NetBSD/sys/dev/pci/if_sk.c

3072 lines
82 KiB
C
Raw Normal View History

/* $NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* $OpenBSD: if_sk.c,v 1.116 2006/06/22 23:06:03 brad Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
*/
/*
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
* the SK-984x series adapters, both single port and dual port.
* References:
* The XaQti XMAC II datasheet,
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
* The SysKonnect GEnesis manual, http://www.syskonnect.com
*
* Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
* convenience to others until Vitesse corrects this problem:
*
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Department of Electrical Engineering
* Columbia University, New York City
*/
/*
* The SysKonnect gigabit ethernet adapters consist of two main
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
* components and a PHY while the GEnesis controller provides a PCI
* interface with DMA support. Each card may have between 512K and
* 2MB of SRAM on board depending on the configuration.
*
* The SysKonnect GEnesis controller can have either one or two XMAC
* chips connected to it, allowing single or dual port NIC configurations.
* SysKonnect has the distinction of being the only vendor on the market
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
* XMAC registers. This driver takes advantage of these features to allow
* both XMACs to operate as independent interfaces.
*/
2005-02-27 03:26:58 +03:00
2007-07-20 02:00:04 +04:00
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_sk.c,v 1.56 2009/02/12 10:22:30 cegger Exp $");
2007-07-20 02:00:04 +04:00
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/sysctl.h>
#include <sys/endian.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
/* #define SK_USEIOSPACE */
#include <dev/pci/if_skreg.h>
#include <dev/pci/if_skvar.h>
2008-09-09 01:20:03 +04:00
int skc_probe(device_t, cfdata_t, void *);
void skc_attach(device_t, device_t, void *aux);
int sk_probe(device_t, cfdata_t, void *);
void sk_attach(device_t, device_t, void *aux);
int skcprint(void *, const char *);
int sk_intr(void *);
void sk_intr_bcom(struct sk_if_softc *);
void sk_intr_xmac(struct sk_if_softc *);
void sk_intr_yukon(struct sk_if_softc *);
void sk_rxeof(struct sk_if_softc *);
void sk_txeof(struct sk_if_softc *);
int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
void sk_start(struct ifnet *);
int sk_ioctl(struct ifnet *, u_long, void *);
int sk_init(struct ifnet *);
void sk_init_xmac(struct sk_if_softc *);
void sk_init_yukon(struct sk_if_softc *);
void sk_stop(struct ifnet *, int);
void sk_watchdog(struct ifnet *);
void sk_shutdown(void *);
int sk_ifmedia_upd(struct ifnet *);
void sk_reset(struct sk_softc *);
int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
int sk_alloc_jumbo_mem(struct sk_if_softc *);
void sk_free_jumbo_mem(struct sk_if_softc *);
void *sk_jalloc(struct sk_if_softc *);
void sk_jfree(struct mbuf *, void *, size_t, void *);
int sk_init_rx_ring(struct sk_if_softc *);
int sk_init_tx_ring(struct sk_if_softc *);
u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
void sk_vpd_read_res(struct sk_softc *,
struct vpd_res *, int);
void sk_vpd_read(struct sk_softc *);
void sk_update_int_mod(struct sk_softc *);
2008-09-09 01:20:03 +04:00
int sk_xmac_miibus_readreg(device_t, int, int);
void sk_xmac_miibus_writereg(device_t, int, int, int);
void sk_xmac_miibus_statchg(device_t);
2008-09-09 01:20:03 +04:00
int sk_marv_miibus_readreg(device_t, int, int);
void sk_marv_miibus_writereg(device_t, int, int, int);
void sk_marv_miibus_statchg(device_t);
u_int32_t sk_xmac_hash(void *);
u_int32_t sk_yukon_hash(void *);
void sk_setfilt(struct sk_if_softc *, void *, int);
void sk_setmulti(struct sk_if_softc *);
void sk_tick(void *);
/* #define SK_DEBUG 2 */
#ifdef SK_DEBUG
#define DPRINTF(x) if (skdebug) printf x
#define DPRINTFN(n,x) if (skdebug >= (n)) printf x
int skdebug = SK_DEBUG;
void sk_dump_txdesc(struct sk_tx_desc *, int);
void sk_dump_mbuf(struct mbuf *);
void sk_dump_bytes(const char *, int);
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
static int sk_sysctl_handler(SYSCTLFN_PROTO);
static int sk_root_num;
/* supported device vendors */
/* PCI_PRODUCT_DLINK_DGE560T_2 might belong in if_msk instead */
2005-02-27 03:26:58 +03:00
static const struct sk_product {
pci_vendor_id_t sk_vendor;
pci_product_id_t sk_product;
} sk_products[] = {
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T_2, },
{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
2006-08-23 01:42:19 +04:00
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SKNET, },
{ PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_BELKIN, },
{ 0, 0, }
};
#define SK_LINKSYS_EG1032_SUBID 0x00151737
static inline u_int32_t
sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_4(sc, reg);
#endif
}
static inline u_int16_t
sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_2(sc, reg);
#endif
}
static inline u_int8_t
sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_1(sc, reg);
#endif
}
static inline void
sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_4(sc, reg, x);
#endif
}
static inline void
sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_2(sc, reg, x);
#endif
}
static inline void
sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_1(sc, reg, x);
#endif
}
/*
* The VPD EEPROM contains Vital Product Data, as suggested in
* the PCI 2.1 specification. The VPD data is separared into areas
* denoted by resource IDs. The SysKonnect VPD contains an ID string
* resource (the name of the adapter), a read-only area resource
* containing various key/data fields and a read/write area which
* can be used to store asset management information or log messages.
* We read the ID string and read-only into buffers attached to
* the controller softc structure for later use. At the moment,
* we only use the ID string during sk_attach().
*/
u_int8_t
sk_vpd_readbyte(struct sk_softc *sc, int addr)
{
int i;
sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (sk_win_read_2(sc,
SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
break;
}
if (i == SK_TIMEOUT)
return 0;
return sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA));
}
void
sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = sk_vpd_readbyte(sc, i + addr);
}
void
sk_vpd_read(struct sk_softc *sc)
{
int pos = 0, i;
struct vpd_res res;
if (sc->sk_vpd_prodname != NULL)
free(sc->sk_vpd_prodname, M_DEVBUF);
if (sc->sk_vpd_readonly != NULL)
free(sc->sk_vpd_readonly, M_DEVBUF);
sc->sk_vpd_prodname = NULL;
sc->sk_vpd_readonly = NULL;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev,
"bad VPD resource id: expected %x got %x\n",
2008-04-10 23:13:36 +04:00
VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
if (sc->sk_vpd_prodname == NULL)
panic("sk_vpd_read");
for (i = 0; i < res.vr_len; i++)
sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
sc->sk_vpd_prodname[i] = '\0';
pos += i;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev,
"bad VPD resource id: expected %x got %x\n",
2008-04-10 23:13:36 +04:00
VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
if (sc->sk_vpd_readonly == NULL)
panic("sk_vpd_read");
for (i = 0; i < res.vr_len ; i++)
sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
}
int
2008-09-09 01:20:03 +04:00
sk_xmac_miibus_readreg(device_t dev, int phy, int reg)
{
2008-09-09 01:54:10 +04:00
struct sk_if_softc *sc_if = device_private(dev);
int i;
DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
return 0;
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
SK_XM_READ_2(sc_if, XM_PHY_DATA);
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
XM_MMUCMD_PHYDATARDY)
break;
}
if (i == SK_TIMEOUT) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"phy failed to come ready\n");
return 0;
}
}
DELAY(1);
return SK_XM_READ_2(sc_if, XM_PHY_DATA);
}
void
2008-09-09 01:20:03 +04:00
sk_xmac_miibus_writereg(device_t dev, int phy, int reg, int val)
{
2008-09-09 01:54:10 +04:00
struct sk_if_softc *sc_if = device_private(dev);
int i;
DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
for (i = 0; i < SK_TIMEOUT; i++) {
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
return;
}
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT)
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
}
void
2008-09-09 01:20:03 +04:00
sk_xmac_miibus_statchg(device_t dev)
{
2008-09-09 01:54:10 +04:00
struct sk_if_softc *sc_if = device_private(dev);
struct mii_data *mii = &sc_if->sk_mii;
DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
/*
* If this is a GMII PHY, manually set the XMAC's
* duplex mode accordingly.
