2001-07-07 21:04:01 +04:00
|
|
|
/* $NetBSD: rndpool.c,v 1.11 2001/07/07 17:04:02 thorpej Exp $ */
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
/*-
|
|
|
|
* Copyright (c) 1997 The NetBSD Foundation, Inc.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
1997-10-13 23:59:26 +04:00
|
|
|
* by Michael Graff <explorer@flame.org>. This code uses ideas and
|
|
|
|
* algorithms from the Linux driver written by Ted Ts'o.
|
1997-10-10 03:13:12 +04:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* This product includes software developed by the NetBSD
|
|
|
|
* Foundation, Inc. and its contributors.
|
|
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/systm.h>
|
1998-05-27 04:59:14 +04:00
|
|
|
#include <sys/sha1.h>
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
#include <sys/rnd.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The random pool "taps"
|
|
|
|
*/
|
1997-10-20 19:03:19 +04:00
|
|
|
#define TAP1 99
|
|
|
|
#define TAP2 59
|
|
|
|
#define TAP3 31
|
|
|
|
#define TAP4 9
|
|
|
|
#define TAP5 7
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
static inline void rndpool_add_one_word(rndpool_t *, u_int32_t);
|
|
|
|
|
|
|
|
void
|
|
|
|
rndpool_init(rp)
|
|
|
|
rndpool_t *rp;
|
|
|
|
{
|
1999-01-27 13:41:00 +03:00
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
rp->cursor = 0;
|
1997-10-10 03:13:12 +04:00
|
|
|
rp->rotate = 0;
|
2000-06-06 03:42:34 +04:00
|
|
|
|
|
|
|
memset(&rp->stats, 0, sizeof(rp->stats));
|
|
|
|
|
|
|
|
rp->stats.curentropy = 0;
|
|
|
|
rp->stats.poolsize = RND_POOLWORDS;
|
|
|
|
rp->stats.threshold = RND_ENTROPY_THRESHOLD;
|
|
|
|
rp->stats.maxentropy = RND_POOLBITS;
|
|
|
|
|
|
|
|
assert(RND_ENTROPY_THRESHOLD*2 <= 20); /* XXX sha knowledge */
|
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
u_int32_t
|
|
|
|
rndpool_get_entropy_count(rp)
|
|
|
|
rndpool_t *rp;
|
|
|
|
{
|
1999-01-27 13:41:00 +03:00
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
return rp->stats.curentropy;
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
void rndpool_get_stats(rp, rsp, size)
|
1997-10-10 03:13:12 +04:00
|
|
|
rndpool_t *rp;
|
2000-06-06 03:42:34 +04:00
|
|
|
void *rsp;
|
|
|
|
int size;
|
1997-10-10 03:13:12 +04:00
|
|
|
{
|
2000-06-06 03:42:34 +04:00
|
|
|
memcpy(rsp, &rp->stats, size);
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
void
|
|
|
|
rndpool_increment_entropy_count(rp, entropy)
|
|
|
|
rndpool_t *rp;
|
|
|
|
u_int32_t entropy;
|
|
|
|
{
|
1999-01-27 13:41:00 +03:00
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
rp->stats.curentropy += entropy;
|
|
|
|
rp->stats.added += entropy;
|
|
|
|
if (rp->stats.curentropy > RND_POOLBITS) {
|
|
|
|
rp->stats.discarded += (rp->stats.curentropy - RND_POOLBITS);
|
|
|
|
rp->stats.curentropy = RND_POOLBITS;
|
|
|
|
}
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
u_int32_t *
|
|
|
|
rndpool_get_pool(rp)
|
|
|
|
rndpool_t *rp;
|
|
|
|
{
|
1999-01-27 13:41:00 +03:00
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
return (rp->pool);
|
|
|
|
}
|
|
|
|
|
|
|
|
u_int32_t
|
|
|
|
rndpool_get_poolsize(void)
|
|
|
|
{
|
1999-01-27 13:41:00 +03:00
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
return (RND_POOLWORDS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add one word to the pool, rotating the input as needed.
|
|
|
|
*/
|
|
|
|
static inline void
|
|
|
|
rndpool_add_one_word(rp, val)
|
|
|
|
rndpool_t *rp;
|
|
|
|
u_int32_t val;
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Steal some values out of the pool, and xor them into the
|
|
|
|
* word we were given.
|
|
|
|
*
|
2000-06-06 03:42:34 +04:00
|
|
|
* Mix the new value into the pool using xor. This will
|
1997-10-10 03:13:12 +04:00
|
|
|
* prevent the actual values from being known to the caller
|
|
|
|
* since the previous values are assumed to be unknown as well.
