fact during a segment write, and certainly not by the cleaner.
2001-07-14 00:30:18 +04:00
} else if (sblk.b_bno == fsbtodb(&sblock,
sblock.lfs_sboffs[0])) {
/* Do the primary */
sblk.b_bno = LFS_LABELPAD / dev_bsize;
flush(fswritefd, &sblk);
}
}
}
if (debug)
printf("cache missed %ld of %ld (%d%%)\n", diskreads,
2000-05-23 05:48:52 +04:00
totalreads, (int)(diskreads * 100 / totalreads));
(void)close(fsreadfd);
(void)close(fswritefd);
}
int
2000-05-23 05:48:52 +04:00
bread(int fd, char *buf, daddr_t blk, long size)
{
2000-05-23 05:48:52 +04:00
char *cp;
int i, errs;
off_t offset;
offset = blk;
offset *= dev_bsize;
if (lseek(fd, offset, 0) < 0) {
rwerror("SEEK", blk);
2000-05-23 05:48:52 +04:00
} else if (read(fd, buf, (int)size) == size)
return (0);
rwerror("READ", blk);
if (lseek(fd, offset, 0) < 0)
rwerror("SEEK", blk);
errs = 0;
memset(buf, 0, (size_t)size);
printf("THE FOLLOWING DISK SECTORS COULD NOT BE READ:");
for (cp = buf, i = 0; i < size; i += secsize, cp += secsize) {
if (read(fd, cp, (int)secsize) != secsize) {
(void)lseek(fd, offset + i + secsize, 0);
if (secsize != dev_bsize && dev_bsize != 1)
printf(" %ld (%ld),",
2000-05-23 05:48:52 +04:00
(blk * dev_bsize + i) / secsize,
blk + i / dev_bsize);
else
printf(" %ld,", blk + i / dev_bsize);
errs++;
}
}
printf("\n");
return (errs);
}
void
2000-05-23 05:48:52 +04:00
bwrite(int fd, char *buf, daddr_t blk, long size)
{
2000-05-23 05:48:52 +04:00
int i;
char *cp;
off_t offset;
if (fd < 0)
return;
offset = blk;
offset *= dev_bsize;
if (lseek(fd, offset, 0) < 0)
rwerror("SEEK", blk);
else if (write(fd, buf, (int)size) == size) {
fsmodified = 1;
return;
}
rwerror("WRITE", blk);
if (lseek(fd, offset, 0) < 0)
rwerror("SEEK", blk);
printf("THE FOLLOWING SECTORS COULD NOT BE WRITTEN:");
for (cp = buf, i = 0; i < size; i += dev_bsize, cp += dev_bsize)
if (write(fd, cp, (int)dev_bsize) != dev_bsize) {
(void)lseek(fd, offset + i + dev_bsize, 0);
printf(" %ld,", blk + i / dev_bsize);
}
printf("\n");
return;
}
/*
* allocate a data block with the specified number of fragments
*/
int
2000-05-23 05:48:52 +04:00
allocblk(long frags)
{
#if 1
/*
* XXX Can't allocate blocks right now because we would have to do
* a full partial segment write.