*/
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
else
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
}
}
int
2008-09-09 01:20:03 +04:00
sk_marv_miibus_readreg(device_t dev, int phy, int reg)
{
2008-09-09 01:54:10 +04:00
struct sk_if_softc *sc_if = device_private(dev);
u_int16_t val;
int i;
if (phy != 0 ||
(sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
phy, reg));
return 0;
}
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
2005-02-27 03:26:58 +03:00
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
if (val & YU_SMICR_READ_VALID)
break;
}
if (i == SK_TIMEOUT) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
return 0;
}
2005-02-27 03:26:58 +03:00
DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
SK_TIMEOUT));
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
phy, reg, val));
return val;
}
void
2008-09-09 01:20:03 +04:00
sk_marv_miibus_writereg(device_t dev, int phy, int reg, int val)
{
2008-09-09 01:20:03 +04:00
struct sk_if_softc *sc_if = device_private(dev);
int i;
DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
phy, reg, val));
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
break;
}
if (i == SK_TIMEOUT)
2008-09-09 01:20:03 +04:00
printf("%s: phy write timed out\n",
device_xname(sc_if->sk_dev));
}
void
2008-09-09 01:20:03 +04:00
sk_marv_miibus_statchg(device_t dev)
{
DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
2008-09-09 09:54:23 +04:00
SK_YU_READ_2(((struct sk_if_softc *)device_private(dev)),
YUKON_GPCR)));
}
#define SK_HASH_BITS 6
u_int32_t
sk_xmac_hash(void *addr)
{
u_int32_t crc;
crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
2005-02-27 03:26:58 +03:00
crc = ~crc & ((1<< SK_HASH_BITS) - 1);
DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
return crc;
}
u_int32_t
sk_yukon_hash(void *addr)
{
u_int32_t crc;
crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
crc &= ((1 << SK_HASH_BITS) - 1);
DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
return crc;
}
void
sk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
{
char *addr = addrv;
int base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
}
void
sk_setmulti(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
u_int32_t hashes[2] = { 0, 0 };
int h = 0, i;
struct ethercom *ec = &sc_if->sk_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
/* First, zot all the existing filters. */
switch (sc->sk_type) {
case SK_GENESIS:
for (i = 1; i < XM_RXFILT_MAX; i++)
sk_setfilt(sc_if, (void *)&dummy, i);
SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
break;
}
/* Now program new ones. */
allmulti:
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
/* First find the tail of the list. */
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
goto allmulti;
}
DPRINTFN(2,("multicast address %s\n",
ether_sprintf(enm->enm_addrlo)));
/*
* Program the first XM_RXFILT_MAX multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
sk_setfilt(sc_if, enm->enm_addrlo, i);
i++;
}
else {
switch (sc->sk_type) {
case SK_GENESIS:
h = sk_xmac_hash(enm->enm_addrlo);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
h = sk_yukon_hash(enm->enm_addrlo);
break;
}
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
ETHER_NEXT_MULTI(step, enm);
}
}
switch (sc->sk_type) {
case SK_GENESIS:
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
XM_MODE_RX_USE_PERFECT);
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
break;
}
}
int
sk_init_rx_ring(struct sk_if_softc *sc_if)
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
bzero((char *)rd->sk_rx_ring,
sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
for (i = 0; i < SK_RX_RING_CNT; i++) {
cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
if (i == (SK_RX_RING_CNT - 1)) {
cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
rd->sk_rx_ring[i].sk_next =
htole32(SK_RX_RING_ADDR(sc_if, 0));
} else {
cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
rd->sk_rx_ring[i].sk_next =
htole32(SK_RX_RING_ADDR(sc_if,i+1));
}
}
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sk_newbuf(sc_if, i, NULL,
sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"failed alloc of %dth mbuf\n", i);
return ENOBUFS;
}
}
sc_if->sk_cdata.sk_rx_prod = 0;
sc_if->sk_cdata.sk_rx_cons = 0;
return 0;
}
int
sk_init_tx_ring(struct sk_if_softc *sc_if)
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
memset(sc_if->sk_rdata->sk_tx_ring, 0,
sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
for (i = 0; i < SK_TX_RING_CNT; i++) {
cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
if (i == (SK_TX_RING_CNT - 1)) {
cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
rd->sk_tx_ring[i].sk_next =
htole32(SK_TX_RING_ADDR(sc_if, 0));
} else {
cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
rd->sk_tx_ring[i].sk_next =
htole32(SK_TX_RING_ADDR(sc_if,i+1));
}
}
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return 0;
}
int
sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct sk_chain *c;
struct sk_rx_desc *r;
if (m == NULL) {
void *buf = NULL;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"no memory for rx list -- packet dropped!\n");
return ENOBUFS;
}
/* Allocate the jumbo buffer */
buf = sk_jalloc(sc_if);
if (buf == NULL) {
m_freem(m_new);
DPRINTFN(1, ("%s jumbo allocation failed -- packet "
"dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
return ENOBUFS;
}
/* Attach the buffer to the mbuf */
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if);
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
m_new->m_data = m_new->m_ext.ext_buf;
}
m_adj(m_new, ETHER_ALIGN);
c = &sc_if->sk_cdata.sk_rx_chain[i];
r = c->sk_desc;
c->sk_mbuf = m_new;
r->sk_data_lo = htole32(dmamap->dm_segs[0].ds_addr +
(((vaddr_t)m_new->m_data
- (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
r->sk_ctl = htole32(SK_JLEN | SK_RXSTAT);
SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return 0;
}
/*
* Memory management for jumbo frames.
*/
int
sk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
char *ptr, *kva;
bus_dma_segment_t seg;
int i, rseg, state, error;
struct sk_jpool_entry *entry;
state = error = 0;
/* Grab a big chunk o' storage. */
if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
return ENOBUFS;
}
state = 1;
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, (void **)&kva,
BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev,
"can't map dma buffers (%d bytes)\n",
2008-04-10 23:13:36 +04:00
SK_JMEM);
error = ENOBUFS;
goto out;
}
state = 2;
if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0,
BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "can't create dma map\n");
error = ENOBUFS;
goto out;
}
state = 3;
if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "can't load dma map\n");
error = ENOBUFS;
goto out;
}
state = 4;
sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
DPRINTFN(1,("sk_jumbo_buf = 0x%p\n", sc_if->sk_cdata.sk_jumbo_buf));
LIST_INIT(&sc_if->sk_jfree_listhead);
LIST_INIT(&sc_if->sk_jinuse_listhead);
mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc_if->sk_cdata.sk_jumbo_buf;
for (i = 0; i < SK_JSLOTS; i++) {
sc_if->sk_cdata.sk_jslots[i] = ptr;
ptr += SK_JLEN;
entry = malloc(sizeof(struct sk_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev,
"no memory for jumbo buffer queue!\n");
error = ENOBUFS;
goto out;
}
entry->slot = i;
if (i)
LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
entry, jpool_entries);
else
LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead,
entry, jpool_entries);
}
out:
if (error != 0) {
switch (state) {
case 4:
bus_dmamap_unload(sc->sc_dmatag,
sc_if->sk_cdata.sk_rx_jumbo_map);
case 3:
bus_dmamap_destroy(sc->sc_dmatag,
sc_if->sk_cdata.sk_rx_jumbo_map);
case 2:
bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM);
case 1:
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
break;
default:
break;
}
}
return error;
}
/*
* Allocate a jumbo buffer.