|
|
|
|
*/
|
|
|
|
val ^= rp->pool[(rp->cursor + TAP1) & (RND_POOLWORDS - 1)];
|
|
|
|
val ^= rp->pool[(rp->cursor + TAP2) & (RND_POOLWORDS - 1)];
|
|
|
|
val ^= rp->pool[(rp->cursor + TAP3) & (RND_POOLWORDS - 1)];
|
|
|
|
val ^= rp->pool[(rp->cursor + TAP4) & (RND_POOLWORDS - 1)];
|
1997-10-20 19:03:19 +04:00
|
|
|
val ^= rp->pool[(rp->cursor + TAP5) & (RND_POOLWORDS - 1)];
|
2000-06-10 21:01:15 +04:00
|
|
|
if (rp->rotate != 0)
|
|
|
|
val = ((val << rp->rotate) | (val >> (32 - rp->rotate)));
|
|
|
|
rp->pool[rp->cursor++] ^= val;
|
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
/*
|
|
|
|
* If we have looped around the pool, increment the rotate
|
2000-06-06 03:42:34 +04:00
|
|
|
* variable so the next value will get xored in rotated to
|
|
|
|
* a different position.
|
|
|
|
* Increment by a value that is relativly prime to the word size
|
|
|
|
* to try to spread the bits throughout the pool quickly when the
|
|
|
|
* pool is empty.
|
1997-10-10 03:13:12 +04:00
|
|
|
*/
|
|
|
|
if (rp->cursor == RND_POOLWORDS) {
|
|
|
|
rp->cursor = 0;
|
|
|
|
rp->rotate = (rp->rotate + 7) & 31;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
#if 0
|
1997-10-10 03:13:12 +04:00
|
|
|
/*
|
2000-06-06 03:42:34 +04:00
|
|
|
* Stir a 32-bit value (with possibly less entropy than that) into the pool.
|
|
|
|
* Update entropy estimate.
|
1997-10-10 03:13:12 +04:00
|
|
|
*/
|
|
|
|
void
|
|
|
|
rndpool_add_uint32(rp, val, entropy)
|
|
|
|
rndpool_t *rp;
|
|
|
|
u_int32_t val;
|
|
|
|
u_int32_t entropy;
|
|
|
|
{
|
|
|
|
rndpool_add_one_word(rp, val);
|
2000-06-06 03:42:34 +04:00
|
|
|
|
|
|
|
rp->entropy += entropy;
|
|
|
|
rp->stats.added += entropy;
|
|
|
|
if (rp->entropy > RND_POOLBITS) {
|
|
|
|
rp->stats.discarded += (rp->entropy - RND_POOLBITS);
|
|
|
|
rp->entropy = RND_POOLBITS;
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
}
|
2000-06-06 03:42:34 +04:00
|
|
|
#endif
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* add a buffer's worth of data to the pool.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
rndpool_add_data(rp, p, len, entropy)
|
|
|
|
rndpool_t *rp;
|
|
|
|
void *p;
|
|
|
|
u_int32_t len;
|
|
|
|
u_int32_t entropy;
|
|
|
|
{
|
|
|
|
u_int32_t val;
|
|
|
|
u_int8_t *buf;
|
|
|
|
|
|
|
|
buf = p;
|
|
|
|
|
|
|
|
for (; len > 3 ; len -= 4) {
|
|
|
|
val = *((u_int32_t *)buf);
|
|
|
|
|
|
|
|
rndpool_add_one_word(rp, val);
|
|
|
|
buf += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (len != 0) {
|
2000-06-06 03:42:34 +04:00
|
|
|
val = 0;
|
1997-10-10 03:13:12 +04:00
|
|
|
switch (len) {
|
|
|
|
case 3:
|
|
|
|
val = *buf++;
|
|
|
|
case 2:
|
|
|
|
val = val << 8 | *buf++;
|
|
|
|
case 1:
|
|
|
|
val = val << 8 | *buf++;
|
|
|
|
}
|
|
|
|
|
|
|
|
rndpool_add_one_word(rp, val);
|
|
|
|
}
|
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
rp->stats.curentropy += entropy;
|
|
|
|
rp->stats.added += entropy;
|
|
|
|
|
|
|
|
if (rp->stats.curentropy > RND_POOLBITS) {
|
|
|
|
rp->stats.discarded += (rp->stats.curentropy - RND_POOLBITS);
|
|
|
|
rp->stats.curentropy = RND_POOLBITS;
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extract some number of bytes from the random pool, decreasing the
|
|
|
|
* estimate of randomness as each byte is extracted.
|
|
|
|
*
|
|
|
|
* Do this by stiring the pool and returning a part of hash as randomness.
|
|
|
|
* Note that no secrets are given away here since parts of the hash are
|
|
|
|
* xored together before returned.