*/
return 0;
2000-05-23 05:48:52 +04:00
#else /* 0 */
register int i, j, k;
if (frags <= 0 || frags > sblock.lfs_frag)
return (0);
for (i = 0; i < maxfsblock - sblock.lfs_frag; i += sblock.lfs_frag) {
for (j = 0; j <= sblock.lfs_frag - frags; j++) {
if (testbmap(i + j))
continue;
for (k = 1; k < frags; k++)
if (testbmap(i + j + k))
break;
if (k < frags) {
j += k;
continue;
}
for (k = 0; k < frags; k++) {
#ifndef VERBOSE_BLOCKMAP
2000-05-23 05:48:52 +04:00
setbmap(i + j + k);
#else
2000-05-23 05:48:52 +04:00
setbmap(i + j + k, -1);
#endif
2000-05-23 05:48:52 +04:00
}
n_blks += frags;
return (i + j);
}
}
return (0);
2000-05-23 05:48:52 +04:00
#endif /* 0 */
}
/*
* Free a previously allocated block
*/
void
2000-05-23 05:48:52 +04:00
freeblk(daddr_t blkno, long frags)
{
2000-05-23 05:48:52 +04:00
struct inodesc idesc;
idesc.id_blkno = blkno;
idesc.id_numfrags = frags;
(void)pass4check(&idesc);
}
/*
* Find a pathname
*/
void
2000-05-23 05:48:52 +04:00
getpathname(char *namebuf, ino_t curdir, ino_t ino)
{
2000-05-23 05:48:52 +04:00
int len;
register char *cp;
struct inodesc idesc;
static int busy = 0;
if (curdir == ino && ino == ROOTINO) {
(void)strcpy(namebuf, "/");
return;
}
if (busy ||
(statemap[curdir] != DSTATE && statemap[curdir] != DFOUND)) {
(void)strcpy(namebuf, "?");
return;
}
busy = 1;
memset(&idesc, 0, sizeof(struct inodesc));
idesc.id_type = DATA;
idesc.id_fix = IGNORE;
cp = &namebuf[MAXPATHLEN - 1];
*cp = '\0';
if (curdir != ino) {
idesc.id_parent = curdir;
goto namelookup;
}
while (ino != ROOTINO) {
idesc.id_number = ino;
idesc.id_func = findino;
idesc.id_name = "..";
if ((ckinode(ginode(ino), &idesc) & FOUND) == 0)
break;
2000-05-23 05:48:52 +04:00
namelookup:
idesc.id_number = idesc.id_parent;
idesc.id_parent = ino;
idesc.id_func = findname;
idesc.id_name = namebuf;
2000-05-23 05:48:52 +04:00
if ((ckinode(ginode(idesc.id_number), &idesc) & FOUND) == 0)
break;
len = strlen(namebuf);
cp -= len;
memcpy(cp, namebuf, (size_t)len);
*--cp = '/';
if (cp < &namebuf[MAXNAMLEN])
break;
ino = idesc.id_number;
}
busy = 0;
if (ino != ROOTINO)
*--cp = '?';
memcpy(namebuf, cp, (size_t)(&namebuf[MAXPATHLEN] - cp));
}
void
2000-05-23 05:48:52 +04:00
catch(int n)
{
if (!doinglevel2)
ckfini(0);
exit(12);
}
/*
* When preening, allow a single quit to signal
* a special exit after filesystem checks complete
* so that reboot sequence may be interrupted.
*/
void
2000-05-23 05:48:52 +04:00
catchquit(int n)
{
printf("returning to single-user after filesystem check\n");
returntosingle = 1;
(void)signal(SIGQUIT, SIG_DFL);
}
/*
* Ignore a single quit signal; wait and flush just in case.
* Used by child processes in preen.
*/
void
2000-05-23 05:48:52 +04:00
voidquit(int n)
{
sleep(1);
(void)signal(SIGQUIT, SIG_IGN);
(void)signal(SIGQUIT, SIG_DFL);
}
/*
* determine whether an inode should be fixed.
*/
int
2000-05-23 05:48:52 +04:00
dofix(struct inodesc * idesc, char *msg)
{
switch (idesc->id_fix) {
2000-05-23 05:48:52 +04:00
case DONTKNOW:
if (idesc->id_type == DATA)
direrror(idesc->id_number, msg);
else
pwarn("%s", msg);
if (preen) {
printf(" (SALVAGED)\n");
idesc->id_fix = FIX;
return (ALTERED);
}
if (reply("SALVAGE") == 0) {
idesc->id_fix = NOFIX;
return (0);
}
idesc->id_fix = FIX;
return (ALTERED);
case FIX:
return (ALTERED);
case NOFIX:
case IGNORE:
return (0);
default:
errexit("UNKNOWN INODESC FIX MODE %d\n", idesc->id_fix);
}
/* NOTREACHED */
}