*/
void *
sk_jalloc(struct sk_if_softc *sc_if)
{
struct sk_jpool_entry *entry;
mutex_enter(&sc_if->sk_jpool_mtx);
entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
if (entry == NULL) {
mutex_exit(&sc_if->sk_jpool_mtx);
return NULL;
}
LIST_REMOVE(entry, jpool_entries);
LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
mutex_exit(&sc_if->sk_jpool_mtx);
return sc_if->sk_cdata.sk_jslots[entry->slot];
}
/*
* Release a jumbo buffer.
*/
void
sk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
{
struct sk_jpool_entry *entry;
struct sk_if_softc *sc;
int i;
/* Extract the softc struct pointer. */
sc = (struct sk_if_softc *)arg;
if (sc == NULL)
panic("sk_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((vaddr_t)buf
- (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
if ((i < 0) || (i >= SK_JSLOTS))
panic("sk_jfree: asked to free buffer that we don't manage!");
mutex_enter(&sc->sk_jpool_mtx);
entry = LIST_FIRST(&sc->sk_jinuse_listhead);
if (entry == NULL)
panic("sk_jfree: buffer not in use!");
entry->slot = i;
LIST_REMOVE(entry, jpool_entries);
LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
mutex_exit(&sc->sk_jpool_mtx);
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
}
/*
* Set media options.
*/
int
sk_ifmedia_upd(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
int rc;
(void) sk_init(ifp);
if ((rc = mii_mediachg(&sc_if->sk_mii)) == ENXIO)
return 0;
return rc;
}
int
sk_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
int s, error = 0;
/* DPRINTFN(2, ("sk_ioctl\n")); */
s = splnet();
switch (command) {
case SIOCSIFFLAGS:
DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
*** Summary *** When a link-layer address changes (e.g., ifconfig ex0 link 02:de:ad:be:ef:02 active), send a gratuitous ARP and/or a Neighbor Advertisement to update the network-/link-layer address bindings on our LAN peers. Refuse a change of ethernet address to the address 00:00:00:00:00:00 or to any multicast/broadcast address. (Thanks matt@.) Reorder ifnet ioctl operations so that driver ioctls may inherit the functions of their "class"---ether_ioctl(), fddi_ioctl(), et cetera---and the class ioctls may inherit from the generic ioctl, ifioctl_common(), but both driver- and class-ioctls may override the generic behavior. Make network drivers share more code. Distinguish a "factory" link-layer address from others for the purposes of both protecting that address from deletion and computing EUI64. Return consistent, appropriate error codes from network drivers. Improve readability. KNF. *** Details *** In if_attach(), always initialize the interface ioctl routine, ifnet->if_ioctl, if the driver has not already initialized it. Delete if_ioctl == NULL tests everywhere else, because it cannot happen. In the ioctl routines of network interfaces, inherit common ioctl behaviors by calling either ifioctl_common() or whichever ioctl routine is appropriate for the class of interface---e.g., ether_ioctl() for ethernets. Stop (ab)using SIOCSIFADDR and start to use SIOCINITIFADDR. In the user->kernel interface, SIOCSIFADDR's argument was an ifreq, but on the protocol->ifnet interface, SIOCSIFADDR's argument was an ifaddr. That was confusing, and it would work against me as I make it possible for a network interface to overload most ioctls. On the protocol->ifnet interface, replace SIOCSIFADDR with SIOCINITIFADDR. In ifioctl(), return EPERM if userland tries to invoke SIOCINITIFADDR. In ifioctl(), give the interface the first shot at handling most interface ioctls, and give the protocol the second shot, instead of the other way around. Finally, let compatibility code (COMPAT_OSOCK) take a shot. Pull device initialization out of switch statements under SIOCINITIFADDR. For example, pull ..._init() out of any switch statement that looks like this: switch (...->sa_family) { case ...: ..._init(); ... break; ... default: ..._init(); ... break; } Rewrite many if-else clauses that handle all permutations of IFF_UP and IFF_RUNNING to use a switch statement, switch (x & (IFF_UP|IFF_RUNNING)) { case 0: ... break; case IFF_RUNNING: ... break; case IFF_UP: ... break; case IFF_UP|IFF_RUNNING: ... break; } unifdef lots of code containing #ifdef FreeBSD, #ifdef NetBSD, and #ifdef SIOCSIFMTU, especially in fwip(4) and in ndis(4). In ipw(4), remove an if_set_sadl() call that is out of place. In nfe(4), reuse the jumbo MTU logic in ether_ioctl(). Let ethernets register a callback for setting h/w state such as promiscuous mode and the multicast filter in accord with a change in the if_flags: ether_set_ifflags_cb() registers a callback that returns ENETRESET if the caller should reset the ethernet by calling if_init(), 0 on success, != 0 on failure. Pull common code from ex(4), gem(4), nfe(4), sip(4), tlp(4), vge(4) into ether_ioctl(), and register if_flags callbacks for those drivers. Return ENOTTY instead of EINVAL for inappropriate ioctls. In zyd(4), use ENXIO instead of ENOTTY to indicate that the device is not any longer attached. Add to if_set_sadl() a boolean 'factory' argument that indicates whether a link-layer address was assigned by the factory or some other source. In a comment, recommend using the factory address for generating an EUI64, and update in6_get_hw_ifid() to prefer a factory address to any other link-layer address. Add a routing message, RTM_LLINFO_UPD, that tells protocols to update the binding of network-layer addresses to link-layer addresses. Implement this message in IPv4 and IPv6 by sending a gratuitous ARP or a neighbor advertisement, respectively. Generate RTM_LLINFO_UPD messages on a change of an interface's link-layer address. In ether_ioctl(), do not let SIOCALIFADDR set a link-layer address that is broadcast/multicast or equal to 00:00:00:00:00:00. Make ether_ioctl() call ifioctl_common() to handle ioctls that it does not understand. In gif(4), initialize if_softc and use it, instead of assuming that the gif_softc and ifp overlap. Let ifioctl_common() handle SIOCGIFADDR. Sprinkle rtcache_invariants(), which checks on DIAGNOSTIC kernels that certain invariants on a struct route are satisfied. In agr(4), rewrite agr_ioctl_filter() to be a bit more explicit about the ioctls that we do not allow on an agr(4) member interface. bzero -> memset. Delete unnecessary casts to void *. Use sockaddr_in_init() and sockaddr_in6_init(). Compare pointers with NULL instead of "testing truth". Replace some instances of (type *)0 with NULL. Change some K&R prototypes to ANSI C, and join lines.
2008-11-07 03:20:01 +03:00
if ((error = ifioctl_common(ifp, command, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc_if->sk_if_flags & IFF_PROMISC)) {
switch (sc->sk_type) {
case SK_GENESIS:
SK_XM_SETBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
break;
}
sk_setmulti(sc_if);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc_if->sk_if_flags & IFF_PROMISC) {
switch (sc->sk_type) {
case SK_GENESIS:
SK_XM_CLRBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_YU_SETBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
break;
}
sk_setmulti(sc_if);
} else
(void) sk_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
sk_stop(ifp,0);
}
sc_if->sk_if_flags = ifp->if_flags;
error = 0;
break;
default:
DPRINTFN(2, ("sk_ioctl ETHER\n"));
if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
break;
error = 0;
if (command != SIOCADDMULTI && command != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
sk_setmulti(sc_if);
DPRINTFN(2, ("sk_ioctl setmulti called\n"));
}
break;
}
splx(s);
return error;
}
void
sk_update_int_mod(struct sk_softc *sc)
{
u_int32_t imtimer_ticks;
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents one tick, so to specify a timeout in
* microseconds, we have to multiply by the correct number of
* ticks-per-microsecond.