|
|
|
|
*
|
|
|
|
* Honor the request from the caller to only return good data, any data,
|
|
|
|
* etc. Note that we must have at least 64 bits of entropy in the pool
|
|
|
|
* before we return anything in the high-quality modes.
|
|
|
|
*/
|
|
|
|
int
|
|
|
|
rndpool_extract_data(rp, p, len, mode)
|
|
|
|
rndpool_t *rp;
|
|
|
|
void *p;
|
|
|
|
u_int32_t len;
|
|
|
|
u_int32_t mode;
|
|
|
|
{
|
|
|
|
u_int i;
|
1998-05-27 04:59:14 +04:00
|
|
|
SHA1_CTX hash;
|
2000-06-06 03:42:34 +04:00
|
|
|
u_char digest[20]; /* XXX SHA knowledge */
|
|
|
|
u_int32_t remain, deltae, count;
|
1997-10-10 03:13:12 +04:00
|
|
|
u_int8_t *buf;
|
|
|
|
int good;
|
|
|
|
|
|
|
|
buf = p;
|
|
|
|
remain = len;
|
|
|
|
|
|
|
|
if (mode == RND_EXTRACT_ANY)
|
|
|
|
good = 1;
|
|
|
|
else
|
2000-06-06 03:42:34 +04:00
|
|
|
good = (rp->stats.curentropy >= (8 * RND_ENTROPY_THRESHOLD));
|
1997-10-10 03:13:12 +04:00
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
assert(RND_ENTROPY_THRESHOLD*2 <= 20); /* XXX SHA knowledge */
|
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
while (good && (remain != 0)) {
|
2000-06-06 03:42:34 +04:00
|
|
|
/*
|
|
|
|
* While bytes are requested, compute the hash of the pool,
|
|
|
|
* and then "fold" the hash in half with XOR, keeping the
|
|
|
|
* exact hash value secret, as it will be stirred back into
|
|
|
|
* the pool.
|
|
|
|
*
|
|
|
|
* XXX this approach needs examination by competant
|
|
|
|
* cryptographers! It's rather expensive per bit but
|
|
|
|
* also involves every bit of the pool in the
|
|
|
|
* computation of every output bit..
|
|
|
|
*/
|
1998-05-27 04:59:14 +04:00
|
|
|
SHA1Init(&hash);
|
|
|
|
SHA1Update(&hash, (u_int8_t *)rp->pool, RND_POOLWORDS * 4);
|
2000-06-06 03:42:34 +04:00
|
|
|
SHA1Final(digest, &hash);
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
/*
|
2000-06-06 03:42:34 +04:00
|
|
|
* Stir the hash back into the pool. This guarantees
|
|
|
|
* that the next hash will generate a different value
|
|
|
|
* if no new values were added to the pool.
|
1997-10-10 03:13:12 +04:00
|
|
|
*/
|
2000-06-06 03:42:34 +04:00
|
|
|
for (i = 0 ; i < 5 ; i++) {
|
|
|
|
u_int32_t word;
|
|
|
|
memcpy(&word, &digest[i*4], 4);
|
|
|
|
rndpool_add_one_word(rp, word);
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
2000-06-06 03:42:34 +04:00
|
|
|
count = min(remain, RND_ENTROPY_THRESHOLD);
|
|
|
|
|
|
|
|
for (i=0; i<count; i++)
|
|
|
|
buf[i] = digest[i] ^ digest[i+RND_ENTROPY_THRESHOLD];
|
|
|
|
|
|
|
|
buf += count;
|
|
|
|
deltae = count * 8;
|
|
|
|
remain -= count;
|
|
|
|
|
|
|
|
deltae = min(deltae, rp->stats.curentropy);
|
|
|
|
|
|
|
|
rp->stats.removed += deltae;
|
|
|
|
rp->stats.curentropy -= deltae;
|
|
|
|
|
|
|
|
if (rp->stats.curentropy == 0)
|
|
|
|
rp->stats.generated += (count * 8) - deltae;
|
|
|
|
|
1997-10-10 03:13:12 +04:00
|
|
|
if (mode == RND_EXTRACT_GOOD)
|
2000-06-06 03:42:34 +04:00
|
|
|
good = (rp->stats.curentropy >=
|
|
|
|
(8 * RND_ENTROPY_THRESHOLD));
|
1997-10-10 03:13:12 +04:00
|
|
|
}
|
|
|
|
|
2001-07-07 21:04:01 +04:00
|
|
|
memset(&hash, 0, sizeof(hash));
|
|
|
|
memset(digest, 0, sizeof(digest));
|
1997-10-10 03:13:12 +04:00
|
|
|
|
|
|
|
return (len - remain);
|
|
|
|
}
|