*/
switch (sc->sk_type) {
case SK_GENESIS:
imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
break;
case SK_YUKON_EC:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
break;
default:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
}
2008-09-09 01:20:03 +04:00
aprint_verbose_dev(sc->sk_dev, "interrupt moderation is %d us\n",
2008-04-10 23:13:36 +04:00
sc->sk_int_mod);
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
sc->sk_int_mod_pending = 0;
}
/*
* Lookup: Check the PCI vendor and device, and return a pointer to
* The structure if the IDs match against our list.
*/
static const struct sk_product *
sk_lookup(const struct pci_attach_args *pa)
{
const struct sk_product *psk;
2005-02-27 03:26:58 +03:00
2003-10-25 20:15:07 +04:00
for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
PCI_PRODUCT(pa->pa_id) == psk->sk_product)
return psk;
}
return NULL;
}
/*
* Probe for a SysKonnect GEnesis chip.
*/
int
2008-09-09 01:20:03 +04:00
skc_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
const struct sk_product *psk;
pcireg_t subid;
subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
/* special-case Linksys EG1032, since rev 3 uses re(4) */
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LINKSYS &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LINKSYS_EG1032 &&
subid == SK_LINKSYS_EG1032_SUBID)
return 1;
2005-02-27 03:26:58 +03:00
if ((psk = sk_lookup(pa))) {
return 1;
}
return 0;
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
void sk_reset(struct sk_softc *sc)
{
DPRINTFN(2, ("sk_reset\n"));
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
DELAY(1000);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
DELAY(2);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
if (SK_YUKON_FAMILY(sc->sk_type))
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
CSR_READ_2(sc, SK_LINK_CTRL)));
if (sc->sk_type == SK_GENESIS) {
/* Configure packet arbiter */
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
}
/* Enable RAM interface */
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
sk_update_int_mod(sc);
}
int
2008-09-09 01:20:03 +04:00
sk_probe(device_t parent, cfdata_t match, void *aux)
{
struct skc_attach_args *sa = aux;
if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
return 0;
return 1;
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
void
2008-09-09 01:20:03 +04:00
sk_attach(device_t parent, device_t self, void *aux)
{
2008-09-09 01:20:03 +04:00
struct sk_if_softc *sc_if = device_private(self);
struct sk_softc *sc = device_private(parent);
struct skc_attach_args *sa = aux;
struct sk_txmap_entry *entry;
struct ifnet *ifp;
bus_dma_segment_t seg;
bus_dmamap_t dmamap;
void *kva;
int i, rseg;
int mii_flags = 0;
2007-12-02 02:40:28 +03:00
aprint_naive("\n");
2008-09-09 01:20:03 +04:00
sc_if->sk_dev = self;
sc_if->sk_port = sa->skc_port;
sc_if->sk_softc = sc;
sc->sk_if[sa->skc_port] = sc_if;
if (sa->skc_port == SK_PORT_A)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
if (sa->skc_port == SK_PORT_B)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc_if->sk_enaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
aprint_normal(": Ethernet address %s\n",
ether_sprintf(sc_if->sk_enaddr));
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algorithm is to divide up the memory
* evenly so that everyone gets a fair share.
*/
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 2;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
} else {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 4;
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
}
DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
" tx_ramstart=%#x tx_ramend=%#x\n",
sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
/* Read and save PHY type and set PHY address */
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
switch (sc_if->sk_phytype) {
case SK_PHYTYPE_XMAC:
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
break;
case SK_PHYTYPE_BCOM:
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
break;
case SK_PHYTYPE_MARV_COPPER:
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
break;
default:
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "unsupported PHY type: %d\n",
2008-04-10 23:13:36 +04:00
sc_if->sk_phytype);
return;
}
/* Allocate the descriptor queues. */
if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "can't alloc rx buffers\n");
goto fail;
}
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"can't map dma buffers (%lu bytes)\n",
(u_long) sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
&sc_if->sk_ring_map)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "can't create dma map\n");
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "can't load dma map\n");
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
for (i = 0; i < SK_RX_RING_CNT; i++)
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
SIMPLEQ_INIT(&sc_if->sk_txmap_head);
for (i = 0; i < SK_TX_RING_CNT; i++) {
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"Can't create TX dmamap\n");
bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
if (!entry) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev,
"Can't alloc txmap entry\n");
bus_dmamap_destroy(sc->sc_dmatag, dmamap);
bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
entry->dmamap = dmamap;
SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
}
sc_if->sk_rdata = (struct sk_ring_data *)kva;
bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
ifp = &sc_if->sk_ethercom.ec_if;
/* Try to allocate memory for jumbo buffers. */
if (sk_alloc_jumbo_mem(sc_if)) {
aprint_error("%s: jumbo buffer allocation failed\n", ifp->if_xname);
goto fail;
}
sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU
| ETHERCAP_JUMBO_MTU;
ifp->if_softc = sc_if;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sk_ioctl;
ifp->if_start = sk_start;
ifp->if_stop = sk_stop;
ifp->if_init = sk_init;
ifp->if_watchdog = sk_watchdog;
ifp->if_capabilities = 0;
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
2008-09-09 01:20:03 +04:00
strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
/*
* Do miibus setup.
*/
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
break;
default:
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "unknown device type %d\n",
2008-04-10 23:13:36 +04:00
sc->sk_type);
goto fail;
}
DPRINTFN(2, ("sk_attach: 1\n"));
sc_if->sk_mii.mii_ifp = ifp;
switch (sc->sk_type) {
case SK_GENESIS:
sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
mii_flags = MIIF_DOPAUSE;
break;
}
sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
ifmedia_init(&sc_if->sk_mii.mii_media, 0,
sk_ifmedia_upd, ether_mediastatus);
mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, mii_flags);
if (LIST_EMPTY(&sc_if->sk_mii.mii_phys)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
0, NULL);
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
} else
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
callout_init(&sc_if->sk_tick_ch, 0);
callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
DPRINTFN(2, ("sk_attach: 1\n"));
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, sc_if->sk_enaddr);
#if NRND > 0
2008-09-09 01:20:03 +04:00
rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
RND_TYPE_NET, 0);
#endif
DPRINTFN(2, ("sk_attach: end\n"));
return;
fail:
sc->sk_if[sa->skc_port] = NULL;
}
int
skcprint(void *aux, const char *pnp)
{
struct skc_attach_args *sa = aux;
if (pnp)
aprint_normal("sk port %c at %s",
(sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
else
aprint_normal(" port %c",
(sa->skc_port == SK_PORT_A) ? 'A' : 'B');
return UNCONF;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
2008-09-09 01:20:03 +04:00
skc_attach(device_t parent, device_t self, void *aux)
{
2008-09-09 01:20:03 +04:00
struct sk_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct skc_attach_args skca;
pci_chipset_tag_t pc = pa->pa_pc;
#ifndef SK_USEIOSPACE
pcireg_t memtype;
#endif
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_addr_t iobase;
bus_size_t iosize;
int rc, sk_nodenum;
u_int32_t command;
const char *revstr;
const struct sysctlnode *node;
2008-09-09 01:20:03 +04:00
sc->sk_dev = self;
2007-12-02 02:40:28 +03:00
aprint_naive("\n");
DPRINTFN(2, ("begin skc_attach\n"));
/*
* Handle power management nonsense.
*/
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
if (command & SK_PSTATE_MASK) {
u_int32_t xiobase, membase, irq;
/* Save important PCI config data. */
xiobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
/* Reset the power state. */
2008-09-09 01:20:03 +04:00
aprint_normal_dev(sc->sk_dev,
"chip is in D%d power mode -- setting to D0\n",
command & SK_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(pc, pa->pa_tag,
SK_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, xiobase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_IO_ENABLE |
PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
#ifdef SK_USEIOSPACE
if (!(command & PCI_COMMAND_IO_ENABLE)) {
aprint_error(": failed to enable I/O ports!\n");
return;
}
/*
* Map control/status registers.
*/
if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&sc->sk_btag, &sc->sk_bhandle,
&iobase, &iosize)) {
aprint_error(": can't find i/o space\n");
return;
}
#else
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error(": failed to enable memory mapping!\n");
return;
}
memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, SK_PCI_LOMEM,
memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
&iobase, &iosize) == 0)
break;
default:
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "can't find mem space\n");
return;
}
DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
#endif
sc->sc_dmatag = pa->pa_dmat;
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
/* bail out here if chip is not recognized */
if ( sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "unknown chip type\n");
goto fail;
}
if (SK_IS_YUKON2(sc)) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev,
"Does not support Yukon2--try msk(4).\n");
goto fail;
}
DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
aprint_error(": couldn't map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(pc, ih);
sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
if (sc->sk_intrhand == NULL) {
aprint_error(": couldn't establish interrupt");
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
goto fail;
}
aprint_normal(": %s\n", intrstr);
/* Reset the adapter. */
sk_reset(sc);
/* Read and save vital product data from EEPROM. */
sk_vpd_read(sc);
if (sc->sk_type == SK_GENESIS) {
u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
/* Read and save RAM size and RAMbuffer offset */
switch (val) {
case SK_RAMSIZE_512K_64:
sc->sk_ramsize = 0x80000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_1024K_64:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_80000;
break;
case SK_RAMSIZE_1024K_128:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_2048K_128:
sc->sk_ramsize = 0x200000;
sc->sk_rboff = SK_RBOFF_0;
break;
default:
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "unknown ram size: %d\n",
2008-04-10 23:13:36 +04:00
val);
goto fail_1;
break;
}
DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
sc->sk_ramsize, sc->sk_ramsize / 1024,
sc->sk_rboff));
} else {
u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
sc->sk_ramsize = ( val == 0 ) ? 0x20000 : (( val * 4 )*1024);
sc->sk_rboff = SK_RBOFF_0;
DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
sc->sk_ramsize / 1024, sc->sk_ramsize,
sc->sk_rboff));
}
/* Read and save physical media type */
switch (sk_win_read_1(sc, SK_PMDTYPE)) {
case SK_PMD_1000BASESX:
sc->sk_pmd = IFM_1000_SX;
break;
case SK_PMD_1000BASELX:
sc->sk_pmd = IFM_1000_LX;
break;
case SK_PMD_1000BASECX:
sc->sk_pmd = IFM_1000_CX;
break;
case SK_PMD_1000BASETX:
case SK_PMD_1000BASETX_ALT:
sc->sk_pmd = IFM_1000_T;
break;
default:
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc->sk_dev, "unknown media type: 0x%x\n",
2008-04-10 23:13:36 +04:00
sk_win_read_1(sc, SK_PMDTYPE));
goto fail_1;
}
/* determine whether to name it with vpd or just make it up */
/* Marvell Yukon VPD's can freqently be bogus */
switch (pa->pa_id) {
case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE):
case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
case PCI_PRODUCT_3COM_3C940:
case PCI_PRODUCT_DLINK_DGE530T:
case PCI_PRODUCT_DLINK_DGE560T:
case PCI_PRODUCT_DLINK_DGE560T_2:
case PCI_PRODUCT_LINKSYS_EG1032:
case PCI_PRODUCT_LINKSYS_EG1064:
case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH,
PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2):
case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940):
case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T):
case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T):
case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE560T_2):
case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032):
case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064):
sc->sk_name = sc->sk_vpd_prodname;
break;
2006-08-23 01:42:19 +04:00
case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SKNET):
/* whoops yukon vpd prodname bears no resemblance to reality */
switch (sc->sk_type) {
case SK_GENESIS:
sc->sk_name = sc->sk_vpd_prodname;
break;
case SK_YUKON:
sc->sk_name = "Marvell Yukon Gigabit Ethernet";
break;
case SK_YUKON_LITE:
sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet";
break;
case SK_YUKON_LP:
sc->sk_name = "Marvell Yukon LP Gigabit Ethernet";
break;
default:
sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet";
}
/* Yukon Lite Rev A0 needs special test, from sk98lin driver */
if ( sc->sk_type == SK_YUKON ) {
uint32_t flashaddr;
uint8_t testbyte;
2005-02-27 03:26:58 +03:00
flashaddr = sk_win_read_4(sc,SK_EP_ADDR);
2005-02-27 03:26:58 +03:00
/* test Flash-Address Register */
sk_win_write_1(sc,SK_EP_ADDR+3, 0xff);
testbyte = sk_win_read_1(sc, SK_EP_ADDR+3);
2005-02-27 03:26:58 +03:00
if (testbyte != 0) {
/* this is yukon lite Rev. A0 */
sc->sk_type = SK_YUKON_LITE;
sc->sk_rev = SK_YUKON_LITE_REV_A0;
/* restore Flash-Address Register */
sk_win_write_4(sc,SK_EP_ADDR,flashaddr);
}
}
break;
2006-08-23 01:42:19 +04:00
case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_BELKIN):
sc->sk_name = sc->sk_vpd_prodname;
break;
default:
2006-02-25 05:28:55 +03:00
sc->sk_name = "Unknown Marvell";
}
2005-02-27 03:26:58 +03:00
if ( sc->sk_type == SK_YUKON_LITE ) {
switch (sc->sk_rev) {
case SK_YUKON_LITE_REV_A0:
revstr = "A0";
break;
case SK_YUKON_LITE_REV_A1:
revstr = "A1";
break;
case SK_YUKON_LITE_REV_A3:
revstr = "A3";
break;
default:
revstr = "";
}
} else {
revstr = "";
}
/* Announce the product name. */
2008-09-09 01:20:03 +04:00
aprint_normal_dev(sc->sk_dev, "%s rev. %s(0x%x)\n",
sc->sk_name, revstr, sc->sk_rev);
skca.skc_port = SK_PORT_A;
2008-09-09 01:20:03 +04:00
(void)config_found(sc->sk_dev, &skca, skcprint);
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
skca.skc_port = SK_PORT_B;
2008-09-09 01:20:03 +04:00
(void)config_found(sc->sk_dev, &skca, skcprint);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
/* skc sysctl setup */
sc->sk_int_mod = SK_IM_DEFAULT;
sc->sk_int_mod_pending = 0;
if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
2008-09-09 01:20:03 +04:00
0, CTLTYPE_NODE, device_xname(sc->sk_dev),
SYSCTL_DESCR("skc per-controller controls"),
NULL, 0, NULL, 0, CTL_HW, sk_root_num, CTL_CREATE,
CTL_EOL)) != 0) {
2008-09-09 01:20:03 +04:00
aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
goto fail_1;
}
sk_nodenum = node->sysctl_num;
/* interrupt moderation time in usecs */
if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "int_mod",
SYSCTL_DESCR("sk interrupt moderation timer"),
sk_sysctl_handler, 0, sc,
0, CTL_HW, sk_root_num, sk_nodenum, CTL_CREATE,
CTL_EOL)) != 0) {
2008-09-09 01:20:03 +04:00
aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
goto fail_1;
}
return;
fail_1:
pci_intr_disestablish(pc, sc->sk_intrhand);
fail:
bus_space_unmap(sc->sk_btag, sc->sk_bhandle, iosize);
}
int
sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
{
struct sk_softc *sc = sc_if->sk_softc;
struct sk_tx_desc *f = NULL;
u_int32_t frag, cur, cnt = 0, sk_ctl;
int i;
struct sk_txmap_entry *entry;
bus_dmamap_t txmap;
DPRINTFN(3, ("sk_encap\n"));
entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
if (entry == NULL) {
DPRINTFN(3, ("sk_encap: no txmap available\n"));
return ENOBUFS;
}
txmap = entry->dmamap;
cur = frag = *txidx;
#ifdef SK_DEBUG
if (skdebug >= 3)
sk_dump_mbuf(m_head);
#endif
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
BUS_DMA_NOWAIT)) {
DPRINTFN(1, ("sk_encap: dmamap failed\n"));
return ENOBUFS;
}
DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
for (i = 0; i < txmap->dm_nsegs; i++) {
if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
return ENOBUFS;
}
f = &sc_if->sk_rdata->sk_tx_ring[frag];
f->sk_data_lo = htole32(txmap->dm_segs[i].ds_addr);
sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
if (cnt == 0)
sk_ctl |= SK_TXCTL_FIRSTFRAG;
else
sk_ctl |= SK_TXCTL_OWN;
f->sk_ctl = htole32(sk_ctl);
cur = frag;
SK_INC(frag, SK_TX_RING_CNT);
cnt++;
}
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
sc_if->sk_cdata.sk_tx_map[cur] = entry;
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
htole32(SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR);
/* Sync descriptors before handing to chip */
SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |=
htole32(SK_TXCTL_OWN);
/* Sync first descriptor to hand it off */
SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_cdata.sk_tx_cnt += cnt;
#ifdef SK_DEBUG
if (skdebug >= 3) {
struct sk_tx_desc *desc;
u_int32_t idx;
for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
desc = &sc_if->sk_rdata->sk_tx_ring[idx];
sk_dump_txdesc(desc, idx);
}
}
#endif
*txidx = frag;
DPRINTFN(3, ("sk_encap: completed successfully\n"));
return 0;
}
void
sk_start(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct mbuf *m_head = NULL;
u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
int pkts = 0;
DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sk_encap(sc_if, m_head, &idx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* now we are committed to transmit the packet */
IFQ_DEQUEUE(&ifp->if_snd, m_head);
pkts++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
if (pkts == 0)
return;
/* Transmit */
if (idx != sc_if->sk_cdata.sk_tx_prod) {
sc_if->sk_cdata.sk_tx_prod = idx;
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
}
}
void
sk_watchdog(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
/*
* Reclaim first as there is a possibility of losing Tx completion
* interrupts.
*/
sk_txeof(sc_if);
if (sc_if->sk_cdata.sk_tx_cnt != 0) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
ifp->if_oerrors++;
sk_init(ifp);
}
}
void
sk_shutdown(void *v)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
DPRINTFN(2, ("sk_shutdown\n"));
sk_stop(ifp,1);
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
/*
* Reset the GEnesis controller. Doing this should also
* assert the resets on the attached XMAC(s).
*/
sk_reset(sc);
}
void
sk_rxeof(struct sk_if_softc *sc_if)
{
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
struct mbuf *m;
struct sk_chain *cur_rx;
struct sk_rx_desc *cur_desc;
int i, cur, total_len = 0;
u_int32_t rxstat, sk_ctl;
bus_dmamap_t dmamap;
i = sc_if->sk_cdata.sk_rx_prod;
DPRINTFN(3, ("sk_rxeof %d\n", i));
for (;;) {
cur = i;
/* Sync the descriptor */
SK_CDRXSYNC(sc_if, cur,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
sk_ctl = le32toh(sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl);
if (sk_ctl & SK_RXCTL_OWN) {
/* Invalidate the descriptor -- it's not ready yet */
SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
sc_if->sk_cdata.sk_rx_prod = i;
break;
}
cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
rxstat = le32toh(cur_desc->sk_xmac_rxstat);
m = cur_rx->sk_mbuf;
cur_rx->sk_mbuf = NULL;
total_len = SK_RXBYTES(le32toh(cur_desc->sk_ctl));
sc_if->sk_cdata.sk_rx_map[cur] = 0;
SK_INC(i, SK_RX_RING_CNT);
if (rxstat & XM_RXSTAT_ERRFRAME) {
ifp->if_ierrors++;
sk_newbuf(sc_if, cur, m, dmamap);
continue;
}
/*
* Try to allocate a new jumbo buffer. If that
* fails, copy the packet to mbufs and put the
* jumbo buffer back in the ring so it can be
* re-used. If allocating mbufs fails, then we
* have to drop the packet.
*/
if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
struct mbuf *m0;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
sk_newbuf(sc_if, cur, m, dmamap);
if (m0 == NULL) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "no receive "
"buffers available -- packet dropped!\n");
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* pass it on. */
(*ifp->if_input)(ifp, m);
}
}
void
sk_txeof(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct sk_tx_desc *cur_tx;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
u_int32_t idx, sk_ctl;
struct sk_txmap_entry *entry;
DPRINTFN(3, ("sk_txeof\n"));
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
idx = sc_if->sk_cdata.sk_tx_cons;
while (idx != sc_if->sk_cdata.sk_tx_prod) {
SK_CDTXSYNC(sc_if, idx, 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
sk_ctl = le32toh(cur_tx->sk_ctl);
#ifdef SK_DEBUG
if (skdebug >= 3)
sk_dump_txdesc(cur_tx, idx);
#endif
if (sk_ctl & SK_TXCTL_OWN) {
SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
break;
}
if (sk_ctl & SK_TXCTL_LASTFRAG)
ifp->if_opackets++;
if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
entry = sc_if->sk_cdata.sk_tx_map[idx];
m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
link);
sc_if->sk_cdata.sk_tx_map[idx] = NULL;
}
sc_if->sk_cdata.sk_tx_cnt--;
SK_INC(idx, SK_TX_RING_CNT);
}
if (sc_if->sk_cdata.sk_tx_cnt == 0)
ifp->if_timer = 0;
else /* nudge chip to keep tx ring moving */
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2)
ifp->if_flags &= ~IFF_OACTIVE;
sc_if->sk_cdata.sk_tx_cons = idx;
}
void
sk_tick(void *xsc_if)
{
struct sk_if_softc *sc_if = xsc_if;
struct mii_data *mii = &sc_if->sk_mii;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
int i;
DPRINTFN(3, ("sk_tick\n"));
if (!(ifp->if_flags & IFF_UP))
return;
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
sk_intr_bcom(sc_if);
return;
}
/*
* According to SysKonnect, the correct way to verify that
* the link has come back up is to poll bit 0 of the GPIO
* register three times. This pin has the signal from the
* link sync pin connected to it; if we read the same link
* state 3 times in a row, we know the link is up.
*/
for (i = 0; i < 3; i++) {
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
break;
}
if (i != 3) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
return;
}
/* Turn the GP0 interrupt back on. */
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
SK_XM_READ_2(sc_if, XM_ISR);
mii_tick(mii);
mii_pollstat(mii);
callout_stop(&sc_if->sk_tick_ch);
}
void
sk_intr_bcom(struct sk_if_softc *sc_if)
{
struct mii_data *mii = &sc_if->sk_mii;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
int status;
DPRINTFN(3, ("sk_intr_bcom\n"));
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
/*
* Read the PHY interrupt register to make sure
* we clear any pending interrupts.
*/
status = sk_xmac_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
if (!(ifp->if_flags & IFF_RUNNING)) {
sk_init_xmac(sc_if);
return;
}
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
int lstat;
lstat = sk_xmac_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
(void)mii_mediachg(mii);
/* Turn off the link LED. */
SK_IF_WRITE_1(sc_if, 0,
SK_LINKLED1_CTL, SK_LINKLED_OFF);
sc_if->sk_link = 0;
} else if (status & BRGPHY_ISR_LNK_CHG) {
sk_xmac_miibus_writereg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
mii_tick(mii);
sc_if->sk_link = 1;
/* Turn on the link LED. */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
SK_LINKLED_BLINK_OFF);
mii_pollstat(mii);
} else {
mii_tick(mii);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
}
}
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
}
void
sk_intr_xmac(struct sk_if_softc *sc_if)
{
u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
DPRINTFN(3, ("sk_intr_xmac\n"));
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
if (status & XM_ISR_GP0_SET) {
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
if (status & XM_ISR_AUTONEG_DONE) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
}
if (status & XM_IMR_TX_UNDERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
if (status & XM_IMR_RX_OVERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
}
void
sk_intr_yukon(struct sk_if_softc *sc_if)
{
int status;
status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
}
int
sk_intr(void *xsc)
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
u_int32_t status;
int claimed = 0;
if (sc_if0 != NULL)
ifp0 = &sc_if0->sk_ethercom.ec_if;
if (sc_if1 != NULL)
ifp1 = &sc_if1->sk_ethercom.ec_if;
for (;;) {
status = CSR_READ_4(sc, SK_ISSR);
DPRINTFN(3, ("sk_intr: status=%#x\n", status));
if (!(status & sc->sk_intrmask))
break;
claimed = 1;
/* Handle receive interrupts first. */
if (sc_if0 && (status & SK_ISR_RX1_EOF)) {
sk_rxeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
if (sc_if1 && (status & SK_ISR_RX2_EOF)) {
sk_rxeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
/* Then transmit interrupts. */
if (sc_if0 && (status & SK_ISR_TX1_S_EOF)) {
sk_txeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
SK_TXBMU_CLR_IRQ_EOF);
}
if (sc_if1 && (status & SK_ISR_TX2_S_EOF)) {
sk_txeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
SK_TXBMU_CLR_IRQ_EOF);
}
/* Then MAC interrupts. */
if (sc_if0 && (status & SK_ISR_MAC1) &&
2006-04-14 22:50:18 +04:00
(ifp0->if_flags & IFF_RUNNING)) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if0);
else
sk_intr_yukon(sc_if0);
}
if (sc_if1 && (status & SK_ISR_MAC2) &&
2006-04-14 22:50:18 +04:00
(ifp1->if_flags & IFF_RUNNING)) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if1);
else
sk_intr_yukon(sc_if1);
}
if (status & SK_ISR_EXTERNAL_REG) {
if (sc_if0 != NULL &&
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if0);
2006-04-17 17:02:01 +04:00
if (sc_if1 != NULL &&
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if1);
}
}
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
sk_start(ifp0);
if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
sk_start(ifp1);
#if NRND > 0
if (RND_ENABLED(&sc->rnd_source))
rnd_add_uint32(&sc->rnd_source, status);
#endif
if (sc->sk_int_mod_pending)
sk_update_int_mod(sc);
return claimed;
}
void
sk_init_xmac(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
static const struct sk_bcom_hack bhack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 } };
DPRINTFN(1, ("sk_init_xmac\n"));
/* Unreset the XMAC. */
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
DELAY(1000);
/* Reset the XMAC's internal state. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
/* Save the XMAC II revision */
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
int i = 0;
u_int32_t val;
/* Take PHY out of reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A)
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
else
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
sk_win_write_4(sc, SK_GPIO, val);
/* Enable GMII mode on the XMAC. */
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
sk_xmac_miibus_writereg(sc_if->sk_dev,
SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
DELAY(10000);
sk_xmac_miibus_writereg(sc_if->sk_dev,
SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
/*
* Early versions of the BCM5400 apparently have
* a bug that requires them to have their reserved
* registers initialized to some magic values. I don't
* know what the numbers do, I'm just the messenger.
*/
if (sk_xmac_miibus_readreg(sc_if->sk_dev,
SK_PHYADDR_BCOM, 0x03) == 0x6041) {
while (bhack[i].reg) {
sk_xmac_miibus_writereg(sc_if->sk_dev,
SK_PHYADDR_BCOM, bhack[i].reg,
bhack[i].val);
i++;
}
}
}
/* Set station address */
SK_XM_WRITE_2(sc_if, XM_PAR0,
*(u_int16_t *)(&sc_if->sk_enaddr[0]));
SK_XM_WRITE_2(sc_if, XM_PAR1,
*(u_int16_t *)(&sc_if->sk_enaddr[2]));
SK_XM_WRITE_2(sc_if, XM_PAR2,
*(u_int16_t *)(&sc_if->sk_enaddr[4]));
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
if (ifp->if_flags & IFF_PROMISC)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
else
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
if (ifp->if_flags & IFF_BROADCAST)
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
else
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
/* We don't need the FCS appended to the packet. */
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
/* We want short frames padded to 60 bytes. */
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
XM_MODE_RX_INRANGELEN);
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
else
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
/* Set multicast filter */
sk_setmulti(sc_if);
/* Clear and enable interrupts */
SK_XM_READ_2(sc_if, XM_ISR);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
else
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Configure MAC arbiter */
switch (sc_if->sk_xmac_rev) {
case XM_XMAC_REV_B2:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
case XM_XMAC_REV_C1:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
default:
break;
}
sk_win_write_2(sc, SK_MACARB_CTL,
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
sc_if->sk_link = 1;
}
void sk_init_yukon(struct sk_if_softc *sc_if)
{
u_int32_t /*mac, */phy;
u_int16_t reg;
struct sk_softc *sc;
int i;
DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
CSR_READ_4(sc_if->sk_softc, SK_CSR)));
sc = sc_if->sk_softc;
if (sc->sk_type == SK_YUKON_LITE &&
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
/* Take PHY out of reset. */
sk_win_write_4(sc, SK_GPIO,
(sk_win_read_4(sc, SK_GPIO) | SK_GPIO_DIR9) & ~SK_GPIO_DAT9);
}
/* GMAC and GPHY Reset */
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
DPRINTFN(6, ("sk_init_yukon: 1\n"));
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
DPRINTFN(6, ("sk_init_yukon: 2\n"));
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
switch (sc_if->sk_softc->sk_pmd) {
case IFM_1000_SX:
case IFM_1000_LX:
phy |= SK_GPHY_FIBER;
break;
case IFM_1000_CX:
case IFM_1000_T:
phy |= SK_GPHY_COPPER;
break;
}
DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
DPRINTFN(6, ("sk_init_yukon: 3\n"));
/* unused read of the interrupt source register */
DPRINTFN(6, ("sk_init_yukon: 4\n"));
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
DPRINTFN(6, ("sk_init_yukon: 4a\n"));
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
/* MIB Counter Clear Mode set */
reg |= YU_PAR_MIB_CLR;
DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
DPRINTFN(6, ("sk_init_yukon: 4b\n"));
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2005-02-27 03:26:58 +03:00
/* MIB Counter Clear Mode clear */
DPRINTFN(6, ("sk_init_yukon: 5\n"));
reg &= ~YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* receive control reg */
DPRINTFN(6, ("sk_init_yukon: 7\n"));
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
YU_RCR_CRCR);
/* transmit parameter register */
DPRINTFN(6, ("sk_init_yukon: 8\n"));
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
/* serial mode register */
DPRINTFN(6, ("sk_init_yukon: 9\n"));
SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO |
YU_SMR_IPG_DATA(0x1e));
DPRINTFN(6, ("sk_init_yukon: 10\n"));
/* Setup Yukon's address */
for (i = 0; i < 3; i++) {
/* Write Source Address 1 (unicast filter) */
2005-02-27 03:26:58 +03:00
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
sc_if->sk_enaddr[i * 2] |
sc_if->sk_enaddr[i * 2 + 1] << 8);
}
for (i = 0; i < 3; i++) {
reg = sk_win_read_2(sc_if->sk_softc,
SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
}
/* Set multicast filter */
DPRINTFN(6, ("sk_init_yukon: 11\n"));
sk_setmulti(sc_if);
/* enable interrupt mask for counter overflows */
DPRINTFN(6, ("sk_init_yukon: 12\n"));
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
/* Configure RX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
2005-02-27 03:26:58 +03:00
/* Configure TX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2005-02-27 03:26:58 +03:00
DPRINTFN(6, ("sk_init_yukon: end\n"));
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
int
sk_init(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct mii_data *mii = &sc_if->sk_mii;
int rc = 0, s;
u_int32_t imr, imtimer_ticks;
DPRINTFN(1, ("sk_init\n"));
s = splnet();
if (ifp->if_flags & IFF_RUNNING) {
splx(s);
return 0;
}
/* Cancel pending I/O and free all RX/TX buffers. */
sk_stop(ifp,0);
if (sc->sk_type == SK_GENESIS) {
/* Configure LINK_SYNC LED */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_LINKSYNC_ON);
/* Configure RX LED */
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
SK_RXLEDCTL_COUNTER_START);
2005-02-27 03:26:58 +03:00
/* Configure TX LED */
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
SK_TXLEDCTL_COUNTER_START);
}
/* Configure I2C registers */
/* Configure XMAC(s) */
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
sk_init_yukon(sc_if);
break;
}
if ((rc = mii_mediachg(mii)) == ENXIO)
rc = 0;
else if (rc != 0)
goto out;
if (sc->sk_type == SK_GENESIS) {
/* Configure MAC FIFOs */
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
2005-02-27 03:26:58 +03:00
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
}
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
SK_RX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
SK_TX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
/* Init descriptors */
if (sk_init_rx_ring(sc_if) == ENOBUFS) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2008-04-10 23:13:36 +04:00
"memory for rx buffers\n");
sk_stop(ifp,0);
splx(s);
return ENOBUFS;
}
if (sk_init_tx_ring(sc_if) == ENOBUFS) {
2008-09-09 01:20:03 +04:00
aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2008-04-10 23:13:36 +04:00
"memory for tx buffers\n");
sk_stop(ifp,0);
splx(s);
return ENOBUFS;
}
/* Set interrupt moderation if changed via sysctl. */
switch (sc->sk_type) {
case SK_GENESIS:
imtimer_ticks = SK_IMTIMER_TICKS_GENESIS;
break;
case SK_YUKON_EC:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
break;
default:
imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
}
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
if (imr != SK_IM_USECS(sc->sk_int_mod)) {
sk_win_write_4(sc, SK_IMTIMERINIT,
SK_IM_USECS(sc->sk_int_mod));
2008-09-09 01:20:03 +04:00
aprint_verbose_dev(sc->sk_dev,
"interrupt moderation is %d us\n", sc->sk_int_mod);
}
/* Configure interrupt handling */
CSR_READ_4(sc, SK_ISSR);
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_INTRS1;
else
sc->sk_intrmask |= SK_INTRS2;
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
/* Start BMUs. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
if (sc->sk_type == SK_GENESIS) {
/* Enable XMACs TX and RX state machines */
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
}
if (SK_YUKON_FAMILY(sc->sk_type)) {
u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
#if 0
/* XXX disable 100Mbps and full duplex mode? */
reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_EN);
#endif
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
splx(s);
return rc;
}
void
sk_stop(struct ifnet *ifp, int disable)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
int i;
DPRINTFN(1, ("sk_stop\n"));
callout_stop(&sc_if->sk_tick_ch);
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
u_int32_t val;
/* Put PHY back into reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A) {
val |= SK_GPIO_DIR0;
val &= ~SK_GPIO_DAT0;
} else {
val |= SK_GPIO_DIR2;
val &= ~SK_GPIO_DAT2;
}
sk_win_write_4(sc, SK_GPIO, val);
}
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
switch (sc->sk_type) {
case SK_GENESIS:
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
SK_TXMACCTL_XMAC_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
break;
case SK_YUKON:
case SK_YUKON_LITE:
case SK_YUKON_LP:
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
break;
}
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_INTRS1;
else
sc->sk_intrmask &= ~SK_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
}
}
for (i = 0; i < SK_TX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
}
2008-09-09 01:20:03 +04:00
CFATTACH_DECL_NEW(skc, sizeof(struct sk_softc),
skc_probe, skc_attach, NULL, NULL);
2008-09-09 01:20:03 +04:00
CFATTACH_DECL_NEW(sk, sizeof(struct sk_if_softc),
sk_probe, sk_attach, NULL, NULL);
#ifdef SK_DEBUG
void
sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
{
#define DESC_PRINT(X) \
if (X) \
printf("txdesc[%d]." #X "=%#x\n", \
idx, X);
DESC_PRINT(le32toh(desc->sk_ctl));
DESC_PRINT(le32toh(desc->sk_next));
DESC_PRINT(le32toh(desc->sk_data_lo));
DESC_PRINT(le32toh(desc->sk_data_hi));
DESC_PRINT(le32toh(desc->sk_xmac_txstat));
DESC_PRINT(le16toh(desc->sk_rsvd0));
DESC_PRINT(le16toh(desc->sk_csum_startval));
DESC_PRINT(le16toh(desc->sk_csum_startpos));
DESC_PRINT(le16toh(desc->sk_csum_writepos));
DESC_PRINT(le16toh(desc->sk_rsvd1));
#undef PRINT
}
void
sk_dump_bytes(const char *data, int len)
{
int c, i, j;
for (i = 0; i < len; i += 16) {
printf("%08x ", i);
c = len - i;
if (c > 16) c = 16;
for (j = 0; j < c; j++) {
printf("%02x ", data[i + j] & 0xff);
if ((j & 0xf) == 7 && j > 0)
printf(" ");
}
2005-02-27 03:26:58 +03:00
for (; j < 16; j++)
printf(" ");
printf(" ");
for (j = 0; j < c; j++) {
int ch = data[i + j] & 0xff;
printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
}
2005-02-27 03:26:58 +03:00
printf("\n");
2005-02-27 03:26:58 +03:00
if (c < 16)
break;
}
}
void
sk_dump_mbuf(struct mbuf *m)
{
int count = m->m_pkthdr.len;
printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
while (count > 0 && m) {
printf("m=%p, m->m_data=%p, m->m_len=%d\n",
m, m->m_data, m->m_len);
sk_dump_bytes(mtod(m, char *), m->m_len);
count -= m->m_len;
m = m->m_next;
}
}
#endif
static int
sk_sysctl_handler(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
struct sk_softc *sc;
node = *rnode;
sc = node.sysctl_data;
t = sc->sk_int_mod;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (t < SK_IM_MIN || t > SK_IM_MAX)
return EINVAL;
/* update the softc with sysctl-changed value, and mark
for hardware update */
sc->sk_int_mod = t;
sc->sk_int_mod_pending = 1;
return 0;
}
/*
* Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
* set up in skc_attach()
*/
SYSCTL_SETUP(sysctl_sk, "sysctl sk subtree setup")
{
int rc;
const struct sysctlnode *node;
if ((rc = sysctl_createv(clog, 0, NULL, NULL,
0, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
goto err;
}
if ((rc = sysctl_createv(clog, 0, NULL, &node,
0, CTLTYPE_NODE, "sk",
SYSCTL_DESCR("sk interface controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto err;
}
sk_root_num = node->sysctl_num;
return;
err:
aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
}